文档库 最新最全的文档下载
当前位置:文档库 › Particle swarm optimization algorithm for the berth allocation problem

Particle swarm optimization algorithm for the berth allocation problem

Particle swarm optimization algorithm for the berth allocation problem
Particle swarm optimization algorithm for the berth allocation problem

Particle swarm optimization algorithm for the berth allocation

problem

Ching-Jung Ting ?,Kun-Chih Wu,Hao Chou

Department of Industrial Engineering and Management,Yuan Ze University,Chung-Li 32003,Taiwan,ROC

a r t i c l e i n f o Keywords:

Berth allocation problem Particle swarm optimization Container port Logistics

a b s t r a c t

The berth allocation is one of the major container port optimization problems.In both port operator’s and ocean carriers’perspective,the minimization of the time a ship at the berth may be considered as an objective with respect to port operations.This paper focuses on the discrete and dynamic berth allocation problem (BAP),which assigns ships to discrete berth positions and minimizes the total waiting times and handling times for all ships.We formulate a mixed integer programming (MIP)model for the BAP.Since BAP is a NP-hard problem,exact solution approaches cannot solve the instances of realistic size optimally within reasonable time.We propose a particle swarm optimization (PSO)approach to solve the BAP.The proposed PSO is tested with two sets of benchmark instances in different sizes from the literature.Exper-imental results show that the PSO algorithm is better than the other compared algorithms in terms of solution quality and computation time.

ó2013Elsevier Ltd.All rights reserved.

1.Introduction

Since the introduction of the container in the 1950s,container-ships gradually become an important role in the global freight transportation.The world seaborne trade grew by an estimated 7%,taking the total of goods loaded to 8.4billion tons.World con-tainer port throughput increased by an estimated 13.3%to 531mil-lion 20-foot equivalent units (TEUs)in 2010(UNCTAD,2011).Thus,the terminal operation is an important part of the international trade of ocean shipping.

Operations in a container terminal can be broken down into three functional systems:seaside operations,yard operations,and land-side operations (Theofanis,Boile,&Golias,2009).The ?rst issue of seaside operations planning is the berth assignment to a set of vessels that have to be served within the planning hori-zon.One of the important objectives shared by the port operators and the ocean carriers is for the ships to leave the port as soon as possible.Thus,the container port authorities are forced to provide ef?cient and cost-effective services by utilizing the scarce berthing resources ef?ciently due to the ?erce competition between ports.The berth allocation problem (BAP)is to allocate berths to a set of vessels scheduled to arrive at the port within the planning hori-zon in order to minimize their time spent at the port (the sum of their waiting and handling times).Bierwirth and Meisel (2010)classi?ed the BAP according to the following spatial and temporal variations:(1)discrete versus continuous berthing space,(2)static versus dynamic vessel arrivals,(3)deterministic versus stochastic vessel handling time.The quay is divided into a set of berths,

and each berth can be used by only one vessel at a time in the discrete case.In the continuous case,a vessel can occupy any arbi-trary position along the quay as long as the safety restriction be-tween vessels is considered.Static BAP assumes that all vessels already arrived at the port for the service,while vessels can arrive at any time during the planning horizon with known future arrival information in a dynamic BAP.The main focus of this research is the discrete berth allocation problem with dynamic vessel arrivals.The discrete BAP is NP hard (Cordeau,Laporte,Legato,&Moccia,2005).Exact solution approach cannot solve large scale realistic environments,heuristics algorithms are proposed in the literature to solve the BAP.In this paper,we investigated the use of particle swarm optimization (PSO)algorithm for the BAP.PSO is a popula-tion-based random search algorithm inspired by the social behav-ior of bird ?ocks and has been applied to solve many combinatorial optimization problems.We did not ?nd any other work in the re-lated literature using PSO to tackle the BAP.Thus,it is worthwhile to evaluate the PSO for this task.The proposed PSO was tested with two sets of benchmark instances and compared with promising methods found in the literature to verify its ef?ciency.

The remainders of the paper are organized as follows.In the next section we review the related literature.Section 3presents our problem with a mixed integer programming model.The proposed particle swarm optimization algorithm to tackle the discrete and dy-namic berth allocation problems is presented in Section 4.In Sec-tion 5computational experiments are performed and the results are presented.Finally,conclusions are summarized in Section 6.2.Literature review

Berth allocation problem has attracted considerable practical and academic attention in recent years due to the needs of growing

0957-4174/$-see front matter ó2013Elsevier Ltd.All rights reserved.https://www.wendangku.net/doc/35444255.html,/10.1016/j.eswa.2013.08.051

Corresponding author.Tel.:+88634638800x2526;fax:+88634638907.

E-mail address:ietingcj@https://www.wendangku.net/doc/35444255.html,.tw (C.-J.Ting).

global supply chain.Different berth allocation models have been proposed in the literature.Steenken,Vo?,and Stahlbock(2004), Vacca et al.(2008),Stahlbock and Vo?(2008),and Bierwirth and Meisel(2010)provided a detailed review.We refer interested read-ers to the paper and references therein.In the following,we focus on the discrete and dynamic berth allocation problem.Other variants and possible extensions of the BAP will be brie?y reviewed.

Thurman(1989)proposed an optimization model for ship berthing plans at the US Naval Station https://www.wendangku.net/doc/35444255.html,ter,Brown, Lawphongpanich,and Thurman(1994)and Brown,Cormican, Lawphongpanich,and Widdis(1997)considered berth allocation models in naval ports and allowed two or more submarines to occupy a single berth position.Imai,Nagaiwa,and Chan(1997) formulated a static BAP as a nonlinear integer programming model to minimize the weighted sum of two con?icting objectives,berth performance and vessel dissatisfaction.Imai,Nishimura,and Papadimitriou(2001)introduced the dynamic BAP and solved the problem with a Lagrangian relaxation based heuristic. Nishimura,Imai,and Papadimitriou(2001)considered a dynamic BAP with multi-water depth con?guration in a public berth system and berth dependent vessel handling https://www.wendangku.net/doc/35444255.html,ter,Imai,Nishimura, and Papadimitriou(2003)considered a dynamic BAP in which different vessels have different service priorities.Genetic algorithms were developed to solve the problem in Imai et al. (2001)and Nishimura et al.(2001).

Cordeau et al.(2005)addressed a dynamic BAP with time windows in both discrete and continuous cases based upon data from a terminal in the Port of Gioia Tauro(Italy).The problem was formulated as a multiple depot vehicle routing problem with time windows(MDVRPTW),and solved by a tabu search heuristic. Monaco and Sammarra(2007)presented a compact formulation as a dynamic scheduling problem on unrelated parallel machines.The problem was solved by a Lagrangian relaxation heuristic.Imai, Nishimura,Hattori,and Papadimitriou(2007)considered a BAP in which up to two vessels can be served by the same berth simul-taneously.They formulated the problem with an integer linear programming model and solved it by genetic algorithms.Imai, Zhang,Nishimura,and Papadimitriou(2007)analyzed a two-objective berth allocation problem which minimizes service time and delay time.They used the Lagrangian relaxation with subgra-dient optimization technique and a genetic algorithm to identify the non-inferior solutions in the bi-objective model.

Cheong and Tan(2008)developed a multiple ant colony algorithm for Nishimura et al.’s(2001)model and evaluated their algorithm by simulation experiments.Hansen,Og?uz,and Mladenovic(2008)presented a minimum cost BAP based on an extension of Imai et al.’s(2003)model,and developed a variable neighborhood search(VNS)heuristic for solving it.Imai, Nishimura,and Papadimitriou(2008)studied a variant of the dynamic BAP in which an external terminal is available when there is a lack of berth capacity at the operator’s own terminal.

Mauri,Oliveira,and Lorena(2008)proposed a hybrid approach called PTA/LP,which used the population training algorithm with a linear programming model using the column generation tech-nique.Barros,Costa,Oliveira,and Lorena(2011)developed and analyzed a berth allocation model with tidal time windows,where ships can only be served during those time windows.Buhrkal, Zuglian,Ropke,Larsen,and Lusby(2011)studied several mathe-matical programming models of the dynamic BAP and formulated the problem as a generalized set partition problem(GSPP).They solved the problem with CPLEX and obtained the optimal solutions on those instances from Cordeau et al.(2005).To the best of our knowledge,their mathematical model provides the best results on benchmark instances from the literature.

de Oliveira,Mauri,and Lorena(2012b)presented an algorithm based on the clustering search method using the simulated annealing algorithm to generate solutions for the discrete BAP. Lalla-Ruiz,Melián-Batista,and Marcos Moreno-Vega(2012) developed a hybrid algorithm that combined tabu search with path relinking(T2S?+PR)to solve the BAP.They tested the instances from Cordeau et al.(2005)and newly generated data sets by them-selves.The results showed that the hybrid algorithm was compet-itive with the GSPP in small size instances.Xu,Li,and Leung(2012) considered the static and dynamic BAP that berths are limited by water depth and tidal condition.The problem was formulated as a parallel machine scheduling problem and solved with a heuristic.

Another line of berth allocation research assumes that berths along a quayside can be shared by different vessels.Lim(1998) was the?rst to study the continuous berth allocation problem. The continuous BAP was formulated as a restricted form of the two-dimensional packing problem and solved with constant handling times.Li,Cai,and Lee(1998)and Guan,Xiao,Cheung, and Li(2002)modeled berth allocation as machine scheduling problems with multiprocessor tasks,while Guan and Cheung (2004)developed ef?cient heuristics using a discrete berthing section model for batch arriving vessels.Tong,Lau,and Lim (1999)proposed an ant colony optimization(ACO)approach for the BAP addressed by Lim(1998).Park and Kim(2002)presented a mixed integer programming(MIP)model to minimize the penalty cost associated with service delays and placing a ship at a non-preferred location.A Lagrangian relaxation model with subgradient optimization technique was proposed to solve the problem.

Park and Kim(2003)integrated the berth scheduling into the quay crane assignment.The BAP was solved with an adaptation of the method from Park and Kim(2002)and the crane assignment was solved by dynamic programming.Kim and Moon(2003)for-mulated the continuous BAP as a MIP model and solved the prob-lem with a simulated annealing algorithm.Imai,Sun,Nishimura, and Papadimitriou(2005)presented a heuristic for the continuous BAP.Moorthy and Teo(2006)proposed a framework addressing the berth template design problem at the terminal on a weekly ba-sis and solved the problem with a sequence-pair-based SA algo-rithm.Wang and Lim(2007)proposed a stochastic beam search algorithm to solve the BAP in a multiple stage decision-making procedure.The improved beam search scheme and a stochastic node selection criterion were proposed.

Lee and Chen(2009)developed a candidate-based approach to handle BAP by allowing vessel shifting and considering the clear-ance distance between vessels which depends on the ship lengths and the order of berthed vessels.A three-stage neighborhood search based heuristic was proposed to solve the BAP.Tang,Li, and Liu(2009)proposed two mathematical models to minimize the total weighted service time.The authors developed an im-proved Lagrangian relaxation algorithm to solve the BAP at the raw material docks in an iron and steel complex.Cheong,Tan, Liu,and Lin(2010)considered a multiple objective BAP which in-cludes makespan,waiting time,and degree of deviation from a pre-determined priority schedule.They proposed a multi-objective evolutionary algorithm that incorporates the Pareto optimality to solve the problem.Lee,Chen,and Cao(2010)developed two ver-sions of greedy randomized adaptive search procedure(GRASP) to solve the continuous BAP.The numerical results were compared with CPLEX and stochastic beam search of Wang and Lim(2007). Raa,Dullaert,and Van Schaeren(2011)presented a MIP model for the integrated BAP and quay crane assignment taking into ac-count vessel priorities,preferred berthing locations and handling time.de Oliveira,Mauri,and Lorena(2012a)presented a clustering search(CS)method with simulated annealing heuristic to solve the continuous BAP.The computational results of the I3instances from Cordeau et al.(2005)were compared with the tabu search by Cordeau et al.(2005)and memetic algorithms by Mauri,De Andrade,and Lorena(2011).

1544 C.-J.Ting et al./Expert Systems with Applications41(2014)1543–1550

The berth allocation problem is a NP problem.Due to the computational complexity,researchers have developed heuristics to solve the BAP in the literature.These heuristic methods include the GA(Imai et al.,2001;Imai,Nishimura,Hattori,& Papadimitriou,2007;Nishimura et al.,2001),SA(Kim&Moon, 2003;Moorthy&Teo,2006),TS(Cordeau et al.,2005),ACO(Tong et al.,1999;Cheong&Tan,2008),VNS(Hansen et al.,2008)and GRASP(Lee et al.,2010).In this paper,we propose a particle swarm optimization(PSO)algorithm to solve the problem.The reasons that we use PSO to solve this problem are as follows.PSO has been applied in many different combinatorial problems and provided very ef?cient performance.It is simple and needs less control parameters comparing to other metaheuristics,such as genetic algorithms and ant colony optimization algorithms.To our knowledge,no research used PSO to solve the BAP.Details of the proposed PSO are presented in Section4.

3.Mathematical model

This section describes the mixed integer programming model for the discrete and dynamic berth allocation problem.We treat the BAP as a vehicle routing problem with time windows,where berths correspond to vehicles,ships correspond to customers and a mooring sequence at a particular berth corresponds to a vehicle route.Each vehicle must start and end at the depot.The depot is divided into two dummy nodes,o and d.Time windows can be imposed on every node.The time windows of a vehicle correspond to the availability time of the corresponding berth.

3.1.Assumptions

1.Each berth can handle one ship at a time.

2.Any ship can be handled at any berth with a given processing

time depending on both the ship and the berth.

3.All ships arrive before or after the berth becoming available

with known arrival times.

4.Once a vessel is moored,it will remain in its location until all

the required processing is done.

5.The initial status of the terminal space is ideally clean without

any ship.

3.2.Notations

a i:the arrival time of ship i

b i:the end time of time window of ship i

d:the destination of any route

e k:the end time o

f berth k availability

K:set of the berths,K={1,2,...,|K|}

M:a big number

N:set of ships that will arrive at the port,N={1,2,...,|N|}

o:the origin of any route

P k

i

:the processing time of ship i at berth k

S k:the start time of berth k availability

Decision variable

x k

ij

?

1if ship i uses berth k immediately before ship j

0otherwise

T k

i

:the starting time of ship i at berth k

3.3.Model formulation

We formulate the BAP as a vehicle routing type problem,where

nodes o and d represents the origin and destination for any route. The processing time is dependent on the respective berth locations. The model has two types of decision variables:the binary assign-

ment variable x k

ij

and the continuous variable t k

i

.

Minimize

X

i2N

X

k2K

et k

i

àa itp k

i

X

j2N[f d g

x k

ij

Te1Ts:t:

X

i2N[f o g

x k

ih

?

X

i2N[f d g

x k

hi

8h2N;k2Ke2TX

k2K

X

j2N[f d g

x k

ij

?18i2Ne3TX

j2N[f d g

x k

oj

618k2Ke4T

et k

i

tp k

i

T6t k

j

te1àx k

ij

TM8i;j2N[f o g[f d g;k2Ke5T

s k6t k

o

8k2Ke6T

t k

d

6e

k

8k2Ke7T

a i6t k

i

8i2N;k2Ke8T

t k

i

tp k

i

X

j2N[f d g

x k

ij

6b

i

8i2N;k2Ke9T

x k

ij

?f0;1g8i;j2N;k2Ke10T

t k

i

P08i2N;k2Ke11TThe objective function(1)minimizes the total service time which includes waiting time and processing time of all ships.Con-straint(2)ensures the?ow conservation for all the vessels.Con-straint(3)states that each ship must be assigned to exactly one berth k.Since berth can be left unused,constraints(4)states that berth k can only start at most once.Constraint(5)guarantees the consistency for berthing time and mooring sequence on each berth. The berth availability time is enforced by constraints(6)and(7). Constraints(9)and(10)state that the vessel must be served within the time window.Finally,constraints(10)and(11)de?ne the respective domains of the decision variables.

4.Particle swarm optimization for BAP

Particle swarm optimization(PSO),inspired by the social behavior of bird?ocking or?sh schooling,is a population-based stochastic search technique developed by Kennedy and Eberhart (1995).PSO has been applied in a wide range of combinatorial optimization problems,such as reactive power and voltage con-trol(Fukuyama&Yoshida,2001),permutation?owshop sequenc-ing problems(Liao,Tseng,&Luarn,2007),order allocation problem(Ting,Tsai,&Yeh,2007),machine scheduling(Low, Hsu,&Su,2010;Tsai&Kao,2011),production planning(Chen

& C.-J.Ting et al./Expert Systems with Applications41(2014)1543–15501545

Lin,2009),timetabling problem(Tassopoulos&Beligiannis,2012), and vehicle routing problems(Ai&Kachitvichyanukul,2009; MirHassani&Abolghasemi,2011).Compared to the genetic algo-rithm,PSO is easy to implement and there are few control param-eters to adjust.

PSO is initialized with a population of random solutions and the potential solutions,called‘‘particles’’,in PSO search through the solution space.Each particle is also assigned a randomized velocity initially.The positions of individual particles are adjusted(via changing the velocity)according to its own previous searching experience(i.e.,previous best,pBest),and other particles’searching experiences(i.e.,global best,gBest).Velocity changing is weighted by random terms,with separate random numbers being generated for acceleration toward two best solutions,pBest and gBest,in each iteration.Suppose that the search space has D-dimension, and the position and the velocity of the i th particle at the current iteration is represented by X old i=(X old i1,...,X old id,...,X old iD)and V old i=(V old i1,...,V old id,...,V old iD),respectively.The general proce-dures of PSO are as follows.

1.Initialization.Randomly generate a population(A)of potential

solutions,called particles,and each particle is assigned a ran-domized velocity.The population size is problem-dependent and suggested to be between20and40by Hu and Eberhart (2002).

2.Evaluation and update best https://www.wendangku.net/doc/35444255.html,pute the desired opti-

mization?tness function.

https://www.wendangku.net/doc/35444255.html,pare the?tness of each particle with its pBest,if the

current is better,update the pBest.

https://www.wendangku.net/doc/35444255.html,pare the pBest of each particle with the gBest,if the

pBest is better,update the gBest.

3.Velocity update.The particles are?own through hyperspace by

updating their own velocities.The velocity update of a particle is dynamically adjusted,subject to its own past best path and those of its companions.The particle updates its velocity and position with following equations(12)and(13).

V new id ?W?V old

id

tc1?rnd1?eP idàX old

id

Ttc2?rnd2

?eP gdàX old

id

Te12T

X new id ?X old

id

tV new

id

e13T

where V new

id is the particle new velocity,V old

id

is the current parti-

cle velocity,P id is the best previous position of particle i in

dimension d,P gd is the best position in dimension d found by all particles till now.W is the inertia weight,c1and c2are learn-ing factors.A larger W can prevent particles being trapped in the local optimum,while a smaller W let particles to exploit the same search space area.Eberhart and Shi(2001)suggested c1=c2=2and W=0.5+(rand()/2).X new

id

is the new particle

(solution)position and X old

id

is the current particle position in

d th dimension.rnd1and rnd2ar

e random numbers between

0and1which represent the stochastic element of the PSO.

4.Termination.Stop the algorithm if the stopping criterion is met;

otherwise go to2.In this paper,we set the stop criterion as the maximum number of iterations(G)is reached.

Particles’velocities on each dimension are clamped to a maxi-mum velocity V max,a parameter speci?ed by the user to determine the maximum change one particle can move during one iteration. If the updated velocity exceeds V max,then the velocity on that dimension is limited to V max.Eberhart and Shi(2001)suggested V max being set at about10-20%of the dynamic range of the variable on each dimension.

In PSO,only gBest gives out the information to others.It is a one-way information sharing mechanism.The evolution only looks for the best https://www.wendangku.net/doc/35444255.html,pared with the genetic algorithm,all the par-ticles tend to converge to the best solution quickly even in the local version in most cases.There are two key steps when applying PSO to optimization problems:the representation of the solution and the?tness function.One of the advantages of PSO is that PSO can take real numbers as particles.

The population size will affect the effectiveness of PSO and is problem-dependent.The number of particles most commonly used is in the range of20–40(Hu and Eberhart,2002).The dimension of particles is determined by the problem to be optimized.The range of particles is also determined by the problem to be optimized,the user can specify different ranges for different dimension of parti-cles.Learning factors,c1and c2,usually equal to2.However,other settings were also used in different papers.But usually c1equals to c2and ranges from[0,4].The stop condition is based on the max-imum number of iterations the PSO execute and the minimum er-ror requirement.

4.1.Particle representation and initial solution generation

The solution representation is the key issue when designing the PSO algorithm.It could be a string of integers or real numbers.In order to construct a direct relationship between the domain of the berth allocation problem and the PSO practices,n numbers of dimensions are presented each for one of the n vessels.Our solu-tion representation is as follows:n real numbers from a uniform distribution in the interval of(0,m)represent a solution in an array of n cells,where n is number of ships and m is the number of berths.The interval of(0,m)is used as boundary constraint to par-ticle position to guarantee that the decision variables are in the feasible region.The integer part of a real number denotes the berth that the ship is assigned to and the fractional part represents the processing order of ships on each berth.The ships are separated into groups based on the berth to which they are assigned.Based on the real number encoding,the sequence of ships on each berth can be extracted from ascending order of fractional parts.A ship with lower number will be scheduled before the ships with higher numbers.

Fig.1shows a particle representation for a berth allocation problem with six vessels and two berths.Each particle dimension is encoded as a real number between(0,2).The integer part of each value represents the berth position the vessel assigned to.Thus,the same integer part represents the vessel is in the same berth.The fractional part determines the sequence of the vessel at the berth. For example,vessels{a,d,e}will be served by berth1while vessels {b,c,f}will be served at berth2.By sorting the fractional values in ascending order,vessel d will be the?rst one moored at berth1, followed by vessel e and a.Similarly,the sequence of vessels moored at berth2is b,f,and c.

To prevent the search outside the initialized range of the feasi-ble solution space,we handle the boundary situation as follows.If the value in one cell is less than zero,we randomly generated a va-lue in(0,1)for the cell.If the value is larger than the number of berths,we randomly generated a value in(0,1)and subtract this from the number of berths.

We randomly generate all particles except one solution that is based on a simple greedy heuristic,?rst-come-?rst-served(FCFS). FCFS is practically used in the real world operations from both operator’s and carrier’s perspective.We assume that all berths be-come available at the same time and sort the ships by their arrival times in ascending order.Ships are assigned one at a time by choosing the combination of berth and ship that will?nish?rst. The time is increased when there are no ships available or all berths are busy.This continues until all ships have been assigned.

1546 C.-J.Ting et al./Expert Systems with Applications41(2014)1543–1550

4.2.Local search

In each iteration,we apply local search to improve the solution quality.Due to that the local search is a time-consuming procedure of PSO,we will only apply local search to the best particle found in this iteration.The local search technique used in this study has two procedures:swap ships in the same berth and between berths. Fig.2shows these two procedures based on the solution obtained in Fig.1.Given a list of the ships handled by berth j,the swapping compares all the possible swapping pairs within the same berth and select the best improvement to exchange their values as shown in Fig.2(a).For the swapping of two ships in two berths, two ships in two different berths(one for each berth)are randomly selected.The positions of these two ships are exchanged.The swap results are evaluated and select the best improvement to exchange as shown in Fig.2(b).

https://www.wendangku.net/doc/35444255.html,putational experiments

The proposed PSO algorithm in previous section is tested in this section.Two sets of instances,I2and I3,from Cordeau et al.(2005) were tested.The PSO algorithm was coded in Microsoft Visual Stu-dio C++2008and run on a PC with an Intel Core2Duo CPU E8400 (3.00GHz)processor and1.9GB RAM,under the Windows7oper-ating system.The effectiveness of the proposed PSO algorithm was compared with other recent algorithms for the BAP,namely tabu search(T2S)(Cordeau et al.,2005),population training algorithm with linear programming(PTA/LP)(Mauri et al.,2008),and cluster-ing search(CS)approach(de Oliveira et al.,2012b)from the liter-ature.The results of these algorithms were obtained directly from their articles.

To make the performance of our proposed PSO heuristic more robust,parameter-setting is necessary.We have performed a set of preliminary experiments in order to?nd an appropriate param-eter setting that produces overall good results across most in-stances,even if they were not the optimal settings for all instances.The control parameters of our PSO algorithm are the number of particles A,number of iterations G,inertia weight W, and learning factors C1and C2,respectively.Based on the prelimin-ary experiments undertaken,we found that the best values of the parameter setting yield to better solution quality as follows:A=20, G=200,W=0.9,C1=C2=2.Each instance is run for30times and reported both best solution and average computational time.

5.1.I2set

The I2data set including50instances were generated from the traf?c and berth-allocation data at Gioia Tauro,Italy.Five instance sizes were considered:25ships with5,7,and10berths;35ships with7and10berths.A set of10instances was generated for each size.The earliest available time is the same for every berth.The ori-ginal data set takes into account time windows.

Table1shows the results for the instances of25and35ships. We also compare the results to those obtained from the most re-cent literature.For each algorithm,we report their results and computational time.Among those results,GSPP by Buhrkal et al.(2011)solved the BAP with CPLEX and obtained the optimal solu-tions.Our PSO can?nd the optimal solutions in all50instances and provide much better results than those by Cordeau et al.(2005).

The computational times of our PSO in each instance are the average of30runs in seconds.The tabu search algorithm(T2S)pro-posed by Cordeau et al.(2005)used on average120s to solve each instance.The machine used by the GSPP was a PC with an Intel Xeon 2.66GHz,while T2S was run on a Sun workstation (900MHz).Our PSO performs better than that of T2S in terms of solution quality.We can observe that PSO?nds all the optimal solutions for all instances in I2set in short time(1.66s on average).

5.2.I3set

The I3data set that includes30instances,each with60ships and13berths,is also randomly generated by Cordeau et al. (2005)based on data from the port of Gioia Tauro.The

parameters

Table1

Comparison of results of I2set.

Instance GSPP T2S PSO

Opt.Time Best Best Time

25?5_1759 5.997597590.75

25?5_2964 3.709659640.55

25?5_3970 2.95974970 1.23

25?5_4688 2.727026880.42

25?5_5955 6.979659550.86

25?5_61129 3.10112911290.52

25??5_7835 2.318358350.52

25?5_8627 1.926296270.50

25?5_9752 4.767557520.69

25?5_101073 6.38107710730.73

25?7_1657 3.626676570.52

25?7_2662 3.156716620.44

25?7_3807 4.288238070.97

25?7_4648 3.786556480.86

25?7_5725 3.857287250.44

25?7_6794 3.607947940.52

25?7_7734 3.547407340.69

25?7_8768 3.93782768 1.05

25?7_9749 3.737597490.89

25?7_10825 3.828308250.55

25?10_1713 5.837177130.70

25?10_2727 6.997367270.75

25?10_3761 6.127647610.56

25?10_4810 5.388198100.52

25?10_5840 6.778558400.45

25?10_6689 5.576946890.44

25?10_7666 5.836736660.58

25?10_8855 5.878608550.53

25?10_9711 5.387267110.45

25?10_10801 5.968128010.47

35?7_1100012.5710191000 5.02

35?7_2119215.9311961192 4.91

35?7_312017.1612301201 4.94

35?7_4113913.5911501139 3.45

35?7_5116411.5011791164 3.36

35?7_6168629.1617031686 3.28

35?7_7117612.8911811176 4.17

35?7_8131817.5213301318 2.39

35?7_912458.4112451245 3.50

35?7_10110914.3911301109 3.89

35?10_1112419.9811281124 1.58

35?10_2118911.3711971189 4.13

35?10_39388.97953938 3.36

35?10_4122610.2812391226 2.84

35?10_5134922.3113721349 1.53

35?10_6118810.9212211188 2.44

35?10_710519.7410521051 2.17

35?10_811949.3912191194 1.28

35?10_9131129.4513151311 2.81

35?10_10118914.2811981189 2.83

Average953.668.55963.04953.66 1.66 C.-J.Ting et al./Expert Systems with Applications41(2014)1543–15501547

used for the PSO are the same as those for I2set.Table2shows the direct comparison of results with those presented in the literature. We compare our PSO with GSPP by Buhrkal et al.(2011),T2S by Cordeau et al.(2005),PTA/LP by Mauri et al.(2008),and CS by de Oliveira et al.(2012).The best solution and running time for each algorithm were obtained directly from the papers.Among these algorithms,GSPP solved the instances by CPLEX and obtained the optimal solutions.It can be seen that PTA/LP dominates T2S in terms of solution quality.Both PSO and CS can obtain the optimal solutions in all30instances and exhibit a slightly better overall 5.3.Discussion

The computational experiments show that our PSO can obtain all the optimal solutions of those80benchmark instances in short time.The average time for small instances is only1.66s while for the larger instances is8.17s.We observe that the PSO can obtain the optimal solutions within the?rst20iterations in some in-stances.The running times to reach the optimal solutions could be much shorter than those reported in Tables1and2.

To show the convergence of the PSO algorithm,we depict the

Table2

Comparison of results of I3set.

Inst.GSPP T2S PTA/LP CS PSO

Opt.Time Best Best Time Best Time Best Time

i01140917.921415140974.61140912.47140911.11 i02126115.771263126160.75126112.5912617.89 i03112913.5411391129135.45112912.6411297.48 i04130214.4813031302110.17130212.591302 6.03 i05120717.2112081207124.70120712.681207 5.84 i06126113.851262126178.34126112.5612617.67 i07127914.6012791279114.20127912.6312797.50 i08129914.211299129957.06129912.5712999.94 i09144416.511444144496.47144412.581444 4.25 i10121314.161213121399.41121312.611213 5.20 i11136814.131378136999.34136812.58136810.52 i12132515.601325132580.69132512.56132512.92 i13136013.871360136089.94136012.61136011.97 i14123315.601233123373.95123312.6712337.11 i15129513.521295129574.19129513.8012958.30 i16136413.6813751365170.36136414.4613648.48 i17128313.371283128346.58128313.731283 5.66 i18134513.511346134584.02134512.7213458.02 i19136714.5913701367123.19136713.39136711.42 i20132816.641328132882.30132812.82132812.28 i21134113.3713461341108.08134112.6813417.11 i22132615.2413321326105.38132612.6213267.94 i23126613.651266126643.72126612.6212667.25 i24126015.581261126078.91126012.641260 5.67 i25137615.801379137696.58137612.6213767.13 i26131815.3813301318101.11131812.6213187.44 i27126115.521261126182.86126112.641261 6.16 i28135916.221365136052.91135912.71135911.52 i29128015.3012821280203.36128012.6212808.11 i30134416.521351134471.02134412.5813447.13

Avg.1306.814.981309.71306.993.991306.812.791306.88.17

Fig.3.Convergence grapgh of the proposed PSO for instance i13.

1548 C.-J.Ting et al./Expert Systems with Applications41(2014)1543–1550

6.Conclusion

In this paper we have studied the discrete berth allocation problem with dynamic arrival times.The berth allocation problem is a NP-hard problem,exact solution approaches cannot solve the instances of realistic size optimally within reasonable time.We proposed a particle swarm optimization heuristic to solve the BAP and tested our algorithm with two sets of instances from the https://www.wendangku.net/doc/35444255.html,putational results have indicated that the pro-posed PSO algorithm is able to?nd all the optimal solutions for the two sets of benchmark instances from the literature in short running times.We believe that PSO is effective as an alternative to?nd good solutions for BAP by comparing our solutions with the optimal solution from CPLEX and against other recent algorithms in the literature.

In the future,we could extend our PSO to hybrid with other heuristic for improving the performance.Other metaheuristics, such as ant colony optimization algorithm,could also be consid-ered to solve the BAP.Another possible direction is to investigate the potential of applying the PSO to the continuous berth alloca-tion problem that is much closer to the real world operation. References

Ai,T.J.,&Kachitvichyanukul,V.(2009).Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem.

Computers&Industrial Engineering,56,380–387.

Barros,V.H.,Costa,T.S.,Oliveira,A.C.M.,&Lorena,L.A.N.(2011).Model and heuristic for berth allocation in tidal bulk ports with stock level constraints.

Computers and Industrial Engineering,60,606–613.

Bierwirth,C.,&Meisel,F.(2010).A survey of berth allocation and quay crane scheduling problems in container terminals.European Journal of Operational Research,202,615–627.

Brown,G.G.,Lawphongpanich,S.,&Thurman,K.P.(1994).Optimizing ship berthing.Naval Research Logistics,41,1–15.

Brown,G.G.,Cormican,K.J.,Lawphongpanich,S.,&Widdis,D.B.(1997).Optimizing submarine berthing with a persistence incentive.Naval Research Logistics,44, 301–318.

Buhrkal,K.,Zuglian,S.,Ropke,S.,Larsen,J.,&Lusby,R.(2011).Models for the discrete berth allocation problem:A computational comparison.Transportation Research Part E:Logistics and Transportation Review,47,461–473.

Chen,Y.Y.,&Lin,J.T.(2009).A modi?ed particle swarm optimization for production planning problems in the TFT Array process.Expert Systems with Applications,36,12264–12271.

Cheong,C.Y.,&Tan,K.C.(2008).A multi-objective multi-colony ant algorithm for solving the berth allocation problem.In Y.Liu,A.Sun,H.T.Loh,W.F.Lu,&E.P.

Lim(Eds.),Advances of Computational Intelligence in Industrial Systems (pp.333–350).Berlin:Springer-Verlag.

Cheong,C.Y.,Tan,K.C.,Liu,D.K.,&Lin,C.J.(2010).Multi-objective and prioritized berth allocation in container ports.Annals of Operations Research,180,63–103. Cordeau,J.F.,Laporte,G.,Legato,P.,&Moccia,L.(2005).Models and tabu search heuristics for the berth-allocation problem.Transportation Science,39,526–538. de Oliveira,R.M.,Mauri,G.R.,&Lorena,L.A.N.(2012a).Clustering search heuristics for solving a continuous berth allocation problem.Lecture Notes in Computer Science,7245,49–62.

de Oliveira,R.M.,Mauri,G.R.,&Lorena,L.A.N.(2012b).Clustering search for the berth allocation problem.Expert Systems with Applications,39,5499–5505. Eberhart,R.&Shi,Y.(2001).Tracking and optimizing dynamic system with particle swarms.In Proceedings of congress on evolutionary computation(pp.94–97).

Seoul,Korea.

Fukuyama,Y.,&Yoshida,H.(2001).A particle swarm optimization for reactive power and voltage control in electric power systems.Proceedings of Congress on Evolutionary Computation,1,87–93.

Guan,Y.,&Cheung,R.K.(2004).The berth allocation problem:Models and solution methods.OR Spectrum,26,75–92.

Guan,Y.,Xiao,W.Q.,Cheung,R.K.,&Li, C.L.(2002).A multiprocessor task scheduling model for berth allocation:Heuristic and worst-case analysis.

Operations Research Letters,30,343–350.

Hansen,P.,Og?uz,C.,&Mladenovic,N.(2008).Variable neighborhood search for minimum cost berth allocation.European Journal of Operational Research,191, 636–649.

Hu,X.&Eberhart,R.(2002).Multiobjective optimization using dynamic neighborhood particle swarm optimization.In Proceedings of the Congress on Evolutionary Computation,Honolulu,USA(pp.1677–1681).

Imai,A.,Nagaiwa,K.,&Chan,W.T.(1997).Ef?cient planning of berth allocation for container terminals in Asia.Journal of Advanced Transportation,31,75–94. Imai,A.,Nishimura,E.,&Papadimitriou,S.(2001).The dynamic berth allocation problem for a container port.Transportation Research Part B:Methodological,35, 401–417.Imai, A.,Nishimura, E.,&Papadimitriou,S.(2003).Berth allocation with service priority.Transportation Research Part B:Methodological,37, 437–457.

Imai,A.,Nishimura,E.,Hattori,M.,&Papadimitriou,S.(2007).Berth allocation at indented berths for mega-containerships.European Journal of Operational Research,179,579–593.

Imai,A.,Nishimura,E.,&Papadimitriou,S.(2008).Berthing ships at a multi-user container terminal with a limited quay capacity.Transportation Research Part E: Logistics and Transportation Review,44,136–151.

Imai,A.,Sun,X.,Nishimura,E.,&Papadimitriou,S.(2005).Berth allocation in a container port:Using a continuous location space approach.Transportation Research Part B:Methodological,39,199–221.

Imai,A.,Zhang,J.-T.,Nishimura,E.,&Papadimitriou,S.(2007).The berth allocation problem with service time and delay time objectives.Maritime Economics and Logistics,9,269–290.

Kennedy,J.&Eberhart,R.C.(1995).Particle swarm optimization.In Proceedings of IEEE International Conference on Neural Networks(pp.1942–1948).Piscataway, NJ,USA

Kim,K.H.,&Moon,K. C.(2003).Berth scheduling by simulated annealing.

Transportation Research Part B:Methodological,37,541–560.

Lalla-Ruiz, E.,Melián-Batista, B.,&Marcos Moreno-Vega,J.(2012).Arti?cial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem.Engineering Applications of Arti?cial Intelligence,25, 1132–1141.

Lee,D.H.,Chen,J.H.,&Cao,J.X.(2010).The continuous berth allocation problem:A greedy randomized adaptive search solution.Transportation Research Part E: Logistics and Transportation Review,46,101–1029.

Lee,Y.,&Chen,C.Y.(2009).An optimization heuristic for the berth scheduling problem.European Journal of Operational Research,196,500–508.

Li,C.L.,Cai,X.,&Lee,C.Y.(1998).Scheduling with multiple-job-on-one-processor pattern.IIE Transactions,30,433–445.

Liao,C.J.,Tseng,C.T.,&Luarn,P.(2007).A discrete version of particle swarm optimization for?owshop scheduling https://www.wendangku.net/doc/35444255.html,puters&Operations Research,34,3099–3111.

Lim, A.(1998).The berth planning problem.Operations Research Letters,22, 105–110.

Low,C.Y.,Hsu,C.J.,&Su,C.T.(2010).A modi?ed particle swarm optimization algorithm for a single-machine scheduling problem with periodic maintenance.

Expert Systems with Applications,37,6429–6434.

Mauri,G.R.,Oliveira,A.C.M.,&Lorena,L.A.N.(2008).A hybrid column generation approach for the berth allocation problem.Lecture Notes in Computer Science, 4972,110–122.

Mauri,G.R.,De Andrade,L.N.&Lorena,L.A.N.(2011).A Memetic Algorithm for a continuous case of the Berth allocation problem.In Proceedings of the international conference on evolutionary computation theory and applications (pp.105–113).Paris,France.

MirHassani,S. A.,&Abolghasemi,N.(2011).A particle swarm optimization algorithm for open vehicle routing problem.Expert Systems with Applications, 38,11547–11551.

Monaco,M.F.,&Sammarra,M.(2007).The berth allocation problem:A strong formulation solved by a Lagrangian approach.Transportation Science,41, 265–280.

Moorthy,R.,&Teo,C.P.(2006).Berth management in container terminal:The template design problem.OR Spectrum,28,495–518.

Nishimura,E.,Imai,A.,&Papadimitriou,S.(2001).Berth allocation planning in the public berth system by genetic algorithms.European Journal of Operational Research,131,282–292.

Park,K.T.,&Kim,K.H.(2002).Berth scheduling for container terminals by using a subgradient optimization technique.Journal of the Operational Research Society, 53,1054–1062.

Park,Y.M.,&Kim,K.H.(2003).A scheduling method for berth and quay cranes.OR Spectrum,25,1–23.

Raa,B.,Dullaert,W.,&Van Schaeren,R.(2011).Expert Systems with Applications,38, 1413–1417.

Stahlbock,R.,&Vo?,S.(2008).Operations research at container terminals:A literature update.OR Spectrum,30,1–52.

Steenken,D.,Vo?,S.,&Stahlbock,R.(2004).Container terminal operation and operations research a classi?cation and literature review.OR Spectrum,26, 3–49.

Tang,L.,Li,S.,&Liu,J.(2009).Dynamically scheduling ships to multiple continuous berth spaces in an iron and steel complex.International Transactions in Operational Research,16,87–107.

Tassopoulos,I.X.,&Beligiannis,G.N.(2012).Solving effectively the school timetabling problem using particle swarm optimization.Expert Systems with Applications,39,6029–6040.

Theofanis,S.,Boile,M.,&Golias,M.M.(2009).Container terminal berth planning:Critical review of research approaches and practical challenges.

Transportation Research Record:Journal of the Transportation Research Board, 2100,22–28.

Thurman,K.P.(1989).Optimal ship berthing plans.Master’s thesis,Operations Research,Naval Postgraduate School,Monterey,California–EUA.

Ting,C.J.,Tsai,C.Y.,&Yeh,L.W.(2007).The use of particle swarm optimization for order allocation under multiple capacitated sourcing and quantity discounts.

Industrial Engineering and Management Systems,6,136–145.

Tong,C.J.,Lau,H.C.,&Lim,A.(1999).Ant colony optimization for the ship berthing problem.Lecture Notes in Computer Science,1742,359–370.

C.-J.Ting et al./Expert Systems with Applications41(2014)1543–15501549

Tsai,C.Y.,&Kao,I.W.(2011).Particle swarm optimization with selective particle regeneration for data clustering.Expert Systems with Applications,38, 6565–6576.

UNCTAD.(2011).Review of maritime transportation.United Nations Conference on Trade and Development.

Vacca,I.,Bierlaire,M.&Salani,M.(2008).Optimization at container terminals: Status,trends and perspectives.Report TRANSP-OR080528.Transport and

Mobility Laboratory,Ecole Polytechnique Fédérale de Lausanne, Switzerland.

Wang, F.,&Lim, A.(2007).A stochastic beam search for the berth allocation problem.Decision Support Systems,42,2186–2196.

Xu,D.S.,Li,C.L.,&Leung,J.Y.T.(2012).Berth allocation with time-dependent physical limitations on vessels.European Journal of Operational Research,216, 47–56.

1550 C.-J.Ting et al./Expert Systems with Applications41(2014)1543–1550

标准物质与标准样品

1 概述 在国际上标准物质和标准样品英文名称均为“Reference Materials”,由 ISO/REMCO组织负责这一工作。在我国计量系统将“Reference Materials”叫为“标准物质”,而标准化系统叫为“标准样品”。实际上二者有很多相同之处,同时也有一些微小差异(见表1)。 2 标准物质的分类与分级 2.1 标准物质的分类 根据中华人民共和国计量法的子法—标准物质管理办法(1987年7月10日国家计量局发布)中第二条之规定:用于统一量值的标准物质,包括化学成分标准物质、物理特性与物理化学特性测量标准物质和工程技术特性测量标准物质。按其标准物质的属性和应用领域可分成十三大类,即:

l 钢铁成分分析标准物质; l 有色金属及金属中气体成分分析标准物质; l 建材成分分析标准物质; l 核材料成分分析与放射性测量标准物质; l 高分子材料特性测量标准物质; l 化工产品成分分析标准物质; l 地质矿产成分分析标准物质; l 环境化学分析标准物质; l 临床化学分析与药品成分分析标准物质; l 食品成分分析标准物质; l 煤炭石油成分分析和物理特性测量标准物质; l 工程技术特性测量标准物质; l 物理特性与物理化学特性测量标准物质。 2.2 标准物质的分级 我国将标准物质分为一级与二级,它们都符合“有证标准物质”的定义。 2.2.1 一级标准物质 一级标准物质是用绝对测量法或两种以上不同原理的准确可靠的方法定值,若只有一种定值方法可采取多个实验室合作定值。它的不确定度具有国内最高水平,均匀性良好,在不确定度范围之内,并且稳定性在一年以上,具有符合标准物质技术规范要求的包装形式。一级标准物质由国务院计量行政部门批准、颁布并授权生产,它的代号是以国家级标准物质的汉语拼音中“Guo”“Biao”“Wu”三个字的字头“GBW”表示。 2.2.2 二级标准物质 二级标准物质是用与一级标准物质进行比较测量的方法或一级标准物质的定值方

安全的系统发展生命周期(SSDLC)介绍

安全的系統發展生命週期 (SSDLC)介紹
賴溪松 講師 TWISC@NCKU 中心主任兼召集人 成大資通安全研發中心主任 成功大學 電機系 特聘教授
1

課程大綱
系統發展生命週期
本章說明系統發展生命週期中,各階段的 意義與要點。
生命週期各階段之安全工作要求
本章說明系統發展生命週期中,不同階 段的安全需求與執行要項。
應用系統安全實例介紹
本章以實例的方式,點出各個階段的執 行內容。
結論
安全的系統發展生命週期(SSDLC)重點結論 說明。
2

第一章 系統發展生命週期
? 1-1 系統發展生命週期簡介 ? 1-2 系統發展生命週期的異同
3

1-1 系統發展生命週期簡介
4

系統發展生命週期簡介
? 系統發展生命週期 (System Development Life Cycle, SDLC)意指發展一套系統的順 序,用以開發完善的資訊系統。一般來 說,根據各階段的定義,主要可分為:
– 分析設計 (Define)
? 著重需求定義,以符合業務內容及使用者需求為 目的。
需求分析 需求分析
5

系統發展生命週期簡介(續)
– 架構設計 (Design)
? 根據需求分析結果,進行包含系統任務目標、功 能關聯、邊界範圍、各階層使用者的角色等內外 部使用的規劃。
– 程式實作 (Develop)
? 落實既有之規劃,符合委託者或使用者的需要, 將操作介面、資料處理、功能運作等完整的實 現。
需求分析 需求分析
6

试运用生态系统的承载能力(生命支持系统的承载能力)等理

试运用生态系统的承载能力(生命支持系统的承载能力)等理论论述人口与资源、环境的关系。 论人口与资源、环境的关系 20世纪以来,随着科技进步和社会生产力的极大提高,人类创造了前所未有的物质财富,加速推进了文明发展的进程;与此同时,人口剧增、资源过度消耗、环境污染、生态破坏等问题日益凸显,导致许多地区生态承载力下降,威胁人类的未来生存。人类逐渐认识到,生态系统如同有生命有机体一样,有自我维持和自我调节能力,人类的可持续发展必须建立在生态系统完整、资源持续供给和环境长期有容纳量的基础之上,不应超越生态系统的承载限值。生态承载力作为评价可持续发展能力基础支持系统的方法之一,其理论及研究方法倍受可持续发展研究者的广泛关注,成为生态学、地理学与环境学等研究的交叉前沿领域。 目前只有地球上有适合人类生存的条件,而地球的空间和资源是有限的,面对数量庞大且与日俱增的人口的事实,人们必然关注人口增长与生态承载力的问题。按一般理解,环境人口容量又称资源承载力,简单地看作是环境所能容纳的最大人口数,超过这个人口数,人口就不能正常生存,即偏向于最高人口的涵义。 人口容量定义为一个国家或地区的环境人口容量,是在可预见的时期内,利用本地资源及其他资源、智力和技术等条件,在保证符合社会文化准则的物质生活水平条件下,该国家或地区所能持续供养的人口数量。该定义在强调自然资源的同时,也考虑到技术条件。这个概念包含以下意思:分析人口容量应针对具体的时期,因为人口容量是时间的函数,具有不确定性;资源、科技水平、生活(包括物质和文化生活)水平是制约环境人口容量的重要因素;如果研究某一国家或地区的环境人口容量,要以该国或地区所能利用的资源和技术为依据,而所利用的资源和技术可以是本地的,也可以是定义中所说的“其他”(如国外或地区外)资源和技术,这一点对地区环境人口容量的估计结果有较大的影响。 人类是地理环境演化发展的产物,本来也是自然地理环境的组成要素,即人类具有自然属性。人类的生产、生活既要从自然环境中获取物质和能量,也要向环境中排放生产、生活的废弃物。故一个地区或国家的人口数量和人口增长首先受自然环境的影响。而一个区域自然地理环境所能供养的最大人口数量即是环境承载力(考虑资源的供给能力与环境容纳污染物的能力)。但一个区域自然环境供给资源的能力也与社会生产力发展水平有关,即一个区域的生态承载力也是随时间不断变化的。 对于人来讲,资源是不断发展变化的,资源的发展变化的动力是人。不同的行为会导致

国际标准物质介绍

一、NIST标准物质: 1.资源介绍 美国NIST是世界上开展标准物质研制最早的机构。NIST的前身为美国国家标准局,成立于1901年,是设在美国商务部科技管理局下的非管理机构,负责国家层面上的计量基础研究。NIST在研究权威化学及物理测量技术的同时,还提供以NIST为商标的各类标准参考物质(SRM,Standard Reference Material),该商标以使用权威测量方法和技术而闻名。目前,NIST共提供1300多种标准参考物质,形成了世界领先的、较为完善的标准物质体系,在保证美国国内化学测量量值的有效溯源及分析测量结果的可靠性方面发挥了重要的支撑作用。总体来讲,美国NIST与其它美国商业标准物质生产者的关系是:NIST作为国家计量院将其研究重点放在高端标准物质及测量标准的研究上,建立国家的高端量值溯源体系,商业标准物质将其量值通过NTRM、校准等各种形式溯源至NIST,以改善标准物质的供应状况,满足不同层次用户对标准物质日益增长的需求。 NIST在采纳由ISO制定的国际计量学通用基本术语中对CRM、RM的定义外,又将其标准物质分为SRM(标准参考物质)、RM(标准物质)及NTRM(可溯源至NIST的标准物质)。对它们分别解释如下: NIST SRM:符合NIST规定的附加定值准则,带有证书(物理特性类)或分析证书(化学成分类)并在证书上提供其定值结果及相关使用信息的有证标准物质(CRM)。该类标准物质必须含有认定值(Certified value),同时可提供参考值和信息值; NIST RM:由NIST发布的、带有研究报告而不是证书的标准物质。该类标准物质除了符合ISO对RM的定义,还可能符合ISO对CRM的定义。该类标准物质必须含有参考值,同时可提供信息值; NTRM:可以通过很好建立的溯源链溯源至NIST化学测量标准的商业标准物质。溯源链的建立必须符合由NIST确定的系列标准和草案。通过管理授权,NTRM也可等价于CRM。NTRM模式目前在气体分析用标准物质和光度分析用标准物质方面得到了很好的应用; 在标准物质所提供的特性量值方面,有以下三类: NIST认定值:具有最高准确度、所有已知或可疑偏差来源均已经过充分研究或

五(1)班道德讲堂《安全系统与生命》

市文清路小学道德讲堂活动方案 一、活动目的 学习安全知识,认识安全的重要性,对学生进行安全教育,防患于未然。 二、活动主题 安全与生命 三、活动参与 五年级全体同学 四、活动时间、地点 2015年11月25日,市文清路小学电教室 五、活动容 一、开场 A: 有人说生命如歌,有人说生命如树,有人说生命如霞! B: 那生命因何而激越?因何而常青?因何而绚丽? A: 安全对于生命片刻不可少!安全对于生命片刻不能离!生命之霞因安全而绚丽! B: 安全是生命的源头活水,安全是生命的雨露。 A ,B: 寻找身边的安全隐患,加强自我防护意识,欢迎大家来到文清路小学五(1)班——《安全与生命》道德讲堂现场。

二、观视频 A: 生命之海中会有暗礁,有恶浪。 B: 生命之路上会有荆棘,有坎坷。 A: 生命时时刻刻需要安全的守护。 B: 请大家一起来欣赏一段安全视频——《应急安全演示动画》(示:一:安全视频) 三、听故事: A: 看完这段视频,大家有什么感受呢?(约2个同学回答)同学们都说的很好! B: 生命是美丽却又娇弱,我们应好好珍惜,不要让它过早地凋。A: 生命,没有安全,就没有幸福!没有安全,就没有未来!B: 让我们时时重视安全,处处遵章守纪。请听故事《凋的花朵》(示:二:故事) 四、找隐患 A: 人最宝贵的是生命,生命对每一个人来说都只有一次。B: 安全事故的发生,是多方面的,但大部分是因为缺乏安全常识,忽视安全隐患。 A: 有些人是因为不知道危险,没有意识到,或心存侥幸,认为不可能有危险,结果导致安全事故的发生。 B: 不安全的因素就在我们的周围,对危险缺少应有的警觉和预防,就有可能发生很多意想不到的事故。 A: 大家能说说我们身边会有哪些危险出现?(同学答后,并追

标准物质GBWGBWEBWGSB的区别

标准物质GBW、GBW(E)、BW、GSB的区别 1 概述 在国际上标准物质和标准样品英文名称均为“Reference Materials”,由 ISO/REMCO组织负责这一工作。在我国计量系统将“Reference Materials”叫为“标准物质”,而标准化系统叫为“标准样品”。实际上二者有很多相同之处,同时也有一些微小差异(见表1)。 CAS号(CAS Registry Number或称CAS Number, CAS Rn, CAS #),又称CAS登录号,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。美国化学会的下设组织化学文摘服务社 (Chemical Abstracts Service, CAS)负责为每一种出现在文献中的物质分配一个CAS号,其目的是为了避免化学物质有多种名称的麻烦,使数据库的检索更为方便。 2 标准物质的分类与分级 2.1 标准物质的分类 根据中华人民共和国计量法的子法—标准物质管理办法(1987年7月10日国家计量局发布)中第二条之规定:用于统一量值的标准物质,包括化学成分标准物质、物理特性与物理化学特性测量标准物质和工程技术特性测量标准物质。按其标准物质的属性和应用领域可分成十三大类, 2.2 标准物质的分级 我国将标准物质分为一级与二级,它们都符合“有证标准物质”的定义。 2.2.1 一级标准物质

一级标准物质又称国家一级标准物质,是由国家权威机构审定的标准物质。例如,美国国家标准局的SRM标准物质,英国的BAS标准物质,联邦德国的BAM标准物质,我国的GBW标准物质等。一级标准物质一般用绝对测量法或其它准确可靠的方法确定物质的含量,准确定为本国最高水平。我国国家技术监督局规定的国家一级标准物质应具备的基本条件为:①用绝对测量法或两种以上不同原理的准确可靠的测量方法进行定值,也可由多个实验室用准确可靠的方法协作定值;②定值的准确度应具有国内最高水平;③应具有国家统一编号的标准物质证书;④稳定时间应在1年以上;⑤均匀性应保证在定值的精度范围内; ⑥具有规定的合格包装形式。一般说来,一级标准物质应具有0.3-1%的准确度。一级标准物质由国务院计量行政部门批准、颁布并授权生产,它的代号是以国家级标准物质的汉语拼音中“Guo”“Biao”“Wu”三个字的字头“GBW”表示。 2.2.2 二级标准物质 二级标准物质是用与一级标准物质进行比较测量的方法或一级标准物质的定值方法定值,其不确定度和均匀性未达到一级标准物质的水平,稳定性在半年以上,能满足一般测量的需要,包装形式符合标准物质技术规范的要求。二级标准物质由国务院计量行政部门批准、颁布并授权生产,它的代号是以国家级标准物质的汉语拼音中“Guo”“Biao”“Wu”三个字的字头“GBW”加上二级的汉语拼音中“Er”字的字头“E”并以小括号括起来――GBW(E)。 GBW和GBW(E)是总局批准的国家级标准物质,属于有证标准物质。BW是中国计量院学报标准物质,未通过总局批准,没有取得有证标准物质号. 2.3 标准物质的编号 一种标准物质对应一个编号。当该标准物质停止生产或停止使用时,该编号不再用于其他标准物质,该标准物质恢复生产和使用仍启用原编号。 准物质目录编辑顺序一致)。第三位数是标准物质的小类号,每大类标准物质分为1-9个小类。第四-五位是同一小类标准物质中按审批的时间先后顺序排列的顺序号。最后一位是标准物质的产生批号,用英文小写字母表示,排于标准物质编号的最后一位,生产的第一批标准物质用a表示,第二批用b表示,批号顺序与英文字母顺序一致。GBW07101a超基性岩,表示地质类中岩石小类第一个批准的标准物质,首批产品。 如:GBW02102b铁黄铜,表示有色金属类中铜合金小类第二个批准的标准物质,第二批产品。 2.3.2 二级标准物质 二级标准物质的编号是以二级标准物质代号“GBW(E)”冠于编号前部,编号的前两位数是标准物质的大类号,第三、四、五、六位数为该大类标准物质的顺序号。生产批号同一级标准物质生产批号,如GBW(E)110007a表示煤炭石油成分分析和物理特性测量标准物质类的第7顺序号,第一批生产的煤炭物理性质和化学成分分析标准物质。 2.4 标准物质的分类编号 标准物质的分类编号,见表2。

五年级下册《生命.生态.安全系统》教案设计10725

1.化石的故事 教学目标: 1. 理解生命经历了漫长的进化过程。 2. 感受物种变化和生存环境的密切关系。 3. 引导学生关注生命的存在状态。 教学重点:生命的历史可以在一定程度上反映生存环境转变的历史,物种受生存环境的重要影响,或灭绝,或进化。 教学难点:物种更迭,但生命依然生生不息。 课时划分:2课时 教学过程: 1. 师:同学们你们喜欢看科幻片吗?你们看过《侏罗纪公园》吗?引导学生讨论。 2. 学生分组交流:我们看的电影里,恐龙为什么会复活? 3. 分组议一议:人们凭借什么直到恐龙的样子,还能够模拟出恐龙的声音? 二.新课 1.学生独立阅读教材“生命故事”部分后交流:知道了化石的哪些知识? 2.小组合作探究学习“生命探索”部分内容,交流:骨骼不断增生的怪鱼-----伍氏献文鱼。 3.了解“大山铺恐龙化石群遗址”相关知识。 4.学生阅读教材“生命加油站”的内容,交流科学家关于恐龙灭绝的多种假说,思考恐龙消失带给人类的启示。 5.近些年消失的十大物种。 6.思考与行动。

(1)什么原因导致这些物种消失?这样的结果是否可以避免? (2)说说你知道的环境恶化、极端气候、地质灾害,它们有可能是哪些原因造成的? (3)我们能够做什么? 7.化石故事知多少 (1)考古发现的最早的猿人化石距今大约多少年? (2)你还想知道哪些关于化石的故事? (3)如果将来有一天,假设我们掌握了必要的技术,能使那些已经从地球上消失的动物重新出现在我们的地球上,你最希望重新出现的动物是什么? 三.课外延伸 课后分组搜集有关化石的更多资料。 2.生命之谜 教学目标: 1. 了解人类对生命起源的探索历程,这一历程伴随了整个人类发展史。 2. 感受科学进步给人类生存带来的改变,增强对人类未来的信心。 3. 激发学生对生命之谜的探究热情,引导学生关注人类自身命运。 教学重点:在探究、探索活动中激发学生的求知热情,引导学生关注生命。 教学难点:通过生命探索的主要视角、观点、线索的呈现,体验实事求是的科学方法在研究生命之谜及人类生存方面的重要作用。

生命安全系统黄卡程序

生命安全系统黄卡程序 1.0 背景情况 黄卡用于: ?1、在执行生命安全系统相关工作时向保安发出警报。 ?2、提供跟踪机制来协助LSS技术员找到最近系统问题的位置。另外它作为准则有助于确保工作有序的计划。 2.0 相关人员 ?1、保安人员 ?2、生命安全系统维护技术员 ?3、在LSS系统上工作的承包商 3.0 黄卡的使用 ?1、任何在生命安全系统上或在生命安全系统警报器附近工作、测试,都要求一张已完成的黄卡。 ?2、可能引起LSS警报的操作也需黄卡,如清扫灰尘区,进行计划中防护维护程序,或在脏的区域中改过滤器。 4.0 黄卡申请过程 申请人应有: ?1、一张经批准的***,如适用。 ?2、从保安指挥中心取得一张黄卡。 ?3、按照卡背面的说明,完成黄卡。 ?4、在黄卡上附上***、工作计划。 ?5、向保安指挥中心亲自或传真递交黄卡。 ?6、保安指挥中心批准了黄卡才能开始工作。如亲自递交黄卡,保安指挥中心当场说明是否批准。如用传真递交需打电话以取得批准。如保安指挥中心非常繁忙,保安指挥中心可延迟批准直到处理完紧急事件。延迟批准的决定完全由保安指挥中心来判定。 4.1 黄卡的停止使用 ?1、工作完成时,必须停止使用黄卡。可亲自签名停止使用黄卡或电话通知保安控制中心. ?2、证实所有受影响的区域都恢复正常. ?3、在最终停用黄卡前,所有黄卡区域应一切正常 ?4、任何无黄卡的系统问题应向当班的LSS技术员汇报. 系统上有文件中未指明的问题,不得停用黄卡。 4.2 将黄卡存档 ?保安将黄卡存档. 4.3 补充黄卡储备 ?1、可在保安指挥中心处领取空白黄卡. ?2、黄卡作为一般的办公室用品,可以领取. 5.0 例外 ?1、一般情况下,本程序无例外,黄卡是强制性。 ?2、黄卡无需附件,如清扫灰尘区,更换脏的过滤器等. 6.0 修改程序 ?修改程序的建议应发送给LSS负责人. 7.0 修改通知 ?LSS现负责的本程序如有任何修改,应通知下列人员: 保安管理人员 现场***负责人

标准物质标准样品概述

标准物质/标准样品概述 1.定义简述:标准物质/标准样品是具有准确量值的测量标准,它在化学测量,生物测量,工程测量与物理测量领域得到了广泛的应用。按照“国际通用计量学基本术语”和“国际标准化组织指南30”标准物质定义: (1) 标准物质(Reference Material,RM)具有一种或多种足够均匀和很好确定了的特性值,用以校准设备,评价测量方法或给材料赋值的材料或物质。 (2) 有证标准物质(Certified Reference Material CRM)附有证书的标准物质,其一种或多种特性值用建立了溯源性的程序确定,使之可溯源到准确复现的用于表示该特性值的计量单位,而且每个标准值都附有给定置信水平的不确定度。 (3) 基准标准物质(Primary Reference Material PRM) 2.标准物质/标准样品的用途简述 (1) 校准仪器:常用的光谱、色谱等仪器在使用前需要使用标准物质对仪器进行检定,检查仪器的各项指标,如灵敏度、分辨率、稳定性等是否达到要求。在使用时用标准物质绘制标准曲线校准仪器,测试过程中修正分析结果。 (2) 评价方法:用标准物质考察一些分析方法的可靠性。 (3) 质量控制:分析过程中同时分析控制样品,通过控制样品的分析结果考察操作过程的正确性 3.标准物质/标准样品分类简述: (1) 化学标样:形态:屑状;销售状态:单瓶销售;用途:用于化学方法分析,例如:CS分析仪,湿法化学分析。 (2) 光谱套标标样:形态:块状;销售状态:成套销售(多以5块或5块以上作为一套标样);用途:用于光谱仪器工作曲线的建立。又称仪器标准化标样。 (3) 光谱高低标标样:形态:块状;销售状态:成套销售(多以2块或3块作为一套标样);用途:在光谱仪开机后,使用工作曲线之前,对工作曲线的飘移进行校正,保证工作曲线的工作状态。国外对于这种类似作用的标样成为:SUS标准样品,SUS标样特点是成分均匀稳定,但不做精确定值,不建议使用在单点校正方面,只用于仪器工作曲线飘移的校正。 (4) 光谱单块校正标样:形态:块状;销售状态:单块出售;用途:在工作曲线校正完成的前提下,针对某一种未知产品成分进行校正,又称仪器类型标准化标样。 4.标样牌号与标样编号及成分的关系 牌号:代表某一类产品的名字,是一个成分范围,每个牌号都有其对应的成分范围,在这个成分牌号下面有许多标样。 标样编号:是标样的名字,标样编号与每一个标样是一一对应的。

成人基本生命支持(BLS)

成人基本生命支持(B L S ) 中中山山大大学学附附属属第第二二医医院院急急诊诊科科 王王彤彤 生存链的概念 ? 第一个环节:早期启动EMSS (120) ? 第二个环节:早期心肺复苏 ? 第三个环节:早期除颤 ? 第四个环节:早期高级生命支持 基本生命支持(BLS )适应证 ? 呼吸骤停的原因:很多原因可造成呼吸骤停,包括溺水、卒中、气道异物阻塞、吸入烟雾、会厌炎、药物过量、电击伤、窒息、创伤、心肌梗死、电击伤以及各种原因引起的昏迷。 ? 心跳骤停的原因:急性心肌梗死、严重的心律失常如室颤、重型颅脑损伤、心脏或大血管破裂引起的大失血、药物或毒物中毒、严重的电解质紊乱如高血钾或低血钾等 BLS 的程序 ? 判断、启动急救医疗服务(EMS )系统,心肺复苏(CPR )中的ABC 和―D‖(除颤) ? CPR 中A 、B 、C 每一步代表了气道、通气和循环 ? 如果只有一名急救者,首先需要判断患者有无反应、呼吸和循环体征。如果发现无任何反应,应首先求救EMS 系统,即尽快启动EMS 系统。如果有2名急救者,一名立即实施CPR ,另一名快速求救 ? 判断患者反应:可采取轻拍或摇动患者,并大声呼叫:―您怎么了‖。 ? 启动EMS 系统:

–(1 )位置 –(2 )电话号码 –(3 )发生什么事件 –(4 )所需急救的人数 –(5 )患者一般情况 –(6 )已经给予患者何种急救措施 ?气道:应判断患者有无呼吸或通气是否充分时,应使患者取仰卧位,并打开气道。 ?患者的体位:仰卧在坚固的平(地)面上,如果患者面朝下时,应把患者整体翻转,即头、肩、躯干同时转动,避免躯干扭曲,头、颈部应与躯干始终保持在同一个轴面上。 ?急救者的位置:经过训练的急救者应位于患者一侧,或两人分为两侧,适于急救时人工通气和胸外按压,急救人员应携带AED到场,或准备一有AED即行电除颤。 ?开放气道:如无颈部创伤,可以采用仰头抬颏法开放气道,如有颈部外伤,则用托颌法 ?仰头抬颏法:为完成仰头动作,应把一只手放在患者前额,用手掌把额头用力向后推,使头部向后仰,另一只手的手指放在下颏骨处,向上抬颏,使牙关紧闭,下颏向上抬动。勿用力压迫下颌部软组织,否则有可能造成气道梗阻,避免用拇指抬下颌。开放气道后有助于患者自主呼吸,也便于CPR 时口对口呼吸。 ?托颌法:把手放置在患者头部两侧,肘部支撑在患者躺的平面上,握紧下颌角,用力向上托下颌。如患者紧闭双唇,可用拇指把口唇分开。如果需要行口对口呼吸,则将下颌持续

国家实用标准物质技术要求规范

国家药品标准物质技术规 第一章总则 第一条为保证国家药品标准物质的质量,规药品标准物质的研制工作,根据《国家药品标准物质管理办法》,制定本技术规。 第二条本技术规适用于中国食品药品检定研究院(以下简称中检院)研究、制备、标定、审核、供应的国家药品标准物质。 第三条国家药品标准物质系指供药品质量标准中理化测试及生物方法试验用,具有确定特性,用以校准设备、评价测量方法或给供试药品定性或赋值的物质。 (一)理化检测用国家药品标准物质系指用于药品质量标准中物理和化学测试用,具有确定特性,用以鉴别、检查、含量测定、校准设备的对照品,按用途分为下列四类: 1. 含量测定用化学对照品:系指具有确定的量值,用于测定药品中特定成分含量的标准物质。 2. 鉴别或杂质检查用化学对照品:系指具有特定化学性质,用于鉴别或确定药品某些特定成分的标准物质。 3. 对照药材/对照提取物:系指用于鉴别中药材或中成药中某一类成分或组分的对照物质。 4. 校正仪器/系统适用性试验用对照品:系指具有特定

化学性质用于校正检测仪器或供系统适用性实验用的标准物质。 (二)生物检测用国家药品标准物质系指用于生物制品效价、活性、含量测定或其特性鉴别、检查的生物标准品或生物参考物质,可分为生物标准品和生物参考品。 1.生物标准品系指用国际生物标准品标定的,或由我国自行研制的(尚无国际生物标准品者)用于定量测定某一制品效价或毒性的标准物质,其生物学活性以国际单位(IU)或以单位(U)表示。 2.生物参考品系指用国际生物参考品标定的,或由我国自行研制的(尚无国际生物参考品者)用于微生物(或其产物)的定性鉴定或疾病诊断的生物试剂、生物材料或特异性抗血清;或指用于定量检测某些制品的生物效价的参考物质,如用于麻疹活疫苗滴度或类毒素絮状单位测定的参考品,其效价以特定活性单位表示,不以国际单位(IU)表示。 第二章国家药品标准物质的制备 第四条在建立新的国家药品标准物质时,研制部门应提交研制申请,标准物质管理处负责评估研制的必要性。新增标准物质应遵循适用性、代表性与易获得性的原则,研制申请获得批准后研制部门方可进行制备与标定。 第五条除特殊情况外,理化检测用国家药品标准物质

四年级生命安全系统教育教案设计第三单元吃出健康来

第三单元吃出健康来 8、冰箱不是保险箱 一、教学目标 (一)情感态度培养 了解在冰箱久存的食物会滋生有害细菌,学会正确食用冰箱中食物的方法。 (二)行为技能训练 了解在冰箱久存的食物会滋生有害细菌,学会正确食用冰箱中食物的方法。 (三)知识经验积累 有食用冰箱中食物的安全意识。 二、教学重点 了解在冰箱久存的食物会滋生有害细菌,学会正确食用冰箱中食物的方法。 三、教学难点 初步了解在冰箱中存放食物的方法以及不同食物的存放时限。四、教学方法 讲故事图文介绍读背歌谣组织演练 五、教学准备 教师搜集有关资料,制作多媒体课件。 六、教学过程 (一)导入新课 同学们,冰箱是我们生活中的好帮手,能让食物保存的时间更长。可是,你知道吗?冰箱里还有一群“活跃分子”,它们依附在食物上,处理不好,会给你的身体造成很大伤害哟! 苹苹同学就遇到过这样的情况呢,我们一起去了解了解吧! (二)读议案例警示 1、学生默读故事,思考:故事中苹苹奶奶的做法对吗?为什么? 2、学生讨论回答,明确:不对,因为冰箱里的食物是有保鲜期的,食用了变质食物会给身体带来伤害,要定期清理过期食物。 (三)学习安全讲堂和安全常识

1、同学们,冰箱中存在一类不怕冻的细菌,如果食用了被细菌感染,而又未经彻底加热的食品,容易引起食物中毒。 2、说一说:应该怎样正确食用冰箱中的食物?(指名学生回答) 3、学生交流后明确:第一幅图告诉我们要定期清理冰箱中的过期食物,第二幅图告诉我们冰箱需定期消毒。 4、读读“食物存放有窍门”,说一说应该怎样在冰箱中存放食物?存放的时限是多长? 小结:同学们,我们只有做到了这些,才能保证身体的健康。(四)诵读安全口诀 1、指名学生读。 2、学生自由读一读,比赛背一背。 3、检查学生背诵情况。 4、学生边拍手边按节奏齐背。 七、情境体验 1、查一查 (1)了解一下家里平时购买食物的习惯,观察是否有买回很多食物吃不完,剩下的全放进冰箱的现象。 (2)检查一下冰箱里的食物是否塞得过满,是否袋装,是否超过时间。 2、做一做 (1)按照学到的相关知识,和妈妈一起清理掉冰箱中的变质食品,最好把冷藏室中超过3天,冷冻室中超过3个月的食品都清理掉。 (2)给冰箱来一次大扫除。用干净的抹布擦掉冰箱的污垢和积水,把多余的冰铲掉。 (3)把食物按照生、熟分类存放。 (4)给爸爸妈妈讲一讲学到的新知识。 3、辨一辨 (1)奶奶这样做好吗?为什么? (2)安安的父母的提醒有道理吗?为什么? (3)乐乐的妈妈的做法对吗?如果你是乐乐,会向妈妈提什么建议呢?

高级生命支持

高级生命支持 1 高级生命支持心肺复苏分三阶段,第一阶段是基本生命支持阶段(Basic Life Support,BLS),指施救者在院前没有仪器设备的情况下,通常使用心肺复苏术(cardiopulmonary resuscitation,CPR)为患者进行抢救;第二阶段是高级生命支持(Advanced Cardiac Life Support, ACLS)是指患者从现场转入医院或者急救车,急救中心的医务人员到达现场,由医务人员接手后进行的生命支持。病人的自主循环恢复后进入心肺复苏的第三个阶段,后续生命支持(Prolonged Life Support, PLS),主要是脑复苏,和脏器功能支持的后续阶段。把心肺复苏成功的四个关键环节称为生存链:第一,早呼救(120、999) 激活急诊医疗服务(EMS)系统或急诊医疗反应系统;第二,早心肺复苏(CPR)按照ABCD进行,越早CPR存活率越高;第三,早电除颤;第四,早高级生命支持(ACLS )一、高级生命支持概述高级心脏生命支持指通过运用辅助设备和特殊技术以维持更 有效的血液循环和通气,尽最大努力恢复患者的自主心跳与呼吸。主要内容是供氧、建立人工气道,建立给药通道,应用复苏药物,人工电除颤、电复律、起搏等。高级生命支持ABCD各代表,A(Airway):高级气道;B(Breathing):维持呼吸;C(Circulation):维持循环;D(Differential Diagnosis ):鉴

别诊断。二、建立人工高级气道(一)高级气道高级气道是与一些简单气道比较而言的,如球囊面罩。而高级气道包括:食道-气管联合导管,喉罩,气管插管。根据情况选用不同的设施,一般常用气管插管途径。但是,困难气道或一些医务人员未经良好的气管插管训练,可以选用食道-气管联合导管,喉罩操作来建立与气管插管效果相当的高级气道。1、食道-气管联合导管食道-气管联合导管有两个不同的腔,一个是食管腔,一个是气管腔,两个腔可以盲插,盲插到气道里,就用气道的这个腔通气,盲插到食管里,就封闭这个气道,气体就直接进入气道里。经过简单的训练就可以使用,易操作。2、喉罩喉罩与面罩相比,喉罩气道提供了一种更为 安全和可靠的通气方式。尽管喉罩不能完全确保没有误吸,但是研究表明,与面罩球囊相比,喉罩气道发生反流的几率较少,误吸很少发生。与气管内导管相比较,喉罩具有着相同的通气效能。据报道,通气成功率达71.5%~97%。训练置入及使用喉罩气道较气管内插管简单,因为置入喉罩不需要应用喉镜并直视声带。喉罩气道可应用于部分不能应用气管内导管的患者,因此具有更多的优势。它可以应用于颈部损伤的患者,以及气管内插管不能达到合适位置的患者。3、经口气管插管气管插管与食道-气管联合导管和喉罩相比需要一定的技术,必须经过严格的训练,熟练的操作才可进行气管插管。需要用喉镜从口腔入会咽,挑起会咽明视下看到

生命安全系统与救援-网课问题详解

如果没找到答案,请关注公众号:音速校园。免费搜题!!! 1. 单选题下面哪两种属于上升器?()(1.0分) 没搜到哦~ 2. 单选题常用的止血带止血法是( )。(1.0分) 以上都是 3. 单选题止血带应该扎在出血伤口的( )部位。(1.0分) 靠近伤口的近端 4. 单选题在进行三角巾膝部包扎时,应先将三角巾折成( )。(1.0分)宽带 5. 单选题三角巾的风帽式包扎适用于( )的包扎。(1.0分) 头部两侧出血 6. 单选题连续使用止血带( )分钟,要放松一次。(1.0分) 60 7. 单选题在遇到紧急情况时,我们在及时拨打急救时,需要注意的是( )。(1.0分) 确保最正确 8. 单选题在对伤者进行口对口的呼吸时,最好给他的持续时间不少于()。(1.0分) 1秒 9. 单选题可用于手指或头部的包扎法是( )。(1.0分) 回返形包扎法

10. 单选题在常温下缺氧多长时间会使人呼吸停止?( )(1.0分) 30秒 11. 单选题在常温下缺氧多长时间会使人呼吸停止?( )(1.0分) 30秒 12. 单选题救助者给病人做心肺复时,最好在伤者的( )。(1.0分) 身体左边 13. 单选题没有正确描述户外外宿规定的一项是()。(1.0分) 进帐篷休息时将鞋子鞋尖朝摆放好 14. 单选题下面选项中,不是正确描述平结的是()。(1.0分) 用在与粗细不同、质地各异的绳子连结上 15. 单选题下面哪一项不包括中暑的类型?()(1.0分) 热烧伤 16. 单选题下面选项中,错误描述运动前的准备活动的一项是()。(1.0分)准备活动做完后马上开始运动 17. 单选题在上臂的中下1/3处,扎止血带会损伤( )。(1.0分) 桡神经 18. 单选题下面哪一种包扎方法是手骨折时应该采取的?()(1.0分) 小手挂 19. 单选题应对火灾时,以下哪一个做法是正确的方法?()(1.0分) 控制可燃物 20. 单选题如果想正确解酒,不能用以下哪一种食物?()(1.0分) 咖啡因

生命支持系统——医院集中供气系统的发展趋势

生命支持系统——医院集中供气系统的发展趋势 摘要:生命支持系统对保障医院安全性具有重要意义,虽然这些专业技术措施 的选用会进一步增加造价成本,但是随着流行性疾病种类和发病率的上升,已经 让很多医院管理者和政府各级领导者充分认识到:对于保障社会职能和救治生命 的医院建筑来讲,完备的技术措施在关键时刻所起到的作用也是那些可有可无的 奢侈品不能衡量的。本文首先分析了生命支持系统的概念,其次分析了生命支持 系统的发展历史,而后就其在全球的应用、生命系统的相关细则进行分析,希望 具有一定参考价值。 关键词:生命支持系统;医院集中供气系统;发展趋势;分析 随着医疗技术的不断发展,医院规模的不断扩大,各种医学诊疗技术也需要 运用医用气体给予支持,这也让医院的集中供气系统成为了医院重要的支持系统。就目前情况来看,我国改扩建和新建的医院数量显著增加,对其设计也越来越重视,但是针对医院生命支持系统(医用气体)的建设还依然处在相对落后的阶段,加上缺少相应的规范性指导,导致医院生命支持系统在制造、施工、测试验收等 各个方面依然存在一定问题[1]。在现代医院的建设过程中,应该充分考虑合理、 安全、科学的医护理念,一套完整的医疗气体集中系统包括系统化的维护、操作、验收、安装以及设计,它不仅可以全面提升医院系统的整体水平,还可以为广大 患者提供更加优质的服务。 一、生命支持系统的概念 生命支持系统以无生命的自然界为一方,包括岩石、土壤、水、大气、地热能、太阳能以及由它们相互作用所形成的条件、组合环境、中间产物以及生成物,将有机界为一方,包括人类社会、微生物、动物以及植物,二者相互渗透的共存、相互影响和依赖,协调、对立、转化、相克等的耦合关系,共同组成了生命支持 系统的基本框架[2]。 就医院来讲,生命支持系统就像是其整体的血管和心脏,起着非常重要的生 命支持作用。从气体机房到各个科室,此系统为医院的各项诊疗技术提供了必需 的医用气体,在整个医疗系统中处于核心地位,虽然与现有的医院集中系统相类似,但却不完全等同,它是经过相关专业标准规范之后的、系统化、整体化以及 标准化的医用管道系统[3]。 生命支持系统崇尚安全、合理和科学的医护理念,作为为医院提供的一套完 整的医疗气体集中供给的解决方案,旨在全面提升医院的整体水平。它不仅在是 医疗环境工程的一个重要组成部分,更处于核心地位。 二、生命支持系统的发展历史 生命支持系统的雏形于上个世纪的七十年代所产生。英国卫生部在1972年5 月首次颁布了HTM卫生技术备忘录—一套医疗其一设计标准指南,医疗气体的设计规范也由此产生而来。随着时间的推移,该设计标准指南也在不断完善、充实 和改进,从设计的规范化发展逐渐到运行、材质和安装等方面的规范化发展[4]。 一直到1994年4月,英国国家卫生服务部联合本行业的专家才对此标准进行了 最全面和系统的修订完善工作,在全世界中得到了广泛应用[5]。与此同时,世界 上其他国家也依据自身的需求和特点,分别制定出了更加符合自身实际情况的各 种医疗气体管道标准,其中HTM标准和美国的NFPA标准使世界上的两大主流标准。 三、生命支持系统在全球内的具体应用

标准物质特性

标准物质的特性 标准物质最主要的是三大基本特性:均匀性、稳定性、溯源性构成了标准物质三个基本要素,其具体特性有: 1.量具作用:标准物质可以作为标准计量的量具,进行化学计量的 量值传递。 2.特性量值的复现性:每一种标准物质都具有一定的化学成分或物 理特性,保存和复现这些特性量值与物理的性质有关,与物质的数量和形状无关。 3.自身的消耗性:标准物质不同于技术标准、计量器具,是实物标 准,在进行比对和量值传递过程中要逐渐消耗。 4.标准物质品种多:物质的多种性和化学测量过程中的复杂性决定 了标准物质品种多,就冶金标准物质就达几百种,同一种元素的组分就可跨越几个数量级。 5.比对性:标准物质大多采用绝对法比对标准值,常采用几个、十 几个实验室共同比对的方法来确定标准物质的标准值。高一级标准物质可以作为低一级标准物质的比对参照物,标准物质都是作为“比对参照物”发挥其标准的作用。 6.特定的管理要求:标准物质其种类不同,对储存、运输、保管和 使用都有不同的特点要求,才能保证标准物质的标准作用和标准值的准确度,否则就会降低和失去标准物质的标准作用。 7.可溯源性:其溯源性是通过具有规定的不确定度的连续比较链, 使得测量结果或标准的量值能够与规定的参考基准,通常是国家

基准或国际基准联系起来的特性,标准物质作为实现准确一致的测量标准,在实际测量中,用不同级别的标准物质,按准确度由低到高逐级进行量值追溯,直到国际基本单位,这一过程称为量值的“溯源过程”。反之,从国际基本单位逐级由高到低进行量值传递,至实际工作中的现场应用,这一过程称为量值的“传递过程”。通过标准物质进行量值的传递和追溯,构成了一个完整的量值传递和溯源体系。

人教版五年级上册生态生命安全系统教案设计

教学计划及进度表 一、教学目标: 1、了解人类性别形成的生理基础,形成尊重生命个体差异的观念。 2、了解生命的价值,体会生命的独特与珍贵,正确面对死亡。 3、帮助学生树立安全生活的意识。 4、培养学生保护生态环境,珍爱生命的绿色意识。 5、提高儿童健康的生活意识。 二、教学措施: 1、凸显“体验性学习”,利用好教材,以个体经验为载体,以活动为中介,精心设计活动,通过多种方式丰富活动的多样性,促进学生达到自我认识、自我成长。 2、树立正确的教材观。在教材中结合学生的实际,对教材进行二度开发。使用身边发生的鲜活案例,使教材内容与学生的生活实际、经历、阅历以及他们的心理发展相吻合。 3、开展多元化、发展性的评价。除选用书面形式的测验外,增加调查、探索、实验、讨论、服务、辨别、创造、表现等丰富多彩的评价方式,重视学生的自评和互评以及老师、家长的综合评价等。

教学计划及进度表 一、教学目标: 1、了解人类性别形成的生理基础,形成尊重生命个体差异的观念。 2、了解生命的价值,体会生命的独特与珍贵,正确面对死亡。 3、帮助学生树立安全生活的意识。 4、培养学生保护生态环境,珍爱生命的绿色意识。 5、提高儿童健康的生活意识。 二、教学措施: 1、凸显“体验性学习”,利用好教材,以个体经验为载体,以活动为中介,精心设计活动,通过多种方式丰富活动的多样性,促进学生达到自我认识、自我成长。 2、树立正确的教材观。在教材中结合学生的实际,对教材进行二度开发。使用身边发生的鲜活案例,使教材内容与学生的生活实际、经历、阅历以及他们的心理发展相吻合。 3、开展多元化、发展性的评价。除选用书面形式的测验外,增加调查、探索、实验、讨论、服务、辨别、创造、表现等丰富多彩的评价方式,重视学生的自评和互评以及老师、家长的综合评价等。

标准物质的申报

标准物质研制报告编写规则 1. 范围 本规范规定了国家标准物质研制报告的编写要求、内容和格式,适用于申报国家一级、二级标准物质定级评审的研制报告。 2. 引用文献 JJF1005-2005《标准物质常用术语及定义》 JJG1006-1994《一级标准物质技术规范》 JJF1071-2000 《国家计量校准规范编写规则》 使用本规范时,应注意使用上述引用文献的现行有效版本。 3. 术语和定义 3.1 标准物质(RM)Reference material (RM) 具有一种或多种足够均匀和很好地确定了的特性,用以校准测量装置、评价测量方法或给材料赋值的一种材料或物质。 3.2 有证标准物质(CRM)Certified reference material (CRM) 附有证书的标准物质,其一种或多种特性量值用建立了溯源性的程序确定,使之可溯源到准确复现的表示该特性值的测量单位,每一种鉴定的特性量值都附有给定置信水平的不确定度。 注:在我国,有证标准物质必须经过国家计量行政部门的审批、颁布。 3.3 定值Characterization 对与标准物质预期用途有关的一个或多个物理、化学、生物或工程技术等方面的特性量值的测定。 3.4 均匀性Homogeneity 与物质的一种或多种特性相关的具有相同结构或组成的状态。通过测量取自不同包装单元(如:瓶、包等)或取自同一包装单元的、特定大小的样品,测量结果落在规定不确定度范围内,则可认为标准物质对指定的特性量是均匀的。 3.5 稳定性Stability 在特定的时间范围和贮存条件下,标准物质的特性量值保持在规定范围内的能力。 3.6 溯源性Traceability 通过一条具有规定不确定度的不间断的比较链,使测量结果或测量标准的值能够与规定的参考标准,通常是与国家测量标准或国际测量标准联系起来的特性。 4. 报告编写要求 4.1一般要求 标准物质研制报告(以下简称“报告”)是描述标准物质研制的全过程,并评价结果的重要技术文件,在标准物质的定级评审时,作为技术依据提交给相关评审机构,因此,报告应提供标准物质研制过程和数据分析的充分信息。 研制者应将研制工作中采用的方法、技术路线和创造性工作体现在报告中,写出研制的特色。 报告应作为标准物质研究的重要技术档案保存。 4.1.1报告的内容应科学、完整、易读及数据准确。

人教版八年级下生命生态安全系统教案设计

实用文档 第一课读书须得法 一、导入: 同学们,随着你们年纪越长越大,你们读的书也越来越多,你们的亲人、老师、同学、朋友……他们爱读书吗?对于读书,你有哪些经验与我们分享呢?今天,我们学习第一课《读书须得法》。 二、讲授新课:同学们会发现,不论哪个集体,都会有特别爱看书的人,我们班也不例外。现在我们就来进行一个选举,看看谁是我们班“看过书最多的人”;分小组投票,选出你认为班里看书最多的2-3位同学;说说为什么他(她)们最受欢迎。(学生讨论、发言,在发言过程中提到的一些关键词,教师应及时写成副板书以给学生较深刻的印象。)这些同学是我们班最受欢迎的人,但有些同学会想,为什么我不能当选?别人能众星拱月,为什么我却不能成为主角?老师相信,这些烦恼大部分同学都有;不过,大家不用着急,马上就有机会恼说出来—— 分小组讨论,并且每个小组派出一名小记者向老师采访,在采访之前,把采访内容设置成一些小问题,采访回来再把材料整理整理,向大家汇报。(活动、老师点评)多读书,注意方法,就可以使你的朋友越来越多。老师送给大家十句话,如果能在你的交往活动过程中用上,那么你就会发现,你越来越受大家欢迎。把自己最喜欢的关于读书的座右铭写出来,然后跟同学们分享。 这节课我们通过活动学到了一些读书的方法。学习的方法很多,象平时大家上网,也是一种学习。这里老师给大家几个网址,希望同学们有空的时候上去看看。三、布置作业:1、谈收获: 2、见书上习题。 3、享受亲情 实用文档 第二课有效应对挫折 一、导学要求: 学生了解青春期的生理、心理知识,掌握最基本的青春期健康卫生常识,帮助学生形成健康的道德观念,有效应对挫折。 二、导学重点:青春期的健康生理、心理和道德观念及怎么有效应对错挫折。 三、导学准备:、录像带。 四、导学课时:一课时。 五、导学过程: (一)、导入新课:

相关文档