文档库 最新最全的文档下载
当前位置:文档库 › 小波分析作业

小波分析作业

小波分析作业
小波分析作业

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波的几个术语及常见的小波基介绍

小波的几个术语及常见的小波基介绍 本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。 一、小波基选择标准 小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。现实中到底选择使用哪一种小波的标准一般有以下几点: 1、支撑长度 小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。 这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。 2、对称性 具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。 3、消失矩 在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。消失矩越大,就使更多的小波系数为零。但在一般情况下,消失矩越高,支撑长度也越长。所以在支撑长度和消失矩上,我们必须要折衷处理。

基于小波变换的图像分割的研究

摘要 近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。 图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时--频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。 关键词:图像分割;小波变换;阈值;

Abstract In recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. It combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications. There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction between real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we can see the different segmentation results of different segmentation methods, in order to better understand these methods. Key words:Image; Wavelet transform; Threshold

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

小波分析结课论文

小波分析结课论文 基于正交滤波器组的Daubechies 小波设计及Quartus ll 仿真 1.非平稳信号的局部变换 信号s(t)和其频谱S(w)构成Fourier 变换对,由于Fourier 变换或反变换都属于全局变换,不能告知某种频率分量发生在那些时间内,因此用来不能描述信号的局部统计特性。对于非平稳信号s(t),应该采用局部变换来描述其随时间变化的统计特性。并且信号的局部性能需要使用时域和频域是我二维联合表示,才能精确描述。 1.1用内积构造信号变换 任何一种信号变换都可以写成该信号与某个选定的核函数之间的内积,因此可以用下面两种基本形式来构造。 信号s(t)的局部变换 = <取信号s(t)的局部,核函数无穷长> 或 信号s(t)的局部变换 = <取信号s(t)的全部,核函数局域化> 1.2小波变换 1.2.1选用小波变换的原因 三个信号局部变换的典型例子是短时Fourier 变换、Gabor 变换、小波变换,它们都是时频信号分析的线性变换。而短时Fourier 变换和Gabor 变换都属于“加窗Fourier 变换”,都以固定的滑动窗对信号进行分析,可以表征信号的局部频率特性。显然,这种时域固定等宽的滑动窗处理并不是对所有的信号都合适。因为有较多的自然界信号在低频端应具有很高的频率分辨率,在高频端的频率分辨率可以比较低。而从不相容原理的角度看,这类信号的高频分量应该具有高的时间分辨率,低频分量应该具有低的时间分辨率。对这类非平稳信号的线性时频分析,应该在时频平面的不同位置具有不同的分辨率,小波变换就是这样一种多分辨(率)分析方法,其目的是既见森林——信号概貌,又见树木——信号细节,所以,小波分析被称为数学显微镜。 1.2.2连续小波变换的定义及参数含义 平方可积分函数s(t)的连续小波变换定义为 (,)()*( )(),()s ab t b W T a b s t dt s t t a ψψ∞ -= =??? , a > 0

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波分析理论简介

小波分析理论简介 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数 )(t f ,都可以用三角级数表示: )(t f = ∑∞ -∞=k ikt k e C = 20 a + ∑∞=1cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21 ? -π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= )(k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: )(t f =2 0a + )sin cos (12 1∑-=+N k k k k k t b t a ωω+t a N N 2 2cos 21 ω=∑-=1 0N k t i k k e C ω (4) 其中 ∑-== 1 02cos 2 N m m k N km x N a π ,=k 0,1,2,…,2N (5) ∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ? ∞ ∞ --= dt e t f f t i ωω)()( =t i e f ω, (9) ωωπ ωd e f t f t i )(21 )(? ∞ ∞ -= (10)

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

小波分析学习心得

小波分析学习心得 学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。 我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。 窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时

近代数学小波计算题答案

2.计算下列分形维数: (1)康托尔集合(the Cantor set) l o g l o g2 0.631 l o g l o g3 s m D c =-=≈ (2)科赫曲线(Koch) log4 1.262 log3 s D=-≈ (3)谢尔平斯基(Sierpinski)地毯、垫片、海绵 地毯: log log8 1.893 log log3 f D β κ ==≈ 垫片: log log3 1.585 log log2 f D β κ ==≈ 海绵: log log20 2.763 log log3 f D β κ ==≈ (4)阿波罗尼斯垫圆: 解:不在此圆内部的点形成一个面积为零的集合,可以说它多于一条线但少于一个面,因此它的分形维数 (5)皮亚诺曲线: log ln9 2 1ln3 log() s N D β === 1.求按下列各图所示方法生成的分形图的分维 初始元: 生成元: (a)(b)(c) (a) log ln8 1.5 1ln4 log() s N D β ==≈ (b) log ln5 1.465 1ln3 log() s N D β ==≈ (c) log ln5 1.465 1ln3 log() s N D β ==≈

2、计算康托尔三分集相似维、Hausdorff 维 解:相似维:log ln 2 0.63111log()ln 3s N D β= =≈ Hausdorff 维:log log 20.631log log 3 f D βκ= =≈ 3、计算不规则分形盒维数(只计算右下端) ε=1/10 ()N ε=N(1/10) ()ln ln 54ln 54 1.732 1ln ln10ln 10B N D εε=- =-=≈

信号处理结课论文与作业

数字信号处理技术在电力系统中的发展现状和趋势 摘要:为了适应现代电力系统的要求,先进的数字信号处理技术被应 用到电力系统中,充分发挥了其快速强大的运算和处理能力以及并行 运行的能力,满足了电力系统监控的实时性和处理算法的复杂性等更 高的要求。本文首先简要介绍了电力系统和数字信号处理技术;然后 详细阐述了数字信号处理技术在电力系统中的应用,包括傅里叶变换、 小波变换、现代谱分析、相关分析、数学形态学,并介绍了数字信号 处理技术在电力系统应用中的现状和趋势。 关键词:数字信号处理,电力系统 Abstract: In order to meet the requirements of modern electric power system, the advanced digital signal processing technology is applied to the electric power system. this technology has gave full play to its fast computation and processing capacity and the ability to run in parallel, and it satisfies some higher requirements, such as the real time monitoring of electric power system and the complexity of handle algorithm. This article first briefly introduced the electric power system and digital signal processing technology; And then expounds the application of digital signal processing technology in power system, including Fourier transform, wavelet transform, the modern spectrum analysis, correlation analysis and mathematical morphology, and digital signal processing technology is introduced in the present situation and trend of power system applications. Keywords: digital signal processing, electric power system 1、引言 现代电力系统通过联网已经发展成供电区域辽阔和容量巨大的系统,作为国民经济发展的源动力,我国的电力系统正以空前的规模和速度扩大。随着互联电力系统的增长,尤其是长江三峡工程的崛起,超远距离输电的互联大电网的安全成为更加关心和突出的问题。电力系统是一个庞大的、瞬变的多输入输出的系统,为了保证其安全运行,需要实时地监视各节点的运行状况,及时发现电力系统的不正常状态及故障状态通知运行人员,或快速地进行控制和处理。这要求在电网各节点都要有数据采集单元,将测得的电力系统运行参数转化为数字量,进行分析和控制就地解决问题,或者通过远方通信送往调度中心进行处理。电力系统监视和控制的参数要求实时性较强,不仅包括频率、电压、

相关文档
相关文档 最新文档