文档库 最新最全的文档下载
当前位置:文档库 › 浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算
浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算

摘要:在清水池的结构设计中,抗浮设计往往成为制约结构设计的重要影响因素之一。本文简要介绍了清水池几种不同的抗浮设计方法,并结合工程实例予以详细计算。

关键词:清水池;抗浮设计;抗浮锚杆

Abstract: In the structural design of the clear water tank, anti-floating design often becomes one of the most important factors influencing structure design. This paper briefly introduces the anti-floating design method of water pool is different, and in combination with the project example to be calculated in detail.

Key words: clear water pool; anti-floating design;

anti-floating anchor

中图分类号:TU991.34+3文献标识码:A文章编号:

1、概述

清水池为储存水厂中净化后的清水,以调节水厂制水量与供水量之间的差额,并为满足加氯接触时间而设置的水池。同时,清水池还具有高峰供水低峰储水的功能。

因为清水池的储水作用,所以一般清水池的容积和面积较大,因此清水池抗浮设计往往成为制约结构设计的重要影响因素之一。

GB50069-2002《给水排水工程构筑物结构设计规范》中5.2.3条指出:抗浮验算属于承载能力极限状态计算的强制性条文。因此本文简要阐述清水池的抗浮方法及其相关的抗浮计算。

2、清水池的抗浮方法

清水池的抗浮设计主要有抗和放两个方向。所谓抗,就是利用配重,锚固等方法进行硬抗;所谓放,就是用降水等方法,降低水位从而减少水的浮力。常用的抗浮方法有配重抗浮、锚固抗浮、降水抗浮

等。

2.1配重抗浮

配重抗浮就是给水池附加其它重量以用于抗浮,一般有4种方法。

1)在底板上部设低等级混凝土压重;

2)加厚底板;

3)在底板下配重;

4)在顶板上部覆土压重。

配重抗浮的优点是简单可靠,当构筑物自重与浮力相差不大的时候应尽量采用配重抗浮,这样对工程造价影响较少,投产后也没有管理成本。

2.1.1在底板上部设低等级混凝土配重

使用该方法,混凝土配重将加大水池的埋深,将导致增加挖方、排水及基坑支护的费用,配重也增加了基底应力,引起较大的地基变形,见图1。

图1在底板上部设低等级混凝土压重

2.1.2加厚底板

加厚底板也增加池体的总体埋深,增加挖方、排水及基坑支护的费用。虽然壁板的计算长度不会增加,但是很多情况下底板的受力较少,按构造配筋即可。这时候增加底板的厚度按最小配筋率设置的构造配筋将会增大,增加造价。

2.1.3在底板下配重

底板与挂重部分混凝土需要用钢筋连接,施工比较麻烦,当地下水对钢筋和混凝土具有腐蚀性时在底板挂混凝土的方法需谨慎使用,见图2。

图2在底板下配重

2.1.4在顶板上部覆土压重

在顶板上部覆土压重不会加厚底板,效率较高。但是覆土压重会加大顶板的荷载,增加顶板配筋及板厚,所以覆土压重的重量不宜过大,见图3。

图3在顶板上部覆土压重

2.2锚固抗浮

2.2.1锚杆

锚杆是在底板与其下土层之间设置拉杆,当底板下有坚硬土层且深度不大时,设置锚杆较为经济方便;但有机质土、液限WL>50%和相对密度Dr<0.3的地层不得作为永久性锚杆的锚固地层。锚杆直径一般取150mm~180mm。

2.2.2抗拔桩

抗拔桩是利用桩与土的摩擦力来抵抗浮力,可以采用灌注桩或预制桩。抗拔桩的设置可以与池体的基础受力模式总体考虑。在淤泥层较厚的地区,可以采用桩基础作为清水池的基础形式,桩基础同时起到抗拔桩的作用。

2.3降水抗浮

降水抗浮的思路是不硬抗浮力,而是通过降低地下水位从而减少浮力。具体的做法是在构筑物的底板下设置反滤层,在构筑物周边设降水井,降水井与反滤层之间用盲沟相连。

降水抗浮的优点是工程造价低,但也有其明显的缺点:

1)可靠性差,反滤层很容易被堵塞,使水位难以下降到底板以下;

2)如果遇到非正常排空,将会发生构筑物上浮,出现工程事故。

3、抗浮计算

3.1抗浮验算的安全系数

基础抗浮稳定性应符合下式要求:

Gk——建筑物自重及压重之和(只计入永久作用且采用标准值)Nw,k——浮力作用值(地下水对建筑物的浮托力标准值)

Kw——抗浮稳定系数,一般情况下可取1.05

在进行整体抗浮验算的同时,应对结构自重较小的区域进行局部验算;在地下水作用下,底板构件应具有足够的强度和刚度,并应进行水浮力作用下的抗弯、抗剪和抗冲切承载力验算;当抗浮力验算不满足要求时,应采取抗浮措施。

3.2.抗浮锚杆的计算

3.2.1抗浮锚杆的轴向抗拔承载力

粘结型锚杆

qsia——第i土层的锚杆锚固段侧阻力特征值

li ——第i土层的锚杆锚固段有效锚固长度

3.2.2抗拔锚杆体的横截面面积As

式中As——抗拔锚杆钢筋或预应力钢绞线横截面面积;

Ntd——荷载效应基本组合下的锚杆轴向拉力设计值;

Rt ——锚杆竖向上拔力;

fy ——钢筋或钢绞线的抗拉强度设计值;

ξ 2 ——锚筋抗拉工作条件系数,永久锚杆取0.69。

3.2.3锚杆钢筋与砂浆体之间的锚固长度还应满足下式验算要求

式中n——钢筋或钢绞线根数;

D——单跟钢筋或钢绞线直径;

fb——钢筋或钢绞线与锚固注浆体之间的粘结强度设计值

ξ3——钢筋与砂浆粘结强度工作条件系数,对于永久性锚杆取0.60,临时性锚杆取0.92

3.3抗拔桩的计算

基桩抗拔承载力特征值可按下列公式计算

式中Rta——基桩抗拔承载力特征值;

Tuk——基桩抗拔极限承载力标注值;

Gp——基桩自重,地下水位以下取浮重度,对于扩底桩按表确定桩、土柱体周长,计算桩、土自重;

ui——破坏表面周长,对于等直径桩取ui =πd;

qsik——桩侧表面第i层土的抗压极限侧阻力标注值;λi——抗拔系数

4、工程实例

4.1工程概况

广东省从化市某水厂清水池,平面尺寸48米×30米,池总高度6.38米,见图4。其中地下部分4.1米,地上部分2.28米(包括1米覆土)。因该厂区靠近流溪河,根据地质资料显示,地下水位取室外标高。结构采用无粱楼盖式,柱距4.2米×4.3米。

图4清水池平面图

4.2抗浮验算

根据该工程场地地质条件,清水池采用天然筏板基础,基础持力层为粉质粘土层。因地下水位高,采用在底板上部设低等级混凝土压重、加厚底板、在底板下配重等形式,需要加大开挖深度,且浮容重部分才可用于抗浮。因此拟采用池顶覆土1米用于配重抗浮且用作绿化土壤,(见图5)抗浮不足部分,采用锚杆抗浮。

图5清水池剖面图

4.2.1抗浮计算

本清水池为无梁楼盖式底板,应计算局部抗浮。经计算,单根柱子区域池体自重+池顶1米覆土产生的总抗浮力为598.40kN。按池体的抗浮设计水位为地面±0.00计算,单根柱子分摊的池体浮力为740.46kN。则局部抗浮系数为598.4/740.46=0.85<1.05,抗浮不满足要求。

4.2.2锚杆设计

按每2.10m×2.15m范围布置一条锚筋,则单根柱承重区域

4.2m×4.3m范围内布置4条锚筋,取锚杆直径D=150mm,长度10米,主要地层为可塑粉质粘土层。

单条锚筋抗拔力:

锚杆钢筋截面面积

取2Ф25,则 As=982mm满足要求。

锚杆钢筋与锚固砂浆间的锚固长度

取la=10000mm满足要求,按Nak=90KN计算。

4.2.3局部抗浮验算

则局部抗浮满足要求。

5、结语

清水池的抗浮设计应结合地基土层及构筑物的埋深、平面尺寸等实际情况选择使用,从而达到安全可靠,节省造价、管理维护方便的目的。本工程综合运用顶板上部压重,锚杆等方式抗浮,节约了工程造价。项目现已建成投入使用,运行效果良好。

参考文献

[1] 给水排水工程设计手册.第二版.中国建筑工业出版社

[2] GB50069-2002《给水排水工程构筑物结构设计规范》

[3] GB50007-2011《建筑地基基础设计规范》

[4] GB50330-2002《建筑边坡工程技术规范》

[5] 《全国民用建筑工程设计技术措施——结构(地基与基础)》2009

------------最新【精品】范文

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

消防水池计算书

消防水池计算书 (一)处理池没水时荷载 1、池壁计算 主动土压力系数Ka取1/3 土重度r=18KN/m3无地下水池壁4.7m深 ∵LB/HB=5.3>2 ∴按单向板计算 主动土压力q土=rHKa=18x1/3x4.7=28.2KN/m 地面荷载产生侧压力q活=10x1/3=3.33KN/m ①竖向配筋计算 第一种情况 三种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 地荷载弯矩Mm 下端支座-41.5 0 -9.2 跨中18.6 0 5.2 支座基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=65.585KN·m

支座准永久组合弯矩值Mq=Ms+Mw+0.5Mm=46.1 KN·m 跨中基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=30.9KN·m 跨中准永久组合弯矩值Mq=Ms+Mw+0.5Mm=21.2KN·m 假设壁厚h=250,混凝土强度C30 查表可知选筋12100的裂缝(0.25mm)和承载力弯矩分别为63.33KN·m、67.22KN·m,大于支座计算准永久弯矩46.1 KN·m和基本组合弯矩65.585KN·m,满足要求。且配筋率0.452%,合适。 所以外钢筋选配12100 As=1131mm2/m 弯矩图 第二种情况 水压力q水=rh=10x4.7=47KN/m

两种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 下端支座-41.5 -69.22 跨中18.6 30.94 支座基本组合弯矩值M=1.27Mw-Ms=46.4KN*m 支座准永久组合弯矩值Mq=Mw-Ms=27.72KN*m 跨中基本组合弯矩值M=1.27Mw-Ms=20.69N*m 跨中准永久组合弯矩值Mq=Mw-Ms=12.34KN*m 池壁侧、外侧为12100均满足强度和裂缝要球。

地下室抗浮设计及计算

地下室抗浮设计及计算 Post time: 2010年5月20日 前一段时间做了几个项目,都涉及到地下室抗浮设计的问题,整理了一个大个地下室的计算思路。 先说一下规范的一些要求,规范对抗浮设计一直没有特别明确的计算建议,很多的设计建议都是编者自己的理解,所以大家的计算结果就会有很大差异。 1)《建筑结构荷载规范》GB 50009-2001(2006年版)第3.2.5条第3款规定:“对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关的结构设计规范的规定采用”。 2)《砌体结构设计规范》GB 50003-2001第4.1.6条当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下式验算:γ0(1.2SG2k+1.4SQ1k+SQik) ≤ 0.8SG1k 式中SG1k----起有利作用的永久荷载标准值的效应; SG2k----起不利作用的永久荷载标准值的效应; 3)北京市标准《北京地区建筑地基基础勘察设计规范》DBJ 11-501-2009第8.8.2条,抗浮公式为: Nwk ≤γGk 式中Nwk——地下水浮力标准值; Gk——建筑物自重及压重之和; γ——永久荷载的影响系数,取0.9~1.0; 结合上述原则,计算目前在做的南方某大剧院舞台下台仓的抗浮情况,由于整个台仓位于城市河道边,且上部恒荷载的不确定性,因此永久荷载的影响系数取的是0.8,比北京规范还要低一些:

台仓深度较大,台仓底板顶标高为-14.8米,存在抗浮设计要求,根据 地质勘察报告数据,设计最高抗浮水位绝对标高为2.36米相对标高-1.54米, 经计算,上部结构传至台仓底板顶面处0.8倍恒荷载值为65200kN,台仓底板面积约为663平米,考虑台仓底板厚度为1.6米重力效应,尚有水浮力约为((14.8+1.6-1.54)×10-0.8×1.6×25)×663-65200=12106 kN。根据地质勘察报告提供的勘探点平面布置图,台仓位于18、19、25、26号孔附近,抗拔桩长为9.5米,直径0.4米,计算抗拔承载力特征值为220 kN,考虑结构重要性系数1.1,需要不少于60根抗拔桩。 考虑台仓底板承担水压情况,设置11X20=220根抗拔桩,抗拔桩间距为1.45X1.45米,则相应面积底板承担水压标准值为((14.8+1.6-1.54)×10-0.8×1.6×25)×1.45×1.45=245.2kN,减去抗拔桩抗拔值=245.2-220=25.2 kN,对应台仓底板承担水压标准值为1.1×60.6/(1.3×1.9)=27.5 kN/m2,其中1.1为结构重要性系数。 考虑群桩效应,群桩平面尺寸为16.8×28.5米,整个周边抗拔极限承载力为0.5Tgk =0.5×(0.70×55×1.2+0.75×50×7.1+0.65×85×0.7)× (16.8+28.5)×2=15900 kN,整个桩土浮容重为11×16.8×28.5×9=47400 kN,合计抗浮力为63300 kN,满足抗浮要求。 基础底板配筋计算:其中结构重要性系数为1.1,水浮力分项系数为1.20,抗拔桩安全系数取0.80,则台仓底板抗浮力设计值为1.1×(1.2× (14.8+1.6-1.54)×10-0.8×1.6×25-0.8×220/1.45/1.45)=68.88kN/m2,台仓底板按四边简支弹性楼板配筋设计结果如下: 1.1 基本资料 1.1.1 工程名称:台仓底板配筋 1.1.2 边界条件(左端/下端/右端/上端):铰支 / 铰支 / 铰支 / 铰支 1.1.3 荷载标准值 1.1.3.1 永久荷载标准值: gk = 0 1.1.3.2 可变荷载标准值 均布荷载: qk1 = 68.88kN/m ,γQ = 1,ψc = 0.7,ψq = 0.7 1.1.4 荷载的基本组合值 1.1.4.1 板面 Q = Max{Q(L), Q(D)} = Max{68.88, 48.22} = 68.88kN/m 1.1.5 计算跨度 Lx = 19950mm,计算跨度 Ly = 31900mm, 板的厚度 h = 1600mm (h = Lx / 12) 1.1.6 混凝土强度等级为 C35, fc = 16.72N/mm , ft = 1.575N/mm , ftk = 2.204N/mm 1.1.7 钢筋抗拉强度设计值 fy = 360N/mm , Es = 200000N/mm 1.1.8 纵筋合力点至截面近边的距离:板底 as = 25mm、板面 as' = 25mm 1.2 配筋计算 1.2.1 平行于 Lx 方向的跨中弯矩 Mx Mxk = 2291.29kN?m,Mxq = 1603.90kN?m; Mx = Max{Mx(L), Mx(D)} = Max{2291.29, 1603.9} = 2291.29kN?m Asx = 4159mm ,as = 25mm,ξ= 0.057,ρ= 0.26%; 实配纵筋: 32@100 (As = 8042);ωmax = 0.265mm 1.2.2 平行于 Ly 方向的跨中弯矩 My

抗浮验算计算书

地下室抗浮验算 一、整体抗浮 (一)主楼部分 底板板底相对标高为- 4.700,地坪相对标高为:-0.300,抗浮设防水位相对标高为- 1.5m,即抗浮设计水位高度为: 3.2m。 裙房部分抗浮荷载: ①地上四层裙房板自重: ②地上四层xx折算自重: ③地下顶板自重: ④地下室xx折算自重: ⑤底板自重:25× 0.48= 12.0kN/m2 25× 0.50= 12.5kN/m2 25× 0.18= 4.5kN/m2

25× 0.11= 2.75kN/m2 25× 0.4= 10.0kN/m2 41.75kN/m2 合计: 水浮荷载: 3.2×10=32 kN/m2, 根据地基基础设计规范GB 5007-2011第 5.4.3条,> 1.05,满足抗浮要求。 二、整体抗浮 (二)仅一层车库部位 J-1基础高度改为800,仅一层地下室位置防水板板底标高与J-1底平,上部采用C15素混凝土回填至设计标高(- 4.200)。抗浮计算如下: 图纸修改见结构05 底板板底相对标高为- 5.100,地坪相对标高为:-0.300,抗浮设防水位相对标高为-

1.5m,即抗浮设计水位高度为:3.6m。 地下室部分抗浮荷载: ①顶板覆土自重: ②地下顶板自重: ③xx折算自重: ④底板及回填自重: 考虑设备自重20× 0.30= 6.0kN/m2 25× 0.25= 6.25kN/m2 25× 0.11= 2.75kN/m2 25×( 0.4+ 0.5)= 22.5kN/m2 0.5 kN/m2

38kN/m2 水浮荷载: 3.6×10=36kN/m2>1.05,满足抗浮要求。合计:

水池的抗浮设计

水池的抗浮设计 发表时间:2018-03-15T16:20:57.217Z 来源:《防护工程》2017年第31期作者:钱启军[导读] 在给排水构筑物的设计中,水池的结构计算固然重要,水池的抗浮设计同样重要。 沈阳市给排水勘察设计研究院有限公司辽宁沈阳 110000 摘要: 在给排水构筑物的设计中,水池的结构计算固然重要,水池的抗浮设计同样重要,直接影响水池的结构布置方案,影响整个水池的造价。故针对水池抗浮使用的地下水位选择及各种抗浮措施在其适用条件及经济性、可行性上进行分析。关键词: 地下水位,抗浮措施。 1 概述 净水厂、污水厂等水处理构筑物多为地下结构或半地下结构。当这些构筑物的地下水水位较高,或者距离江、河、湖、海较近,水池抗浮就是设计中经常遇到的问题。当水池内无水的工况为抗浮设计最不利的工况,如果浮力大于水池抗浮力,水池就会漂浮起来,拉断给水及排水等管道接口,造成安全事故。因此合理的确定地下水位,合理的确定抗浮措施,是水池抗浮设计的关键。抗浮措施主要分为”压”和“拉”两大类,“压”法主要有加大自重抗浮、顶部压重抗浮、基底配重抗浮;“拉”法是水池构件与可靠地基之间通过抗拔桩或锚杆的拽来抗浮。这些方法各有特点,有不同适应条件,设计人员应在设计中仔细分析、多方比较;根据土质、环境的不同,结合地域经验和施工单位技术情况选用不同的抗浮措施。 2 合理确定地下水位 水池设计中抗浮设计与地下水位的确定有直接的关系,地下水位是水池抗浮设计的前提,地下水对于水池是一种荷载,直接影响水池的结构。在水池无法满足靠自身重量抗浮时,附加抗浮措施,也直接影响水池的壁厚、配筋,故合理确定地下水位至关重要。由于地下水位未掌握好而引起结构选型错误及抗浮不够等工程事故时有发生。根据现行国家设计规范,地下水位应根据地方水文资料,考虑可能出现的最高地下水位。一般设计均取用水文资料的最高地下水位。在50年设计基准期内,一般水工构筑物地下水可变作用的取用按“工程结构可靠度设计统一标准”原则确定,不考虑罕遇洪水的偶然作用。但值得注意的是,有些工程地质勘察报告所提供的地下水位未能从地方水文资料分析得出,而仅反映勘测期间的地下水位情况。如果详勘在当地枯水期进行,所提供的地下水位标高将无法被设计取用,或导致结构计算的失误。所以设计人员应详细了解当地的水文情况,对未满足设计要求的地质勘察报告予以补充。要求考虑当地有无暴雨、台风的影响,是否会出现由于地表水不能及时排除而引起地下水位提高。当构筑物距离江、河、湖、海距离较近时,应考虑江、河、湖、海的水位达到最高时对本构筑物的影响。由于水池的标高多为管道标高控制,调整空间不大,故当抗浮水位很高时,应合理确定抗浮措施。 3.合理确定抗浮措施 《给水排水工程钢筋混凝土水池结构设计规程》CECS138:2002 5.2.4条内容为:当水池承受地下水(含上层滞水)浮力时,应进行抗浮稳定验算。验算时作用均取标准值,抵抗力只计算不包括池内盛水的永久作用和水池侧壁上的摩擦力,抗浮抗力系数不应小于1.05。水池内设有支撑结构时,还须验算支撑区域内局部抗浮。 此条表示为 1.05Fwk≤∑Nwki+γg∑Gki 式中:Fwk--地下水浮力标准值=ΡgV; Gki--建筑物自重及压重标准值; γg--永久荷载的影响系数,取0.9~1.0; NKi--抗拔构件提供的抗拔承载力标准值; 由于池内无水时为抗浮设计的不利工况,故抵抗力只计算不包括池内盛水的永久作用。水池侧壁的摩擦力大小与回填土土质,施工措施和质量等有关,故不宜控制,宜作为抗浮储备。故不计水池侧壁上的摩擦力。 由抗浮计算公式可知,抗浮的两个思路为增加重量及增加抗拔措施,即主要分为”压”和“拉”两大类,“压”法主要有加大自重抗浮、顶部压重、池底设置配重抗浮;“拉”法是水池构件与可靠地基之间通过抗拔桩或锚杆来抗浮。这些方法各有特点,有不同适应条件,设计人员应在初步设计中仔细分析、多方比较,根据土质、环境的不同,结合地域经验和施工单位技术情况选用不同的抗浮措施。 下图为水池考虑抗浮时的抗浮力示意图:其中:G1为池体自重; G2为池内压重; G3为池壁外挑墙址上压重; G4为池顶压重; G5为池底配重; N1为池底抗浮桩或锚杆的抗拔力。

地下室抗浮计算

建筑结构设计地下室抗浮怎么计算 首先要知道抗浮水位是多少,算出水浮力然后乘以1.05的系数。 算出地下室总得恒荷载(包括基础重和基础上的填土)如果恒荷载大于水浮力的1.05倍,可视为抗浮满足要求。如不能满足要求,可以降低基础底板,然后填土或素混凝土以增加基础的恒荷载。或者将筏板外挑,然后压上土以增加恒荷载。关于地下建筑抗浮设计的几点意见= ^NTH c^* 湖北省勘察设计协会袁内镇A3su !I2S 内容摘要 y'{*B( 本文根据作者的工作经验结合湖北省地方标准《建筑地基基础技术规范》DB42/242-2003以及相关标准的有关规定,对地下建筑物抗浮设计原则及一些具体问题进行了探讨,可供抗浮设计中参考。j o + - 关键词:抗浮设计、抗浮水位、抗浮稳定、水的浮力、抗拔构件] .( l^ W ①地下建筑物抗浮设计是一个复杂的技术问题,由于对抗浮设计的一些重要问题有不同看法,因此相关规范未对抗浮设计作出明确的具体规定,导致设计工作的困难。②抗浮水位不易确定。③抗浮现状——施工阶段浮起,使用阶段浮起,特殊情况浮起。④浮起底板未见开裂,柱上下端横向裂缝浮起时常发生倾斜,水位下到四周,等高,受力不均匀,形成与重心不重合。M t w7aK 为解决抗浮设计的操作问题,湖北省地方标准《建筑地基基础技术规范》DB42/242-2003[1]对抗浮设计作了原则的规定,但具体问题尚有一些歧意,地下建筑浮起破坏的现象仍时有发生。作者认为有必要对以下问题进行探讨,以求抗浮设计的合理完善。t0 H($ 至于地下建筑物基底及周边水在土中的渗流影响是深层次的抗浮机理问题。可以肯定,只要建筑物周边与土介质之间的水位达到一定高度,且水的补充速度大于水在土的渗流速度时建筑物即可能被浮起。 B3'; Tcs 2、抗浮设计应进行哪些验算?c

抗浮锚杆设计计算书

二、计算书 1、设计要求 本工程水池底板抗浮力的要求为: 表1 2、抗浮锚杆抗拔力设计值 根据技术要求,本工程单根锚杆的抗拔力标准值为87.5kN ,设计锚杆间距2.7x2.7m. 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ?= (7.4.1) 上面式中:K t — 锚杆的杆体抗拉安全系数,取2; N t —— 锚杆的轴向拉力设计值,取113.8KN. f yk —— 钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm 2 。 根据计算得:As=569mm 2 所以孔内应设置二根Φ20的HRB400钢筋. 4、锚固段长度计算. 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ πmg t a Df N K L ?> (7.5.1-1) ψ ξπms t a f d n N K L ?> (7.5.1-2) 上面式中:L a —— 锚杆锚固段的长度(m ); K —— 锚杆锚固体的抗拔安全系数,取2.2; N t —— 锚杆的轴向拉力设计值(kN); D —— 锚固体的钻孔直径,按0.12m d —— 钢筋的直径(m ); f m g ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取 锚杆周围地层加权平均值130kPa 。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa ,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa 。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa ; ξ ——界面粘结强度降低系数,取0.6; ψ —— 锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n —— 钢筋根数 由计算公式算得2#地块:L a 〉3.72m ,设计按照锚固段长度为5.10m 。 由计算公式算得3#地块:L a 〉7.18m ,设计按照锚固段长度为8.00m 。 由计算公式算得4#地块:L a 〉6.92m ,施工设计按照锚固段长度为8.00m 设计。 5、锚杆锚入基础的长度 根据规范要求,钢筋须插入基础内不少于35d ,本工程2#地块,采用Φ22螺纹钢筋,长度为35*22=770mm ,设计时取800mm 。本工程3#、4#地块采用Φ25螺纹钢筋,长度为35*25=875mm ,设计时取900mm 。 6、锚杆间距 本工程基础为筏板基础,考虑结构受力特点,本着减小底板弯曲应力的原则,本工程采用小吨位的锚杆。杭浮锚杆在整个底板上小间距均匀布置,局部地方(独立柱基位置)适当调整。该布置可降低底板的加筋费用,又可以减小因个别锚杆失效而造成的局部破坏。锚杆 大体成正方形布置,根据地下室抗浮区域、抗浮力要求的不同,锚杆间距为: 锚杆间距一览表 表6 7、设计实物工程量 根据计算,本工程抗浮锚杆设计实物工程量为:2号地块设置锚杆1107根,单根锚杆长度5.1m ,3#地块设置锚杆1927根,单根锚杆长度8m ,4#地块设置锚杆2707根,单根锚杆长度8m ,总计锚杆进尺43181.1m(含防水0.1m/根)。 8、锚固体强度及水泥浆配比 为增大锚固体的强度,锚固体采用豆石与砂浆结合体,填筑的豆石强度应无风化现象,

浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算 浅谈清水池的抗浮处理及计算 摘要:在清水池的结构设计中,抗浮设计往往成为制约结构设计的重要影响因素之一。本文简要介绍了清水池几种不同的抗浮设计方法,并结合工程实例予以详细计算。 关键词:清水池;抗浮设计;抗浮锚杆 Abstract: In the structural design of the clear water tank, anti-floating design often becomes one of the most important factors influencing structure design. This paper briefly introduces the anti-floating design method of water pool is different, and in combination with the project example to be calculated in detail. Key words: clear water pool; anti-floating design; anti-floating anchor 中图分类号:TU991.34+3文献标识码:A文章编号: 1、概述 清水池为储存水厂中净化后的清水,以调节水厂制水量与供水量之间的差额,并为满足加氯接触时间而设置的水池。同时,清水池还具有高峰供水低峰储水的功能。 因为清水池的储水作用,所以一般清水池的容积和面积较大,因此清水池抗浮设计往往成为制约结构设计的重要影响因素之一。 GB50069-2002《给水排水工程构筑物结构设计规范》中5.2.3条指出:抗浮验算属于承载能力极限状态计算的强制性条文。因此本文简要阐述清水池的抗浮方法及其相关的抗浮计算。 2、清水池的抗浮方法 清水池的抗浮设计主要有抗和放两个方向。所谓抗,就是利用配重,锚固等方法进行硬抗;所谓放,就是用降水等方法,降低水位从而减少水的浮力。常用的抗浮方法有配重抗浮、锚固抗浮、降水抗浮

抗浮锚杆计算书

抗浮锚杆深化设计计算书 一、工程质地情况: 地下水位标高 -1.00 m 地下室底板标高 -6.52 m 浮力 55.2 kN/m 2 二、抗浮验算特征点受力分析: 1.原底板砂垫层厚 0.10m 自重 0.10X20=2kN/m 2 2.原砼底板厚 0.40m : 自重 0.4X25=10 kN/m 2 3.新加砼配重层厚 0.30m 自重 0.3X25=7.5 kN/m 2 抗浮验算 55.20-19.50=35.70 kN/m 2 三、计算过程 由受力情况,将锚杆分为A 、B 、C 三类,A 类为图中○A 轴至○E 轴区 域,地面与中风化板岩之间有8米粘性土层;B 类为有○E 轴至○L 轴区域,地面与中风化板岩之间有4米粘性土层; C 类为图中○L 轴至○Q 轴区域,地面与中风化板岩之间无粘性土层。 锚杆间距取3m ×3m 。 1. 锚杆杆体的截面面积计算: yk t t s f N K A ≥ t K ——锚杆杆体的抗拉安全系数,取1.6; t N ——锚杆的轴向拉力设计值(kN ),锚杆的拉力设计值=特征值×1.3,A 类锚杆取35.70×3.0×3.0×1.3=438.75kN 。 yk f ——钢筋的抗拉强度标准值(kPa ),HRB400取400 kPa 。 As ≥fyk KtNt =4001075.4386.13??=17552m m 总计 19.5 kN/m 2

选取三根HRB400 直径28mm 钢筋,钢筋截面积满足规范要求 2. 锚杆锚固长度 锚杆锚固长度按下式估算,并取其中较大者: ψπmg t a Df KN L > ψ πεms t a df n KN L > 式中:K ——锚杆锚固体的抗拔安全系数,取2.0; t N ——锚杆的轴向拉力设计值(kN ),取438.75kN ; a L ——锚杆锚固段长度(m ); mg f ——锚固段注浆体与地层间的粘结强度标准值(kPa ),按表7.5.1-1取粘 性土层65kpa ,中风化板岩层0.25Mpa ; ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),按表7.5.1-3取2.5MPa ; D ——锚杆锚固段的钻孔直径(m ),取0.15m d ——钢筋的直径(m ); ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85,本例 取0.7; ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0; n ——钢筋根数。 (1)锚固段注浆体与地层间的粘结强度(全风化泥质粉砂岩、强风化泥质粉砂岩q sik 分别为55kpa 、140kpa) A 类:pa 46.1220 .28 16515.014.3M K l Df N a mg t =????= = ψπ土 pa 29.36146.122-75.483-M N N N t t t ===土岩 m Df KN l mg t a 14.61 25015.014.329 .3610.2=????== ψπ

矩形水池结构计算方案

矩形水池结构计算方案 The latest revision on November 22, 2020

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规范及参考书目: 《水工混凝土结构设计规范》(SL191-2008),以下简称《砼规》 《建筑地基基础设计规范》(GB50007-2002),以下简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型:无顶盖,半地下水池 水池长度L=11940mm,宽度B=5990mm,高度H=4180mm 地面标高=0.000m,池底标高=-4.180m 池壁厚度t 3=400mm,池壁贴角c 1 =0mm 底板中间厚度t 2=400mm,底板两侧厚度t 4 =400mm 底板贴角长度c 2 =0mm,底板外挑长度a=400mm 池壁顶端约束形式:自由 底板约束形式:固定 3.地基土、地下水和池内水信息: 地基土天然容重γ=18.00kN/m3,天然容重γ m =20.00kN/m3地基土内摩擦角φ=30.00度,地下水位标高=-2.000m 池内水深H W =0.00mm,池内水重度γ s =10.00kN/m3 地基承载力特征值f ak =120.00kPa 宽度修正系数η b =0.00,埋深修正系数η d =1.00 修正后地基承载力特征值f a =170.89kPa 浮托力折减系数=1.00,抗浮安全系数K f =1.05 4.荷载信息: 地面活荷载q=10.00kN/m2,活荷载组合值系数=0.90 恒荷载分项系数:池身的自重γ G1=1.20,其它γ G =1.27 活荷载分项系数:地下水压力γ Q1=1.27,其它γ Q =1.27 地面活荷载准永久值系数ψ q =0.40 温(湿)度变化作用的准永久值系数ψ t =1.00 池内外温差或湿度当量温差△t=10.0度 温差作用弯矩折减系数η s =0.65 混凝土线膨胀系数αc=1.00×10-5/℃ 5.材料信息: 混凝土强度等级:C25 轴心抗压强度标准值f=16.70N/mm2;轴心抗拉强度标准值f=1.78N/mm2

地下室的抗浮验算要点

地下室的抗浮验算要点 摘要:本文结合理论、规范和工程实例,分析在地下水作用下高层结构中地下室所受浮力的成因和一般规律,提出了抗浮验算的基本内容和基本原则,以及具体的验算方法,可供广大工程技术人员参考。 关键词:高层结构地下室抗浮验算 内容: 随着我国工程建设的发展,高层建筑越来越多,高层结构中一般都有地下室甚至多层地下室,为地下水位较高时,所受的浮力很大,而我国现行的国家地基规范中,并无相关的抗浮验算要求,因此,实际工程中,很多地下室未进行抗浮验算,给结构留下重大的隐患。一九九八年,武汉遭受特大洪水侵袭,我市的多个地下室发生不同程度的损坏。笔者结合多年的工作经验,对如何进行抗浮验算提出自己的看法,供大家参考。 一、地下水的类型和渗透性 1、上层滞水:是指埋藏在地表浅处,局部隔水透镜体的上部,且具有自由水面的地下水。它的分布范围有限,其来源主要是由大气降水补给。因此,它的动态变化,与气候、隔水透镜体厚度及分布范围等因素有关。 上层滞水地带只有在融雪后或大量降水时才能聚集较多的水,因而只能被作为季节性的或临时性的水源。 2、潜水:埋藏在地表以下第一稳定隔水层以上的具有自由水面的地下水称为潜水。潜水一般埋藏在第四纪松软沉积层及基岩的风化层中。 潜水直接受雨水渗透或河流渗入土中而得到补给,同时也直接由于蒸发或流入河流而排泄,它的分布区与补给区是一致的。因此,潜水水位变化,直接受气候条件变化的影响。 3、承压水:承压水是指充满于两个稳定隔水层之间的含水层中的地下水。它承受一定的静水压力。在地面打井至承压水层时,水便在井中上升甚至喷出地表,形成所谓上升泉水。由于承压水的上面存在隔水顶板的作用,它的埋藏区与地表补给区不一致。因此,承压水的动态变化,受局部气候因素影响不明显。 土透水性的强弱一般由土的渗透系数反映。一般认为,在工程中渗透系数≤10-5cm/sec 时,土具有不透水性,密实的粘性土一般能满足上述要求。具体工程中,应以勘察报告为准。 二、地下水产生浮力的条件 存在于土中的液态水可分为结合水和自由水两类,结合水与土粒表面牢固地粘结在一起,不能自由移动,不能传递压力,因此,它不含对土粒产生浮力。自由水在土粒影响范围以外,能传递静力压力,有溶解能力。其中的重力水可以自由运动,对土粒有浮力作用

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

地下室抗浮计算

地下室抗浮计算 整体抗浮计算: 抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67 整体抗浮满足要求, 底板局部抗浮计算: 抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。防水底板需计算配筋。 单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN 按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8 =40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8 =967.6KNm 柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9) =483.8/(0.9*360*1150*3.9) =332.9mm <Ф16@200 As1’=M1/(0.9*fy*h1’*3.9) =483.8/(0.9*360*350* 3.9) =1039mm 基本等于Ф16@200 上部为:As2=M2/(0.9*fy*h2* 3.9) =212.9/(0.9*360*350* 3.9) =481.4mm <Ф16@200 上式配筋计算中分母3.9为柱下板带宽度。 原设计防水底板配筋满足要求。 独立基础计算 阶梯基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2002)② 二、示意图

消力池底板抗浮计算书

消力池底板抗浮计算书 一、概述 溢流堰、闸室后接消力池,消力池长18m,宽17m,深1.1m,底板高程为11.9m,消力池底板厚度为0.5m,。底板设置排水孔,孔排距均为2m,成梅花型布置,其下设置砂石反滤垫层,层厚1.00m。泄洪冲沙闸消力池和泄洪闸底板后接防冲海漫,海漫长29m。海漫采用M7.5浆砌石,厚0.3m。 二、主要设计依据及参数选取 1.特征水位及流量 正常蓄水位17.00m,设计水位19.81m,校核洪水位20.03m。 洪水流量及水位见表2-1。 底板采用C30混凝土: 容重2.4t/m3, fc=20.1 N/mm2, ft=2.01N/mm2;弹性模量Ec=3.00×10-4N/mm2;基岩与混凝土面的抗剪断强度?=0.4~0.7,粘滞力c=0.06~0.2Mpa;Ⅱ级钢筋,fy=fy’=310 N/mm 三、设计工况 本次分析主要计包括坝后消力池底板的结构设计及配筋计算,具体计算工况如下: (1)工况一:正常蓄水位+自重+扬压力+脉动压力(基本荷载组合) (2)工况二:设计洪水位+自重+扬压力+脉动压力(基本荷载组合) (3)工况三:校核洪水位+自重+扬压力+脉动压力(特殊荷载组合) 四、底板荷载计算 1.计算公式及参数选取 (1)自重 G=γ c ×A×h G —底板自重(KN); A —底板面积(m2),306m2; h —底板厚度(m),0.5m; γ C —C30混凝土容重,取值24KN/m3。 带入数据求的底板自重为3672KN。 (2)时均压力P w =γ w ×H×A P w —水压力(KN); H —下游水深(m); A —底板面积(m2);γw—水的容重。

地下水池在施工期间的抗浮计算

地下水池在施工期间的抗浮计算 摘要:地下水池在施工期间的抗浮是困扰技术人员的一个难题,笔者首先介绍了水池抗浮方案的比较分析,结合实际工程,详细介绍了水池的抗浮设计及计算,同时,对设计方案进行了优化比选,可供相关技术人员参考。 关键词:地下水池、抗浮、设计 1引文 在市政、环境、水利和工业项目建设工程中,有大量的埋地式水池构筑物。当构筑物建设在地下水位较高地区时,埋地式水池构筑物的抗浮措施是设计中必须解决的重要问题之一。因建设场地的不同,或是结构体型的不同,埋地式水池构筑物的抗浮设计方案可有不同的选择。选用的抗浮设计方案合理与否,对结构受力和工程造价会产生较大的影响。 本文基于抗浮稳定性的设计验算要求,介绍目前在抗浮设计中常用的自重抗浮、压重抗浮、基 底配重抗浮、打抗拔桩抗浮或打锚杆抗浮等方法的施工技术与适用条件,以及对结构设计的影响。在此基础上,结合工程实例对抗浮设计方案的合理选择作进一步的讨论。 2抗浮设计方案的分析与比较 水池抗浮设计时,其整体抗浮稳定性验算公式为: G≥1.05F 式中,G为水池内不盛水时水池自重等永久作用荷载,当构筑物为沉井等侧壁与土体紧密接触的结构,可计人侧壁上的摩擦力;F为地下水浮力。图1为考虑水池整体抗浮时的抗浮力示意图。图中,G1为池体自重;G2为池内压重;G3为池顶压重;G4为池壁外挑墙址上压重;

G5为池底板下部配重;N1为池底抗浮桩或锚杆的抗拔力。 对设置有中问支柱的封闭式水池,除验算整体抗浮稳定性外还需验算局部抗浮。验算时,局部抗浮力按图2考虑。图中,各抗浮力均为每一支承单元内的值。 图1整体抗浮时的水池抗浮力图2局部抗浮时的水池抗浮力 2.1自重抗浮 自重抗浮即通过提高池体结构自重G1来达到抗浮的目的。此法一般适用于水池自重与地下水浮力相差不大的情况。 自重的增加一般通过加大水池池壁或底板来实现,这样做虽然会增加混凝土用量,但由于结构厚度的增加,可以降低池壁与底板的配筋

抗浮桩计算

抗浮桩计算 +有实列----难得啊! 一般抗浮计算: (局部抗浮) 1."05F浮力- 0."9G自重<0即可 (整体抗浮) 1."2F浮力- 0."9G自重<0即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【】抗浮锚杆设计总结 抗浮锚杆设计总结 1适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2锚杆需要验算的内容 1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点: 可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点: 要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点: 由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3)面状均匀布置,在地下室底板下均匀布置;优点: 适用于所有土体和岩体;地下室底板梁板配筋较小。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

水池的抗浮

水池的抗浮 发表时间:2015-12-30T10:40:38.570Z 来源:《基层建设》2015年19期供稿作者:陈健 [导读] 上海华谊工程有限公司水池设计灵活多变,需不断地从实践中总结经验和方法,光靠程序既不能解决所有问题,也无法提高自身水平。 陈健 上海华谊工程有限公司 200235 摘要:本文总结了水池设计的抗浮问题及其解决方法,并通过实例进行说明。 关键词:水池抗浮;抗浮水位;抗拔桩 前言 水池的布置非常灵活,构造千变万化,分类较细,常常与给排水专业相结合,往往一个构筑物结合了不同类型的结构类型,所有这些都给结构设计人员怎么入手带来一定困难。水池是一个混合的基础设计,概念设计是其首要不变的原则。所以一个水池设计条件拿到手,脑中第一要考虑的就是这个水池的抗浮是否满足要求。 1.水池抗浮设计机理 根据规范《建筑地基基础设计规范》(GB 50007-2011)5.4.3条第一款和《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002)5.2.4条抗浮公式为:GK/NW,K≥KW,GK为水池自重及配重,NW,K为浮力作用值,KW为抗浮安全系数,取1.05。抗浮包括整体抗浮和局部抗浮。 首先,讨论水池自重问题。 水池自重包括池壁,有内池壁和外池壁;有顶板和底板,底板包括外挑部分的重量;还有的水池含有梁柱结构,应该一并计入水池自重。 但是底板外挑部分上的填土应不应计入水池自重呢?这个问题分两步思考。 一:施工中,由于填土未压上,所以不计。有的同志说,那施工时我同时进行降水措施,抗浮都不需要了。但是按最不利原则,不排除施工方从经济角度出发未进行降水或天气突发状况连日暴雨,那就必须要计算在不计填土重的情况下进行抗浮验算。二:施工完毕,填土压上,可以计入。按压实度计土容重。 这两种情况,当然是第一种施工中较不利,因此,设计时,可不必考虑土重。 如果水池自重比较小,有如下几个方法: 其一,可适当放大池壁及顶、底板的厚度。需注意的是,加大底板厚度是保证构筑物底板上标高前提下进行的,换言之,底板厚度一增加,浮力也加大,对抗浮作用贡献不大。 其二,填土不能作为自重考虑,但是配重就可以。比如,在底板外挑部分压上实心砖等措施。其三,配重的另一种形式就是——在池底配重。在某些地区,毛石并用素砼灌浆比较经济,但毋庸讳言,池底埋深加大,浮力也相应增大,效果不是很好。 其四,如果浮力与抗浮实力相差悬殊,最好就是采用抗拔桩。 此外,水池抗浮与水池面积无关;若有池顶覆土,考虑原则一样为最不利原则;荷载采用标准组合。接着,讨论浮力的作用。 讨论浮力,必须搞清抗浮水位,抗浮水位一般查阅地质报告,正规的地质报告都应有一项抗浮水位的指标。当然也会有诸如此类的情况:上海就按地面下-0.5m考虑抗浮水位;若地质报告没有给出,注意与防水水位的区别。防水水位是地下水的最大水头,可按历史最高水位加1m确定,针对防腐和防渗而言,并由此采取构造措施。而抗浮水位就是用于计算抗浮的,有长期水位观测资料时,可采用实测最高水位;无长期水位观测资料或资料缺乏时,按勘察期间实测最高稳定水位并结合场地地形、地下水补给、排泄条件等因素综合确定。见《软土地区岩土工程勘察规程》第8.6.2条第一款。 抗浮计算的外包尺寸是有规定的,不能按水池壁的外包尺寸,而必须是底板外挑后的外包尺寸,即底板挑越大,浮力越大。 2.水池抗浮计算 以下是根据自己经常使用的一些情况编制的小程序,并加以说明: 1)外包尺寸不同,会引起浮力差别10%左右,对于需用抗拔桩来承受浮力的水池来讲,一根桩的误差,抗浮力可能要相差36吨。2)云线指出的“配重挑出长度”,区别底板挑出长度,用于实心砖配重等。池底毛石配重在本程序中没有标出,可根据使用者的实际使用添加。 3)抗拔桩的计算见《建筑桩基技术规范》(JGJ 94-2008),注:抗拔系数λ可参见地质报告。 1.整体抗浮稳定计算

相关文档