文档库 最新最全的文档下载
当前位置:文档库 › 小功率调幅发射机

小功率调幅发射机

小功率调幅发射机
小功率调幅发射机

《通信基本电路》

课程设计报告

小功率调幅发射机的设计

专业:电子信息工程

姓名:

学号:

班级:

指导教师:

小功率调幅发射机常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。原因是调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。

本课设结合Multisim软件来对小功率调幅发射机电路的设计与调试方法进行研究。Multisim软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Multisim软件已不是单纯的设计工具,而是一个系统,它覆盖了以仿真为核心的全部物理设计。

本课题的设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装对各级电路进行详细地探讨,并利用Multisim软件仿真设计了一个小功率调幅发射机。

关键字:小功率调幅发射机、MULTISIM仿真、振荡电路、调制电路、功率放大器。

目录 (3)

1 选题意义 (4)

2 系统总体设计及实现的功能 (4)

2.1调幅发射机的性能指标 (4)

2.2系统流程图 (4)

2.3 各部分实现的具体功能 (5)

2.3.1发射机各部分设计的原则及思路 (5)

2.3.2图中各组成部分的的作用 (5)

3 各部分电路设计及原理分析 (5)

3.1主振级 (6)

3.1.1 主振级电路设计思路 (6)

3.1.2 主振级电路图设计 (6)

3.2 缓冲级 (7)

3.2.1 缓冲级设计思路 (7)

3.2.2 缓冲级电路图 (7)

3.3放大级 (8)

3.3.1放大级电路设计思路 (8)

3.3.2 放大级电路图设计 (9)

3.4 振幅调制级 (10)

3.4.1 振幅调制级设计思路 (10)

3.4.2 振幅调制级电路图 (12)

3.5 音频放大级 (13)

4电路参数选择及仿真结果 (13)

4.1振荡级的计算与仿真结果 (14)

4.2 缓冲级的计算与仿真结果 (15)

4.3 放大级晶体管的选择 (16)

4.4振幅调制级参数的计算与仿真 (17)

4.5 音频放大级电路参数计算及仿真结果 (18)

5 结论 (19)

6 心得体会 (20)

7 参考文献 (21)

1 选题意义

这学期开了一门课《通信基本电路》,通过这门课我对无线电通信的理论知

识有了一定的理解和认识。为了进一步增强对电子技术的理解,通过课程设计,我学会查寻资料、比较方案;学会了一点通信电路的计算,也能进一步提高分析解决实际问题的能力。低频信号有效的发射出去需要经过高频信号调制,利用高频信号作为载波,对信号进行传递,可以用不同的调制方式。在无线电广播中可分为调幅制、调频制两种调制方式。目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。这次课程设计我选用了超外差式收音机的设计。

通过本课题的设计、调试和仿真,加深对《通信基本电路》理论知识的进一

步理解,进一步巩固理论知识,能够建立起无线发射机的整机概念,学会分析电路、设计电路的步骤和方法,了解发射机各单元之间的关系以及相互影响,从而能正确设计、计算调幅发射机的各单元电路:主振级、被调级、推动级、功率放大级、输出匹配网络等。进一步掌握所学单元电路以及在此基础上,培养自己分析、应用其他电路单元的能力。同时经过课程设计,要学会查资料、充分利用互联网等一切可利用的学习资源,增强同学们分析问题解决问题的能力,为将来的毕业设计做铺垫,也为将来走向就业岗位打下一定的基础。

2 系统总体设计及实现的功能

2.1调幅发射机的性能指标

由于调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。在设计调幅发射机时,主要遵循如下性能指标:

● 工作频率范围:调幅制一般适用于中、短波广播通信,发射机的工作频率应

根据调制方式,在国家或有关部门所规定的范围内选取。对调幅发射机一般在中频(0.3-3MHZ )和高频(3-30MHZ )范围内。

● 发射功率:一般是指发射机送到天线上的功率。只有当天线的长度与发射频

率的波长可比拟时,天线才能有效地把载波发射出去。 ● 波长与频率的关系为:λ= c/f 。式中, c 为电磁波传播速度,c=8

103 m/s 。 ● 调幅系数:调幅系数ma 是调制信号控制载波电压振幅变化的系数,ma 的取

值范围为0~1,通常以百分数的形式表示,即0%~100%。

● 非线性失真(包络失真):调制器的调制特性不能跟调制电压线性变化而引

起已调波的包络失真为调幅发射机的非线性失真,一般要求小于10%。 ● 线性失真:保持调制电压振幅不变,改变调制频率引起的调幅度特性变化称

为线性失真。

● 噪声电平:噪声电平是指没有调制信号时,由噪声产生的调制度与信号最大

时间的调幅度比,广播发射机的噪声电平要求小于0.1%,一般通信机的噪声电平要求小于1%。

2.2系统流程图

发射机的主要作用是完成有用的低频信号对高频信号的调制,将其变为在某一个中心频率上具有一定带宽、适合通过天线发射出去的电磁波。

调幅发射机通常由主振级、缓冲级、倍频级、中间放大级、振幅调制、音频放大和输出网络组成。根据设计要求,载波频率f=6MHz ,主振级采用西勒振荡电路,输出的载波的频率可以直接满足要求,不需要倍频器。系统原理如下图所示:

图表 2 1小功率调幅发射机方框图

2.3 各部分实现的具体功能

2.3.1发射机各部分设计的原则及思路

发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,发射机包括三个部分:高频部分,低频部分,和电源部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。如果载波的频率较高,则由于晶体频率一般不能太高,因而在缓冲级之后还应加一级或若干级倍频器,以使频率提高所需的数值。倍频级之后还需加若干级放大级,以逐步提高输出功率,最后经功放推动级将功率提高到能推动末级功放的电平,末级功放则将输出功率提高到所需的发射电平,经过发射天线辐射出去。

低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。

调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。所以末级高频功率放大级则成为受调放大器。

2.3.2图中各组成部分的的作用

振荡级:产生平率为6MHz左右的载波信号。

缓冲级:将晶体振荡级与调制级隔离,减小调制级对晶体振荡级的影响。

音频放大级:将话筒信号电压放大到调制级所需的调制电压。

功放以及调幅级:增大载波输出功率,将话音信号调制到载波上,产生已调波。输出网络级:对前级送来的信号进行功率放大,通过天线将已调高频载波电流以电磁波的形式发射到空间。

3 各部分电路设计及原理分析

3.1主振级

3.1.1 主振级电路设计思路

主振级主振级是调幅发射机的核心部件,主要用来产生一个频率稳定、幅度较大、波形失真小的高频正弦波信号作为载波信号。振荡器通常工作于丙类,因此它的工作状态是非线性的。该电路通常采用晶体管LC 正弦波振荡器。LC 振荡器的基本工作原理:

? 一套振荡回路,包含两个(或两个以上)储能元件。在这两个元件中,当一

个释放能量时,另一个就接收能量。释放与接收能量可以往返进行,其频率决定于元件的数值。 ? 一个能量来源,补充由振荡回路电阻所产生的能量损失。在晶体管振荡器中,

这个能源就是直流电源。

? 一个控制设备,可以使电源功率在正确的时刻补充电路的能量损失,以维持

等幅振荡。这是由有源器件和正反馈电路完成的。

常用的正弦波振荡器包括电容三点式振荡器即考毕兹振荡器、克拉泼振荡器、西勒振荡器。

本级用来产生4MHz 左右的高频振荡载波信号,由于整个发射机的频率稳定度由主振级决定,因此要求主振级有较高的频率稳定度,同时也要有一定的振荡功率(或电压),其输出波形失真较小。为此,这里我采用西勒振荡电路,可以满足要求。

● 西勒电路原理图如下:

图表3 1--1西勒电路原理图

为了解决频率稳定度和振荡幅度的矛盾,常采用部分接入方式。由前述可知,为了保证振荡器有一定的稳定振幅及容易起振,当静态工作点确定后,晶体管内部参数

f

Y 的值就一定,对于小功率晶体管可以近似认为

26f m CQ Y g I mV

==,反

馈系数大小应在0.15~0.5范围内选择。 3.1.2 主振级电路图设计

如图3-1-2西勒振荡器电路图所示。1R 、2R 、4R 提供偏置电压使三极管工作在放大区,1C 起到滤波作用。 输出电路的总电容:

234

545

233424

C C C C C C C C C C C C C =

+≈+++

振荡频率为:

osc

f

=

在此西勒振荡器电路中,由于5C 和L 并联,所以5C 变化不会影响回路的接入系数,如果使4C 固定,可以通过改变5C 来改变振荡频率,因此,西勒振荡器可用作波段振荡器,适用于较宽波段工作。 电路图如下:

图表3 1--2主振级西勒振荡器电路

3.2 缓冲级

3.2.1 缓冲级设计思路

为了减少后级对主振级振荡电路振荡频率的影响,采用缓冲级。主振级与缓冲级联调时会出现缓冲级输出电压明显减小或波形失真的情况,可通过增大缓冲级的射极电阻R4来提高缓冲输入级输入阻抗,也可通过减小C2,即减小晶振级与缓冲级的耦合来实现。 3.2.2 缓冲级电路图

图表3 2--1 放大级电路图

3.3放大级

3.3.1放大级电路设计思路

这里选用高频小信号放大器最典型的单元电路如下图3-3-1所示,这里由1L 、

2C 构成LC 单调谐回路,由LC 单调谐回路作为负载构成晶体管调谐放大器。晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号频率0f 上,能够对输入的高频小信号进行反相放大。由LC 调谐回路的作用主要有两个:一是选频滤波,选择放大f =0f 工作信号频率,抑制其他频率的信号;二是提供晶体管集电极所需的负载电阻,同时进行匹配交换。

设计的推动级采用高频小信号谐振放大器电路。由于推动级还起到隔离缓冲的作用,故它的电路一般用谐振放大器加一级射随器组成。

高频小信号谐振放大器的主要性能指标有: ? 中心频率o f 指放大器的工作频率。它是设计放大电路时,选择有源器件、计算谐振回路元器件参数的依据。

? 增益 指放大器对有用信号的放大能力。通常表示为在中心频率上的电压增

益和功率增益。

电压增益 ?

?=i o vo V V A 功率增益

i o PO P P A =

式中,?

o V 、?

i V 分别为放大器中心频率上的输出、输入电压;o P 、i P 分别为放大器中心频率上的输出、输入功率。

? 通频带 指放大电路增益由最大值下降3dB 时所对应的频带宽度,用7.0BW 表

示。它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度。

选择性 指放大器对通频带之外干扰信号的衰减能力。通常有两种表征方

法:

(1)用矩形系数说明邻近波道选择性的好坏,矩形系数:表示与理想滤波特性的接近程度。 矩形系数0.1r K 定义为

0.1

0.10.7

22r f K f ?=

?

理想矩形系数应为1,实际矩形系数均大于1。

(2)用抑制比来说明对带外某一特定干扰频率n f 信号抑制能力的大小,其定义为中心频率上功率增益)(o P f A 与特定干扰频率n f 上的功率增益)(n P f A 之比。

)()(n P o P f A f A d =

用分贝表示,则为:

)()(lg

10n P o P f A f A d =

3.3.2 放大级电路图设计

0.01

r0.010.7

22f K f ?=?

图表3 3--2 放大级电路图

3.4 振幅调制级

3.4.1 振幅调制级设计思路

振幅调制的原因:从切实可行的天线出发,为使天线能有效地发送和接收电磁波,天线的几何尺寸必须和信号波长相比拟,一般不宜短于1/4波长;便于不同电台同时接收相同频段的基带信号;可实现的回路带宽。

基带信号特点:频率变化范围很大。 低频(音频): 20Hz ~20kHz

高频(射频): 高频窄带信号

AM 广播信号: 535 ~1605kHz ,BW=20kHz

振幅调制器的任务是将所需传送的信息加载到高频振荡中,以调幅波的调制形式传送出去。通常采用低电平调制和高电平调制两种方式。采用模拟乘法器实现调制的方法是属于低电平调制,输出功率小,必须使用高频功率放大器才能达到发射功率的要求。采用集电极调幅电路实现调制的方式属于高电平调制。如果集电极调幅电路的输出功率能够满足发射功率的要求,就可以在调制级将信号直接发射出去。低电平调幅电路输出功率小,适用于低功率系统。它的电路形式有多种,如斩波调幅器、平衡调幅器、模拟乘法器调幅等,比较常用的是采用模拟乘法器形式制成的集成调幅电路,即集成模拟乘法器MC1496调幅。这种集成电路的出现,使产生高质量调幅信号的过程变得极为简单,而且成本很低。

高电平调幅电路输出功率大,一般在系统末级直接产生满足发射要求的调幅波。它的电路形式主要有集电极调幅和基极调幅两种。集电极调幅电路的优点是效率高,晶体管获得充分的应用;缺点是需要大功率的调制信号源。基极调幅电路的优缺点正好与之相反,它的平均集电极效率不高,但所需的调制功率很小,有利于调幅发射系统整机的小型化。

共有三种振幅调制的方法:其区别和特点如下图:

max

min

1000f f =020k 210k BW f ==0f BW Q =max

min 3f f =020k 11000k 50BW f ==

图表 3 4--1 三种调制方法对比

常见的调幅方法主要有乘法器调幅、开关型调幅电路、晶体管调幅电路,其中晶体管调幅又分为基极调幅、集电极调幅。其原理为:调幅波的共同之处都是在调幅前后产生了新的频率分量,也就是说都需要用非线性器件来完成频率变换。

这里将调制信号vΩ与载波信号v0相加后,同时加入非线性器件,然后通过中心频率为ω0的带通滤波器取出输出电压vo中的调幅波成分。

图表 3 4--2 非线性调幅方框图

本设计中,采用模拟乘法器MC1496构成调幅电路。用它可以容易的实现两信号的相乘,将放大的语音信号同高频载波相乘,从而得到调制信号。

MC1496内部结构图:

图表 3 4--3 乘法器内部结构图

3.4.2 振幅调制级电路图

根据上面的方案设计,选定模拟乘法器MC1496构成的调幅电路如下图所示。X 通道两输入端8和10脚直流电位均为6V ,可作为载波输入通道;Y 通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y 通道负反馈电阻R8。若实现普通调幅,可通过调节10k Ω电位器RP1使1脚电位比4脚高,调制信号

与直流电压叠

加后输入Y 通道,调节电位器可改变的大小,即改变调制指数Ma ;若实现DSB 调制,通过调节10k Ω电位器RP1使1、4脚之间直流等电位,即Y 通道输入信号仅为交流调制信号。为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。

MC1496线性区好饱和区的临界点在15-20mV 左右,仅当输入信号电压均小于26mV 时,器件才有良好的相乘作用,否则输出电压中会出现较大的非线性误差。显然,输入线性动态范围的上限值太小,不适应实际需要。为此,可在发射极引出端2脚和3脚之间根据需要接入反馈电阻R8=1k Ω,从而扩大调制信号的输入线性动态范围,该反馈电阻同时也影响调制器增益。增大反馈电阻,会使器件增益下降,但能改善调制信号输入的动态范围。

MC1496可采用单电源,也可采用双电源供电,其直流偏置由外接元器件来实现。

1脚和4脚所接对地电阻R5、R6决定于温度性能的设计要求。若要在较大的温度变化范围内得到较好的载波抑制效果(如全温度范围-55至+125),R5、

R6一般不超过51Ω;当工作环境温度变化范围较小时,可以使用稍大的电阻。

图表 3 4—4振幅调制级电路图

3.5 音频放大级

如下图所示的音频放大电路,采用uA741对由话筒或CK插座输入的语音

信号进行不失真的放大。

图表 3 5--1音频放大电路图

4电路参数选择及仿真结果

选参数时所需考虑的几点:

?晶体管选择:

从稳频的角度出发,应选择fT较高的晶体管,这样晶体管内部相移较小。通常

选择fT >(3~10)f1max。同时希望电流放大系数β大些,这既容易振荡,也便于

减小晶体管和回路之间的耦合。

?直流馈电线路的选择:

为保证振荡器起振的振幅条件,起始工作点应设置在线性放大区;从稳频出发,稳定状态应在截止区,而不应在饱和区,否则回路的有载品质因数QL将降低。

所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。

?振荡回路元件选择:

从稳频出发,振荡回路中电容C应尽可能大,但C过大,不利于波段工作;电感L 也应尽可能大,但L大后,体积大,分布电容大,L过小,回路的品质因数过小,因此应合理地选择回路的C、L。在短波范围,C一般取几十至几百皮法,L一般取0.1至几十微亨。

?反馈回路元件选择:

反馈系数的大小应在下列范围选择f=0.1~0.5

4.1振荡级的计算与仿真结果

●参数计算

已知条件:

Vcc=12V,fo=7MHz,选择的晶体管型号是3DG12B,其放大倍数β=50,ICQ=3mA,VCEQ=6V,VEQ=0.2VCC.依据电路计算:

10-mA=1.2KΩ

R3= (VCEQ- VEQ)/ ICQ=(12-6-0.2×12)V/3×3

10-mA=800Ω,故取标值为R4=810Ω

R4=VEQ/ICQ=0.2×12V/3×3

IBQ=ICQ/β=3mA/50=0.06 mA

10-mA=5.1KΩ

R2=VBQ/10IBQ=(VEQ+0.7)V/10×0.06×3

10-mA=15KΩ

R1=VCC-VBQ/10IBQ=(12-3.1)V/0.6×3

可取R1=10KΩ+10KΩ的可变电位器来调整偏置。取C4=5/20pF

C5=20pF,则F= C4/C5=1/2mA, C4//C5<< C1, C4//C5<

C1=470pF,则C2=2C1=2×470pF=940pF,取标称值1000pF即可。

●仿真结果

图表4 1 振荡级仿真结果4.2 缓冲级的计算与仿真结果

仿真结果

图表4 2 缓冲级仿真结果

4.3 放大级晶体管的选择

●参数计算

集电极瞬时电压为,其最大值为,当ma=0.5

时,Vc,max =24V。集电极输出的功率为156.25mW(末级激励功率125mW),若取Ap=10 dB(10倍),则末级激励功率为156.25mW/10=15.6mW,可选用3DG130,其参数为Icm=300mA, fT≥200MHz, BVceo≥60V,PPcm=0.7W,振荡管的选择,要求BVceo≥50, fT≥10f0,仍选用3DG130。

●仿真结果

图表4 3 放大级电路仿真结果

4.4振幅调制级参数的计算与仿真

参数计算 已知条件:

CC

V =12V ,fo=3.579MHz ,

O

P =0.5W ,θ=0

70

可设输出变压器的效率为T η=0.7

P O '

=T O

P η=7.05

.0=0.714W

设功率放大器在载波点于临界状态,可知:

P R ≈'

22O

CC P V =714.02122

?=100.84Ω

I

m

c 1=

P

O R P '2=84.100714

.02?=0.118A

I cm =)(11θαI

m

c =436.0118

.0=0.271A

I co

=)(0

θα

I cm

?=0.253?0.271=0.069A

P D=I co?CC V=0.06912

?=0.828W P C=P D-P O'=0.828-0.714=0.114W

ηc=P

P

D

O

'

=828

.0

714

.0

=86.23%

●仿真结果

图表4 4 振幅调制级电路仿真结果

4.5 音频放大级电路参数计算及仿真结果

●仿真结果

图表4 5 音频放大级电路仿真结果

5 结论

由于工作频率的升高,分布参数及各种耦合与干扰对高频电路的影响,比低频电路更加明显。因此,理论估算的工作状态与实际电路仿真到的状态之间,往往会存在一定的差异。有时,在仿真过程中元件参数甚至需要较大的修改,才能达到预期的效果。所以,高频电路的仿真过程与其设计过程同样重要,有时比设计过程更复杂,除了需要经验以外,更需要细致耐心、弃而不舍的精神。不能急躁,更不能盲目地更改元件参数,否则事倍功半,达不到预期效果。

另外,在实际的操作过程中,我们经常发现,许多问题并不是由于电路本身的故障引起的,而恰恰是由于我们未能正确使用测试仪器,导致测试结果错误。因此,在调试电路之前,花些时间学习测试设备的使用方法,掌握它对某类被测电路的测试功能和限制条件,对于快速诊断电路故障是非常重要的,往往可以达到事半功倍的效果。同时,不能忽略连接到电路上的测试设备可能对电路性能带来的影响。

电路的安装、调试顺序一般从前级单元电路开始,向后逐级进行。即先将各单元电路彼此断开,从第一级开始调整单元电路的静态工作点,以及交流状态下的性能指标;然后与下一级连接,进行逐级联调,直到整机仿真;最后进行整体电路技术指标测试。

单元电路的调试,以振荡器为例。常见的故障是,电路设计完毕,上电后,没有信号输出。在确认硬件电路连接没有问题后,检查电路是否起振。可以通过测量发射极直流电压进行判断:起振后的射极电压值应大于静态(未振荡时)射极电压值。若电路未起振,多是由于静态工作点设置不当引起的,可将基极偏置

电阻之一安装电位器,以便调节工作点。

在逐级联调时,往往会出现调试合格的单元电路在联调时性能参数发生很大变化的现象,这时,切不可盲目更改元件参数。故障原因多是由于单级调试时没有接负载,而与下一级连接后,下一级的等效输入阻抗必然对本级性能产生一定的影响;或是所接负载与实际电路中的负载不等效;或是整机的联调又引入了新的分布参数。因此,整体仿真时需仔细分析故障原因。

在逐级联调时,还会出现这样的现象:单独加测试信号调试合格的单元电路,在与前级或下级电路连接后,没有输出或输出信号不正常。这时要考虑,各级相连的电路对其输入信号幅度及功率的要求是否达到,也就是说,单元电路仅仅有输入信号是不够的,还要保证其输入信号的参数满足本级电路的要求。例如调幅接收机中的二极管大信号包络检波器,就要求输入调幅波的幅度达到几百mV以上。在单独调试单元电路时,可借助测试仪器(如信号发生器、示波器等)确定电路达到最佳工作状态所需的输入信号幅值及频率参数等。

在整体仿真时,重点应关注整体性能是否达到指标要求。在整体各项指标均达到要求的前提下,中间各别单元电路输出波形的轻度失真是允许的。

随着计算机仿真技术的发展,在电路设计中可利用合适的仿真软件来辅助设计,缩短设计时间。但同时也必须注意到,在电路的实际安装、调试中,尤其是高频模拟电路的安装、调试过程中,经常会出现仿真中所不能发现的故障现象,这是由于实际电路环境中各种条件,如电路板材质、元器件参数、温度、湿度、辐射等等因素的不确定性所导致的结果。而这些条件在仿真软件中是很难模拟的。

6 心得体会

通过这次的高频课程设计,我收获了颇多:

首先,通过对高频知识的掌握,初次利用Multisim软件设计了一个小功率调幅发射机。我根据先局部后整体的设计方案,先将小信号调幅发射机的各部分电路设计出来,并且单独进行仿真和调试,然后再进行调试并且仿真。在设计各个环节中都遇到了很多问题:首先,参数的选定很难,课堂上基本上是分析电路的原理功能和计算电路的性能指标,很少亲自选定器件的参数,从资料或网上得到的数据很多都有问题;必须经过修正和调试才能确定出器件的参数,只有正确的参数,才能够设计出我们所想要的输出结果,参数的正确性可以说决定着设计成功的50%;其次,有些时候理论上符合要求的电路,仿真后却得不到相应的结果,尤其是整机联接的时候出现了更多问题,也花费了很多时间(其实差不多一半的时间都在进行整机调试和修正),比如主振级与缓冲级联调时缓冲级输出电压明显减小并且波形失真严重,开始的时候,主振级甚至起振不起来,还有就是调幅失真,问题更加复杂。当然也正是由于问题的出现,我才学到了更多的知识,以及设计的技巧,对Multisim软件的应用也更加熟练了。出现问题的时候,首先思考出现问题的环节,然后借助于从图书馆借的几本书,有时候直接上网查询,也请教其他同学,在这个过程中对以前学的知识有了更深刻的了解,也明白了所学知识的应用范围,收获颇丰。

其次,通过弄懂书本上的原理,以及一些课外书籍和网上知识的学习,和同学一起分析讨论设计出了比较合理和能够实现的电路,这样一来,把所学的理论知识运用到了实践中,不仅巩固了理论知识的学习,更加提高了分析解决问题的能力。这次的课设是每个人独立完成一种电路的设计与制作,是一次很好的锻炼

小功率调幅发射机

课程设计任务书 学生:专业班级:电子0903 指导教师:工作单位:理工大学 题目: 小功率调幅发射机设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路完成一个小功率调幅发射机的设计。 2. 电源电压+V cc=+10V,-V EE=-10V; 3. 工作频率f=16MHz,调幅度=50%; 4. 负载电阻R L=75Ω时,发射功率P0≥100mW,整机效率η>40% 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年1月4日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年1月5日至2013年1月10日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。

3. 2013年1月11日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日

目录 摘要................................................................................................................................. I Abstract......................................................................................................................... I I 1 调幅发射机的相关知识 .. (1) 1.1基本知识及性能指标 (1) 1.2调幅发射机的工作原理 (1) 2 小功率调幅发射机的设计 (3) 2.1 设计要求 (3) 2.2确定电路设计方案 (3) 2.2.1拟定调幅发射机的工作原理框图 (3) 2.2.2 单元电路设计方案选择 (4) 2.3单元电路设计 (5) 2.3.1本机振荡电路和话音放大电路 (5) 2.3.2调制电路 (6) 2.3.4功率放大级电路 (8) 2.3.5整体电路设计 (8) 3 调试与仿真 (9) 3.1晶体振荡器的调试 (9) 3.2调制器的测试 (10) 3.3整机联调及其常见故障分析 (11) 4心得与体会 (12) 参考文献 (13)

通信电子线路课程设计

通信电子线路课程设计中波电台发射系统与接收系统设计 学院:******* 专业:******* 姓名:**** 学号:******

一.引言 这学期,我们学习了《通信电子线路》这门课,让我对无线电通信方面的知识有了一定的认识与了解。通过这次的课程设计,可以来检验和考察自己理论知识的掌握情况,同时,在本课设结合Multisim软件来对中波电台发射机与接收机电路的设计与调试方法进行研究。既帮助我将理论变成实践,也使自己加深了对理论知识的理解,提高自己的设计能力 二.发射机与接收机原理及原理框图 1.发射机原理及原理框图 发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 通常,发射机包括三个部分:高频部分,低频部分,和电源部分。 高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。发射机系统原理框图如下图: 设计指标: 设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。 技术指标:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。调制频率500Hz~10kHz。 本设计可提供的器件如下,参数请查询芯片数据手册。所提供的芯片仅供参考,可以选择其他替代芯片。 高频小功率晶体管3DG6 高频小功率晶体管3DG12 集成模拟乘法器XCC,MC1496 高频磁环NXO-100 运算放大器μA74l 集成振荡电路E16483 原理及原理框图 接收机的主要任务是从已调制AM波中解调出原始有用信号,主要由输

小功率调频发射机的设计课程设计报告正文

东北石油大学课程设计 课程高频电子线路 题目小功率调频发射机的设计 院系电子科学学院 专业班级电信XXXXXXX班 学生姓名XX 学生学号XXXXXXXXXXXX 指导教师 2013年3月1日

东北石油大学课程设计任务书 课程高频电子线路 题目小功率调频发射机的设计 专业电子信息工程姓名XX 学号XXXXXXXXX 主要内容、基本要求、主要参考资料等 1、主要内容 利用所学的高频电路知识,设计一个小功率调频发射机。通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 2、基本要求 设计一个小功率调频发射机,主要技术指标为: (1) 载波中心频率 06.5MHz f=; (2) 发射功率100mW A P>; (3) 负载电阻75 L R=Ω; (4) 调制灵敏度25kHz/V f S≥; 3、主要参考资料 [1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006. [2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993. [3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000. [4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月25日-3月1 日 指导教师 专业负责人 2013 年 2 月22 日

一、电路基本原理 1. 总设计方框图 与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。如图1所示: 图1 变容二极管直接调频电路组成方框图 2.电路基本框图 图2 电路的基本框图 实际功率激励输入功率为1.56mW 拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率Po 不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f0=6MHz 的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的 LC 调频振荡器缓冲隔离器 功率激励 末级功放 调制信号变容二极管直接调频电路调频信号 载波信号

最新小功率调幅发射机设计

小功率调幅发射机设 计

一、设计题目 小功率调幅发射机 二、设计目的、内容及要求 2.1 设计目的 (1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。 (2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。 2.2 设计原理 小功率调幅发射机的设计 (1)掌握小功率调幅发射机原理; (2)设计出实现调幅功能的电路图; (3)应用multisim软件对所设计电路进行仿真验证。 技术指标:载波频率f =1MHz~ 10MHz;低频调制信号1KHz正弦信号;调 制系数 =50Ω。 Ma=50%±5%;负载电阻R A 2.3 设计要求 根据原理,要求设计一个小功率调幅发射机, (1)主要参数:

已知+Vcc=+10V、-VEE=-10V;话音放大级输出电压为5mV;负载电阻R A=50Ω (2)主要元器件:主要元件有MC1496、3DG100、3DG130、4MHz晶振、NXO-10磁环; =8MHz;低频调制信号1KHz正弦信号;调制系数 (3)技术指标:载波频率f Ma=50%;发射功率P0=300mW 三、调幅发射机的原理与分析 3.1调幅发射机的原理框图 所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。 高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。 低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。 调制部分即振幅调制电路,它将要传送的信息装载到某一高频振荡(载频)信号上去的过程。

小功率调频接收机的设计

小功率调频接收机的设计 李媛赵兴宇 (武汉工业职业技术学院湖北武汉 430064) 摘 要:介绍小功率调频接收机设计方法。接收机主要是利用MC3361的低电流、高灵敏度、外部元件少等特点,进行混频、中频放大、鉴频和低频功放等功能。利用MC3361组成的小功率接收系统,大大简化电路结构。具有电路简单、功耗小、制作简单、使用方便、性能价格比高等特点。 关键词:调频接收系统;MC3361 中图分类号:H04B 文献标识码:A 文章编号:1671-7597(2011)0310040-01 1 调频接收系统的主要技术指标频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。本 机振荡器输出的另一个高频信号f2也进入混频级,则混频级的输出为含有 1.1 工作频率范围。接收系统可以接收到的无线电波的频率范围称为 f1、f2、(f1+f2)、(f1-f2)等频率分量的信号。混频级的输出接调谐接收机的工作频率范围。接收系统的工作频率必须与发射机的工作频率相 回路选出中频信号(f1-f2),再经中频放大器放大,获得足够高的增对应。 益,然后经鉴频器解调出低频调制信号,由低频功放级放大。由于天线接 1.2 灵敏度。接收系统接收微弱信号的能力成为灵敏度。一般用输入 收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵信号电压的大小来表示。接收的输入信号越小,灵敏度越高。 敏度较高,选择性较好,性能也比较稳定。 1.3 选择性。接收系统从各种信号和干扰中选出所需信号(抑制不需 3 MC3361简介 要的信号)的能力称为选择性。单位用dB表示,dB数越高,选择性越好。 1.4 频率特性。接收系统的频率响应范围称为频率特性或通频带。 3.1 MC3361低功率调频中频信号处理系统。MC3361是一个包括振荡 1.5 输出功率。负载输出的最大不失真功率称为输出功率。器、混频器、限幅放大器、正交检波器、滤波放大器、静噪电路、扫描控 2 电路形式选择制和静噪开关在内的单片低功率FM、IF信号处理系统,它是用于窄频带调 频(FM)的双转换通信器件。MC3361备有16引脚、双列直插塑料封装和 2.1 输入回路。由天线接收并通过馈线送给接收系统的各种电波信 16引脚、表面安装微型封装形式。 号,都要先送到有谐振特性的输入回路。输入回路是接收系统选择载频信 3.2 特性。2.0V-8.0V工作电压。低电流:在Vcc= 4.0(DC)时,42mA 号,尽量减少损耗地传送到下一级,并抑制接收频道以外的一切干扰信 (典型值);高灵敏度:2.0uV(于-3dB限幅中典型值);外部元件少;号。对输入回路的要求:为了保证信号不产生频率失真,通频带要有适当 工作于60MHz。 的宽度。为了对邻近频道信号有足够的衰减,要有一定的选择性。 3.3 应用。1)无绳电话。2)窄带接收机。3)远程控制。 2.2 高频电压放大。在输入信号很微弱的情况下使用高频放大器。高 4 利用MC3361完成接收过程 频放大器的形式按器件可以分为晶体管放大器、场效应管放大器和集成电 路放大器。按负载的性质可以分为谐振和非谐振放大器。在高频范围内采将MC3361的内部振荡电路与Pin1、Pin2外接晶体等元件构成石英晶体用任何一种型式的高频电压放大器都可满足要求。振荡器,利用石英晶体振荡器可以进一步提高振荡频率的稳定度。从 2.3 混频器。混频器的作用就是将输入信号的载频与本振信号频率进MC3361的Pin输入的中频信号和二本振的本振信号在MC3361内部的第二混行频率变换,将输入信号的载频变成固定中频的载波信号,并保持其调制频器中进行混频,然后从Pin3输出。混频器的作用是将已调信号的载频变规律不变。混频器有晶体三极管混频器、二极管混频器、场效应管混频换成另一载频,变换后新载频已调波的调制类型(调幅、调频等)和调制器、模拟乘法器构成的混频器等。至于选用哪种药根据需要而定。参数(如调制频率、调制系数等)均不变。本电路的混频差额为: 2.4 本机振荡。本机振荡器就是产生频率为f L的等幅振荡信号,然后10.7000M-10.245M=0.455MHz,即455KHz的第二中频信号。从Pin3输出的将信号送入混频器与输入信号的各个频率分量进行混频,并由混频器的输第二中频信号的频谱相当丰富,这就需要用陶瓷滤波器将其从中滤出。选出选频回路选出f1=f L-f0的中频信号及上下边频分量。本机振荡的电路形出的455KHz的第二中频信号,经Pin5送入MC3361内部的限幅放大器。式可以采用电容三点式电路和晶体振荡器。Pin8接鉴频LC网络或陶瓷滤波器,其中选用的电阻为阻尼电阻,他的作用 2.5 中频放大器。中频放大器的任务是将混频器的输出信号进行电压是降低有载Q值,展宽带宽。Pin12-Pin15为载频检测和电子开关电路,通放大,以满足鉴频器的输入信号幅度要求。根据混频器输出的中频频率确过外接少量的元件即可构成载频检测电路,用于调频接收机的静噪控制。定中频放大器的型式。一般选用的中频放大器有晶体三极管调谐放大器、MC3361内部还置有一级滤波信号放大器,加上少量的外接元件可组成有源场效应管调谐放大器、集成放大器等。选频电路,为载频检测电路提供信号,该滤波器Pin10为输入端,Pin11为 2.6 鉴频器。鉴频器是完成调频信号的解调。鉴频电路可分为三类,输出端。Pin6和Pin7为第二中放级的退偶电容。 第一类是调频-调幅调频变换型。这种类型的鉴频器可以有双失谐回路鉴利用MC3361内部强大的功能,可以使电路具有外围元件少,电路结构频器、相位鉴频器、差分峰值鉴频器等。第二类是相移乘法器。这种类型简单,所占空间少等优点,在二次变频的通讯接收设备拥有广泛的市场。的鉴频器可以用模拟乘法器构成。第三类是脉冲均值型。这种类型的鉴频 参考文献: 器有脉冲计数式鉴频器。 [1]张义方、冯建华,高频电子线路,哈尔滨工业大学出版社,2002.9. 以上调频接收机各个方框图内的单元电路,都可以采用分立元件或集 [2]杨翠娥,高频电子电路实验与课程设计,哈尔滨工程大学出版社,成电路组成调频接收系统,在此之外也可以使用单片调频接收系统。 2002.7. [3]黄志伟,天线发射与接收电路设计,北京航空航天大学出版社, 2004.5. 作者简介: 李媛(1980-),女,汉族,湖北武汉人,学士,武汉工业职业技术学图1 调频接收机框图 院,工程师;赵兴宇(1983-),男,满族,黑龙江人,学士,武汉工业职业技调频接收机的组成框图如图1所示。其工作原理是:天线接收到的高术学院,助教。

小功率调频发射机的设计

********************校 高频电子线路 课程设计报告 设计题目:小功率调频发射机的设计 系部: 专业: 班级: 学生姓名: 学号: 成绩: 2011年月

“高频电子线路”课程设计任务书 1.时间:2011年06月6日~2011年06月10日 2. 课程设计单位:**************** 3. 课程设计目的:掌握“高频电子线路”课程的基本概念、基本原理,加深对高频电子系统的工作原理和电路调试方法的理解。 4. 课程设计任务: ①了解电路图绘制软件的相关常识及其特点; ②熟悉电路图绘制软件的使用方法; ③理解高频电子系统的布局布线规则; ④作好实习笔记,对自己所发现的疑难问题及时请教解决; ⑤联系自己专业知识,熟练设计高频电子线路的,总结自己的心得体会; ⑥参考相关的的书籍、资料,认真完成实训报告。 ⑦作好笔记,对自己所发现的疑难问题及时请教解决; ⑧联系自己所学知识,总结本次设计经验; ⑨认真完成课程设计报告。 高频课程设计报告

前言: 结合这次课设的要求:运用模电知识,利用晶体管设计电路,我的选题是 小型功率发射机,在小型发射机的设计中,根据晶体管结构和工作原理,进行放大电路,射极跟随器设计,小型功率放大电路,还有在设计中占主要地位的振荡电路的设计。其中振荡电路的设计结合了模电以及高频电子线路中晶体管综合应用。设计跟随其实必不可少的,因为起到前后级电路的隔离作用。产生的信号很小,需要通过放大电路的放大才能达到要求,发大电路的的设计最为复杂,考虑到前后及电路的匹配,以及波形的失真与否。 本次课设论文分为以下几个部分:通过技术指标从后级电路依次往前级电路设计,包括元件参数,器件的选择,电路仿真,PCB印刷版的制作,和最终实物的制作和调试。课设中。设计仿真和实物调试很有差别,因为振荡频率为6到7兆赫兹,已经属于高频范围,很容易受到杂波信号的影响,所以在调试中为保证电路的稳定性会改变电路的某些参数。小功率发射机主要包括以下几个部分:高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。下面就这几个 部分进行介绍说明。 课程设计报告: 1.设计内容及要求 .设计目的 晶体管器件课程设计是电子科学与技术专业学科实践性课程,其任务是使学生运用模拟电路等电路课程中所学的知识,利用晶体管等器件,设计出一些完成一定功能的电路,并对电路进行分析和调试。掌握设计和调试电路的一些方法和技巧。 .设计任务及主要技术指标 (1)工作电压:Vcc=+12V;

电子线路课程设计小功率调幅发射机

电子线路课程设计总结报告 学生姓名: 学号: 专业:电子信息工程 班级:电子111 报告成绩: 评阅时间: 教师签字:

河北工业大学信息学院 2014年2月24日~2014年3月7日 课题名称:小功率调幅发射机的设计 内容摘要:本次课程设计实现小功率发射机的理论设计,本文介绍了设计的理论和步骤。根据设计指标、要求和可行性,选择适合设计方案,并对设计方案进行必要的论证。设计具体包括以下几个步骤:一般性理论设计、具体电路的选择、根据指标选定合适器件并计算详细的器件参数、用multisim 进行设计的仿真、根据仿真结果检验设计指标并进行调整。小功率调幅发射级主要包括四个单元电路:载波发生电路、低频调制信号发生器、调制电路、高频放大电路。先完成各单元电路设计及仿真,然后将各单元连接进行调试仿真完成设计指标的要求。最后对整个设计出现的问题,和心得体会进行总结。 关键字:调幅发射机、理论设计、multisim 仿真 一、设计内容及要求 1.确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计分析,并给出各单元电路的理论设计方法和实用电路设计细节,其中包括元器件的具体选择、参数调整。 2.利用multisim 仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求。 3.小功率调幅发射机设计的技术指标:载波频率010f MHz =,输出功率0200P mW ≥,负载阻抗 50A R =Ω,输出信号带宽9WB KHz =,单音调幅系数0.8a m =,平均调幅系数0.3a m ≥,发射效 率50%η≥。 二、方案选择及系统框图 1.设计方案概述和系统框图: 发射机的主要作用是完成有用的低频信号对高频信号的调制,并通过天线向外辐射携带有有用信号、具有一定带宽和满足功率要求的已调信号。 调幅发射机主要包括三个部分:载波发生器(主振级)、音频部分和调制电路。此外本系统依然用到了射随器(缓冲级)以满足隔离条件,用放大器以满足载波电压和末级发射功率的要求。对于实现相同功能的单元电路,实现方法不唯一:载波发生器可以利用克拉泼电路、西勒电路、晶体振荡电路等;音频部分可以使用集成运放电路、三极管低频放大电路;AM 调制部分可以使用高电平调制(三极管集电极调幅电路等)、低电平调制(乘法器)两种不同方法。 无论各单元电路使用何种方法,小功率调幅发射机的系统框图大同小异,如下图所示:

小功率调频发射机设计

湖南工程学院课程设计 课程名称通信电子线路课程设计课题名称小功率调频发射机设计 专业电子信息工程 班级 学号 姓名李科峰 指导教师浣喜明 2011年09 月08 日

湖南工程学院 课程设计任务书 课程名称通信电子线路课程设计 题目小功率调频发射机设计 专业班级电子信息工程班0881 学生姓名李科峰学号10 指导老师浣喜明 审批 任务书下达日期:2011 年08 月29 日设计完成日期:2011 年09 月08 日

目录 一.设计目的 (6) 二.基本原理与方案比较 (6) 2.1FM调制原理 (6) 2.2调频方式选择 (9) 三.单元电路的设计 (10) 四.总电路图 (17) 五.心得体会 (18)

一.设计目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。本次设计要达到以下目的: 1. 进一步认识射频发射系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。 二.基本原理与方案比较 2.1FM 调制原理 载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。即已调信号的瞬时角频率 ()()t u k w t w f c Ω?+= 已调信号的瞬时相位为 ()()t d t u k t w t d t w t t f c t ''+=''=??Ω )(0 ? 实现调频的方法分为直接调频和间接调频两大类。 2.1.1 直接调频 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信

高频电子线路课程设计报告-小功率调幅发射机

提供全套毕业设计,欢迎咨询 吉林建筑大学 电气与电子信息工程学院 高频电子线路课程设计报告 设计题目:小功率调幅发射机 专业班级:电子信息工程 学生姓名: 学号: 指导教师: 设计时间:2014.12.08-2014.12.19

一、设计题目: 小功率调幅发射机的设计 二、设计目的、内容及要求: 2.1 设计目的 (1)加深对《高频电子线路》理论知识的进一步理解,进一步巩固理论知识,能够建立起无线发射机的整机概念,学会分析电路、设计电路的步骤和方法,深入地贯穿到实践中。 (2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。 2.2 设计内容及要求 小功率调幅发射机的设计 (1)掌握小功率调幅发射机原理; (2)设计出实现调幅功能的电路图; (3)应用multisim软件对所设计电路进行仿真验证。 技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻RA=50Ω。 三、工作原理: 由振荡器产生一个固定频率的载波信号,载波信号经缓冲级送至振幅调制电路,缓冲级将振荡级与调制级隔离,减小调制级对晶体振荡级的影响,放大级将低频信号放大至足够的电压后送到振幅调制电路,振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率。 调幅发射机常用于通信系统与其他无线电系统中,在中短波领域应用极为广泛,由于调幅简便,占用频带窄,设备简单等优点,因此在发射机系统中应用非常广泛。 在实际的广播发射系统中,中波调幅的频率范围为535 ~ 1605 千赫,音频信号中的高音频率应该被限制在 4.5 千赫以下,发射功率需要达到300W以上才能使空间覆盖面达到比较好的状态,此次设计需要在实验室环境中研究发射机的工作原理与原件选择,因此,根据实验室条件适当降低技术指标,载波频率采用实验室较为常用的6MHz,单音频调制信号选择1KHz,发射机功率初步定为1W。 四、总体方案: 1、调幅发射机的设计方案 发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。根据设计要求,载波频率

小功率调频发射机

《通信电子线路》课程设计说明书小功率调频发射机 学院:电气与信息工程学院 学生姓名:贺帅 指导教师:伍麟珺职称讲师 专业:通信工程 班级:通信1301班 学号:1330440128 完成时间:2016年1 月

摘要 调频发射机的用处很大,在很多领域都有了很广泛的应用。这个实验是关于小功率调频发射机工作原理分析及其模拟调试,通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。学会基本的实验技能,提高运用理论知识解决实际问题的能力。本次设计我是结合Multisim软件来对小功率调频发射机电路的设计与调试方法进行研究。Multisim 是一款仿真软件,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。首先设计出总的电路图,在分别计算各电路的静态工作点,但是通过实际仿真,还是与理论计算值有出入。 关键词:LC振荡器;调频;功率放大器

目录 第1章绪论......................................... 错误!未指定书签。 1.1小功率调频发射机研究意义.................... 错误!未指定书签。 1.2调频发射机研究现状.......................... 错误!未指定书签。 1.3发射机的主要技术指标........................ 错误!未指定书签。第2章总体方案设计.. (4) 2.1设计方案比较 (4) 2.2总设计框图 (4) 第3章电路组成方案 (6) 3.1振荡电路的选择 (6) 3.2振荡电路参数计算 (6) 3.3调频电路的设计.............................. 错误!未指定书签。 3.4调频参数的计算 (9) 3.5缓冲隔离级电路的设计........................ 错误!未指定书签。 3.6缓冲隔离级电路参数计算...................... 错误!未指定书签。 3.7末级功放电路选择............................ 错误!未指定书签。 3.8末级功放电路参数计算........................ 错误!未指定书签。第4章Multisim仿真结果 ........................... 错误!未指定书签。 4.1 LC振荡电路仿真波形......................... 错误!未指定书签。第5章实验数据与误差分析........................... 错误!未指定书签。 5.1实验数据与设计要求比较.................... 1错误!未指定书签。 5.2误差分析.................................. 1错误!未指定书签。结束语............................................. 错误!未指定书签。参考文献.. (20) 致谢 (21) 附录 (22)

小功率调幅发射机毕业设计

小功率调幅发射机毕业 设计 目次 1 绪论 (1) 1.1 小功率调幅发射机初步认识 (1) 1.2 小功率调幅发射机国外研究现状 (2) 1.3 小功率相关技术及热点问题分析 (2) 1.4 课题的研究任务和容 (5) 2 方案设计与单元电路形式选择 (6) 2.1 发射机的总体认识 (6) 2.2 单元电路的认识 (6) 3 单元电路的设计与仿真 (8) 3.1 主振级与小信号放大级的设计 (8) 3.2缓冲隔离级的设计 (11) 3.3语音放大级的设计 (12) 3.4幅度调制电路的设计 (13) 3.5高频谐振功率放大器的设计..................................................................1 6 3,6谐振功率放大器的调整 (26) 3.7天线的相关知识及设计 (27) 4 单元电路调试与整机统调 (29) 4.1主振级调试 (29) 4.2信号调制级调

试 (29) 4.3功率放大级调试 (29) 4.4 整机统调……………………………………………………………………………… 30 4.5 主要技术指标测试方法……………………………………………………………… 3 1 5 硬件电路调试过程及示波器影像图 (33) 5.1 主振级硬件电路以及示波器图像…………………………………………………… 3 3 5.2 音频信号输入级硬件电路以及示波器图像………………………………………… 3 3 5.3 振幅调制级硬件电路以及示波器图像……………………………………………… 3 4 5.4 功率放大级硬件电路以及示波器图像……………………………………………… 3 5 6 另外一种调幅发射机设计方案 (38) 6.1 主振级的选择与仿真波形…………………………………………………………… 38 6.2 语音放大级选择与仿真波形………………………………………………………… 39 6.3 AM调至电路与仿真波形 (39) 6.4 整机电路的连接与仿真……………………………………………………………… 40 结论 (42) 参考文献 (43) 致谢 (45) 附录 A 调幅技术与调频技术主要特点及区别 (46) 附录 B 集成调幅与调频发射机设计 (47) 附图 C 高频电路设计基本步骤 (54) 附图 D 选择高频元器件的基本设想 (55) 附图 1 整机所用元件列表 (56) 附图 2 整机电路图 (57) 附图3 整机电路PCB图 (58) 附图 4 整机电路实体图 (59)

哈工大通信专业高频课程设计--高频发射机和超外差接收机

高频电子线路课程设计 学院:电子与信息工程学院 专业班级: 姓名: 学号: 日期:

目录 高频电子线路课程设计 (1) 一问题重述与分析 (3) 1.1 调幅发射机分析 (3) 1.2 超外差接收机分析 (3) 二中波电台发射系统的设计 (4) 2.1 模块电路设计与仿真 (4) 2.1.1正弦波振荡器及缓冲电路及仿真 (4) 2.1.2高频小信号放大电路及仿真 (8) 2.1.3.振幅调制电路及仿真 (9) 2.1.4功率放大电路及仿真 (11) 2.2整体电路设计及仿真 (11) 三中波电台接收系统设计 (12) 3.1混频器电路及仿真 (12) 3.2 检波电路及仿真 (14) 3.3 低频功率放大器及仿真 (15) 四心得与体会 (17) 五参考文献 (18)

一:问题重述与分析 本次设计中的两个系统,第一个是中波电台发射系统,设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。本设计中试用是基本调幅发射机。第二个是中波电台接收系统,设计目的是要求掌握最基本的超外差接收机的设计与调试。 1.1调幅发射机系统 系统框图如下图 图一:调幅发射机系统框图 本设计将声电变换部分,及其之后的前置放大器,低频放大器都省略,用一个低频的正弦波交流电源表示,输出部分的天线模块也用规定的输出负载代替。 现在结合题目所给性能指标进行分析: 载波频率535-1605KHz ,载波频率稳定度不低于10-3:正弦波振荡器产生的正弦波信号频率f 为535 KHz 到1605KHz ,当震荡波形不稳定时,最大波动频率范围f ?与频率f 之比的数量级应该小于10-3 。 输出负载51Ω :输出部分,即电路最终端的输出负载为51Ω。 总的输出功率50mW :即输出负载上的交流功率,调幅指数30%~80% :设A 为调幅波形的峰峰值,B 为谷谷值,则由调幅指数计算公式有100%a A B m A B -=?+。在振幅调制电路中可通过更改调制信号振幅和外加直流电源实现此指标。 调制频率500Hz~10kHz :调制信号频率,由输入信号的频率来决定。 1.2 超外差调幅接收系统 系统框图如下

高频课设小功率调频发射机设计

等级: 课程设计 课程名称高频电子线路 课题名称小功率调频发射机 专业电子信息工程 班级 学号 姓名 指导老师浣喜民 2016年6月24日

课程设计任务书 课程名称高频电子线路题目小功率调频发射机设计 学生姓名专业班级学号 指导老师浣喜明课题审批下达日期 2016年06月07日 一、设计内容 设计一小功率调频发射机。主要技术指标: 发射功率Pa=3W;负载电阻(天线)RL=75Ω; 中心工作频率fo=88MHZ;调制信号幅度VΩm=10mV; 最大频偏Δfm=75KHZ;总效率η>70%。 二、设计要求 1、给出具体设计思路和整体设计框图; 2、绘制各单元电路电路图,并计算和选择各器件参数; 3、绘制总电路原理图; 4、编写课程设计说明书; 5、课程设计说明书和所有图纸要求用计算机打印(A4纸)。 三、进度安排 第1天:下达设计任务书,介绍课题内容与要求; 第2、3天:查找资料,确定系统组成; 第4~7天:单元电路分析、设计; 第8~9天:课程设计说明书撰写; 第10天:整理资料,答辩。(共两周)。 四、参考文献 1、《高频电子线路》,张肃文主编.,高等教育出版社.。 2、《电子技术基础实验》陈大钦主编,高等教育出版社出版 3、《高频电子线路实验与课程设计》,杨翠娥主编,哈尔滨工程大学出版社出版 4、《通信电路》沈伟慈主编,西安电子科技大学出版社出版 6、《电子线路设计·实验·测试》谢自美主编, 华中理工大学出版社 五、说明书基本格式 1)课程设计封面; 2)设计任务书; 3)目录; 4)设计思路,系统基本原理和框图; 5)单元电路设计分析; 6)设计总结; 7)附录; 8)参考文献; 9)电路原理图; 10)评分表

课程设计报告--小功率调幅发射机的设计

课程设计报告--小功率调幅发射机的设计

高频电子线路课程设计报告 设计题目:小功率调幅发射机设计

一、设计题目 小功率调幅发射机的设计。 二、设计目的、内容及要求 设计目的: 《高频电子线路》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。 (1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地 贯穿到实践中。 (2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。 任务及要求: 小功率调幅发射机的设计 (1)掌握小功率调幅发射机原理; (2)设计出实现调幅功能的电路图; (3)应用multisim软件对所设计电路进行仿真验证。 技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻R A=50Ω。 三、工作原理 3.1 小功率调幅发射机的认识 目前,虽然调频技术以及数字化技术突飞猛进,其应用范围覆盖了无线通信技术的80%以上,但是由于小功率调幅发射机具有调制解调电路简单、调试容易、信号带宽窄和技术成熟等优点,因此仍然使其能够在中短波通信中广泛得以应用。课题以电子线路课程设计实践教学为应用背景,在仿真软件与实验室中完成一个完整的调幅发射机,并实现无线电报功能。 发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。一般来说,简易发射

哈工大高频课程设计

课程设计报告(结题) 题目:中波电台发射和接收系统设计 专业电子信息工程 学生XXX 学号11305201XX 授课教师赵雅琴 日期2015-05-24 哈尔滨工业大学教务处制

目录 一、仿真软件介绍 (1) 二、中波电台发射系统设计 2.1 设计要求 (1) 2.2 系统框图 (1) 2.3 各模块设计与仿真 (2) 2.3.1 主振荡器设计与仿真 (2) 2.3.2 缓冲级的设计与仿真 (3) 2.3.3 高频小信号放大电路的设计与仿真 (5) 2.3.4 振幅调制电路的设计与仿真 (6) 2.3.5 高频功率放大器与仿真 (8) 2.3.6 联合仿真 (9) 三、中波电台接收系统设计 3.1 设计要求 (10) 3.2 系统框图 (11) 3.3 各模块设计与仿真 (11) 3.3.1 混频电路设计与仿真 (11) 3.3.2 中频放大电路设计与仿真 (13) 3.3.3 二极管包络检波的设计与仿真 (14) 3.3.4 低频小信号电压放大器 (16) 四、总结与心得体会 (17) 五、参考资料 (17)

一、仿真软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 二、中波电台发射系统设计 2.1 设计要求 设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。 技术指标:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。调制频率500Hz~10kHz。 本设计可提供的器件如下(也可以选择其他元器件来替代),参数请查询芯片数据手册。 高频小功率晶体管 3DG6 高频小功率晶体管 3DG12 集成模拟乘法器 XCC,MC1496 高频磁环 NXO-100 运算放大器μA74l 集成振荡电路 E16483 2.2 系统框图 发射机包括三个部分:高频部分,低频部分和电源部分。 高频部分一般包括主振器、缓冲器、高频小信号放大器、振幅调制电路、高频功率放大器。主振器的作用是产生频率稳定的载波。主振器里比较稳定的是西勒振荡器,再在后面接一个射极跟随器来减小级间影响。 图1:发射机设计框图

小功率调频发射机课程设计

. . .. . . 小功率调频发射器课程设计报告

目录 摘要 (2) 一、课题 (3) 二、设计原理 (3) 三、主要设计指标 (4) 四、电路设计 (4) 五、制作调试 (8) 六、故障及分析 (8) 七、测试结果 (9) 八、制作小结 (9) 九、元器件 (10) 十、参考文献 (11)

摘要 随着科技的发展和人民生活水平的提高,无线电发射机在生活中得到广泛应用,最普遍的有电台、对讲机等。人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。 本设计为一简单功能的无线电调频发射器,相当于一个迷你型的电台,通过该发射器可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。 本设计为本校院级电子设计大赛作品。在此写成课程设计的模式,算是总结经验,再次学习。由于时间仓促,不尽完美之处,请谅解。

小功率调频发射机课程设计 一、 课题 小功率调频发射机的设计和制作 二、设计原理 通常小功率发射机采用直接调频方式,它的组成框图如图3.1所示。其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。 图3.1 系统框图 上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。 1、 频振荡级 由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。关于该电路的设计参阅《高频电子线路实验讲义》中实验六容。 2、缓冲级 由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。对该级管子的要 ()(35)2BR CEO CC f f V V γ≥-≥

小功率调幅发射机的设计方案

电子线路课程设计 总结报告 学生姓名:王翠红 学号: 108005 专业:电子信息工程 班级:电子C102 报告成绩: 评阅时间: 教师签字: 河北工业大学信息学院 2018年3月

课题名称:小功率调幅发射机理论设计 王翠红 电子C102 108005 摘要 小功率调幅发射机具有实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单的优点,常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里得到了广泛应用。本次课程设计采用PROTEl99SE软件对小功率条幅发射机电路进行设计与绘制,从理论上对电路进行分析,选择适合的元器件,设计出满足技术指标的小功率调幅发射机。此设计思路为将调幅发射机分成本机震荡、高频放大、缓冲、振幅调制、高频功放等几个个部分。低频信号采用音频放大器对调制信号进行放大,以便对高频末级功率放大器进行调制;高频部分包括主振荡器、缓冲放大、末级功放三部分,主振器采用频率稳定度高的石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响,经过音频放大后的信号在高频部分的末级功放实现对载波信号的调幅。 关键词:晶体振荡器,振幅调制 一、设计内容及要求 1.1 内容: 本次课程设计内容为小功率振幅发射机的设计 1.2技术指标: 载波频率:f0 =10MHZ,载波频率稳定度不低于10-3; 输出负载:RL=50Ω; 总的输出功率:500mW≥PA≥200mW; 调幅系数平均值:ma≥30%,单音调制ma≥80%; 调制频率:f = 20Hz~10kHz; 输出信号带宽:BW=9kHz <双边带) 残波辐射:不要求 二、方案选择及系统框图 2.1方案论证与比较 <1)本级振荡模块 方案一:RC正弦波振荡器。其中RC振荡电路是用电阻与电容器组成的,因此并无调谐电路。所以不能够抑制高谐波的产生,不适于当做高频的振荡电路。 方案二:石英晶体振荡器。石英晶体振荡器具有很高的稳定度,可高达10-4~10-11量级。频率稳定度要求高的情况下,可以采用晶体振荡器。 方案三:三点式LC正弦波振荡器。三点式振荡电路有电容三点式和电感三点式之分。电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。在电感三点式振荡器中,晶体管的极间电容与回路电感相并联,在频率高时可能改变电抗的性质;在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。因此振荡器的电路型式一般采用电容三点式。在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。LC回路由于受到标准性和品质因数的限制,其频率稳定度只能达到10-4量级。 因此,作为高频的振荡电路通常使用的是LC振荡电路或晶体振荡电路。与LC回路相比,技术指标

相关文档