文档库 最新最全的文档下载
当前位置:文档库 › 《材料力学》第五次作业

《材料力学》第五次作业

《材料力学》第五次作业
《材料力学》第五次作业

第五次作业

姓名 学号

1、悬臂梁受力及截面尺寸如图所示。图中的尺寸单位为mm 。求:梁的1-1 截面上A 、B 、C 、

D 、

E 五点的正应力。

2、圆截面外伸梁,其外伸部分是空心的,梁的受力与尺寸如图所示。图中尺寸单位为mm 。已知m kN q kN F P /5,10==,许用应力[σ]=140 MPa ,试校核梁的强度。 (答案:MPa MPa 4.100(,7.113(max max ==空)实)σσ)

3、悬臂梁AB 受力如图所示,其中m a m kN M kN F P 3,70,10=?==。梁横截面的形状及尺寸均示于图中(单位为mm),C 为截面形心,拉伸许用应力[σ]+=40 MPa , 压缩许用应力[σ]-=120 MPa 。试校核梁的强度是否安全。(MPa MPa 2.45,3.60max

max

==+

-

σσ)

1

4、由No.10 号工字钢制成的ABD 梁,左端A 处为固定铰链支座,B 点处用铰链与钢制圆截面杆BC 连接,BC 杆在C 处用铰链悬挂。已知圆截面杆直径d =20 mm ,梁和杆的许用应力均为[σ]=160 MPa ,试求:结构的许用均布载荷集度[q ]。(答案:[q ] = 15.68kN/m )

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

最新《土力学》作业答案

《土力学》作业答案 第一章 1—1根据下列颗粒分析试验结果,作出级配曲线,算出Cu 及Cv 值,并判断其级配情况是否良好。 解: 级配曲线见附图。 小于某直径之土重百分数% 土粒直径以毫米计 习题1-1 颗粒大小级配曲线 由级配曲线查得:d 60=0.45,d 10=0.055,d 30=0.2; 18.8055 .045 .01060=== d d C u 62.1055 .045.02.02 6010230=?==d d d C c C u >5,1

故,为级配良好的土。 (2)确定不均匀系数Cu 及曲率系数Cv ,并由Cu 、Cv 判断级配情况。 解: 土 粒直径 以毫米 计 小于某直径之土重百分数% 习题1-2 颗粒大小级配曲线

1—3某土样孔隙体积等于颗粒体积,求孔隙比e 为若干? 若Gs=2.66,求ρd =? 若孔隙为水所充满求其密度ρ和含水量W 。 解: 11 1 === s v V V e ; /33.12 66 .2g V M s d === ρ.121 66.2V M M w s =+=+= ρ%6.3766 .21=== s w M M ω。 1—4在某一层土中,用容积为72cm 3的环刀取样,经测定,土样质量129.1g ,烘干后质量121.5g ,土粒比重为2.70,问该土样的含水量、密度、饱和密度、浮密度、干密度各是多少? 解: 3457 .25 .121cm G M V s s s === ; 3274572cm V V V s V =-=-=; %26.60626.05 .1215 .1211.129==-== s w M M ω; 3/79.172 1.129cm g V M === ρ; 3/06.272 27 15.121cm g V V M v w s sat =?+=+= ρρ;

土力学第四次作业答案详解

1.某地基的地质剖面图描述如下:(自上而下)耕土,厚度h=1.00m ,3 16.0/kN m γ=;粉质粘土,厚度h=2.20m ,3 17.5/kN m γ=;粉土,厚度h=2.60m ,3 18.9/kN m γ=, 320.0/sat kN m γ=;淤泥,厚度h=3.20m ,317.0/sat kN m γ=;以下为不透水层。注意, 水位线位于地面以下3.20m 处。 (1)计算地面以下深度为1m ,3.2m ,5.8m ,9m 处的自重应力,并绘出分布图。 解: z=1m,cz σ=16.0kN/m 3*1m=16kPa z=3.2m,cz σ=16 kPa +17.5 kN/m 3*2.2m=54.5 kPa z=5.8m,cz σ=54.5 kPa +(20.0-10) kN/m 3*2.6m=80.5 kPa z=9m : 上部cz σ=80.5kPa +(17.0-10) kN/m 3*3.20m=102.9 kPa 下部cz σ=102.9kPa +10 kN/m 3*(2.60+3.20) m=160.9 kPa 说明:牢记浮重度与饱和重度的关系'sat w γγγ=-。一般情况下,不用根据不同土层查表得 到相对土粒密度。 (2)当地下水位降至淤泥顶面时,计算地基中的自重应力,并绘出分布图。 解:z=1m,cz σ =16kPa z=3.2m,cz σ=54.5 kPa z=5.8m,cz σ=54.5 kPa +18.9 kN/m 3*2.60m=103.6 kPa z=9m,上部cz σ=103.6 kPa +(17.0-10) kN/m 3*3.20m=126.0 kPa 下部cz σ =126.0 kPa +10 kN/m 3*3.2m=158.0 kPa 说明:水面高出地面的情况,如果地面土层是透水层,则地面以上的水层不会对土自重应力造成影响

《材料力学》课程教学大纲

《材料力学》课程教学大纲 二、教学目标 了解材料力学的基本理论、基本概念和基本分析方法。使学生能科学地辨认材料力学中的各种概念、原理、专业术语,使学生知道材料力学中各种构件的分类、受力过程和变化倾向。理解材料力学中杆件和梁的几种变形形式。使学生能用自己的语言对各种理论知识加以叙述、解释和归纳,并且能够指出各部分知识之间的内在联系和相互区别。 熟悉各种概念、原理和定律,掌握其计算与应用的方法。具体反映在: 1. 对材料力学的基本理论、基本概念和基本分析方法有明确的认识。 2. 掌握一般杆类零件和构件的受力与变形原理,具有绘出其合理的力学计算简图的初步能力。 3. 能够熟练地分析与计算杆件在拉、压、剪、扭、弯时的内力,绘制相应的内力图。 4. 能够熟练地分析与计算杆件在基本变形下的应力和变形,并进行相应的强度和刚度计算。 5. 对应力状态理论与强度理论有明确的认识,并能够将其应用于组合变形情况下的强度计算。对应变状态有关概念有一定了解和认识。 6. 熟练地掌握简单超静定问题的求解方法。 7. 能够熟练地分析与计算理想中心受压杆件的临界荷载和临界应力,并对国家现行钢结构设计规范所规定工程压杆的稳定计算方法,有深入地了解和认识,并能够熟练地进行压杆的稳定性计算。 8. 对杆件的应变能有关概念、基本原理和基本定理有一定认识和掌握,并能够熟练地用来计算简单梁、扭转圆轴和简单拉压杆结构的位移,进而计算简单超静定问题的内力。 9.对于常用材料的基本力学性能及其测试方法有初步认识。 10. 对于电测实验应力分析的基本原理和方法有初步认识。 三、教学内容与教学要求 1.绪论 内容要求:了解材料力学的任务、变形固体的概念;理解变形固体的基本假设;熟悉杆件变形的基本形式分类。 重点:杆件的四种基本变形。 难点:理解变形固体的四个基本假设。

土力学第五次作业答案

土力学第五次作业答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.在荷载为100kPa 作用下,非饱和土样孔隙比e=1.0,饱和度为80%,当荷载增加之200kPa 时,饱和度为90%,试问土样的压缩系数a 为多少?并求出土样的压缩模量s E 。 解:由s r G S e ω?= 可知,当w V 、s V 不变(也即 w s V V ω=不变时),r S e 为常数。 12280% 1.00.88990% r r S e e S = =?= 压缩系数61122110.889 1.1110 1.11()200100 e e a Pa MPa p p -----= ==?=-- 压缩模量111 1.801.11 s e E MPa a ++= == 2.一个饱和土样,含水率为40%,重度18kN/m 3,土粒比重G s 为2.70,在压缩试验中,荷 载从0增至150kPa ,土样含水率变为34%,试问土样的压缩量和此时的重度各位多少( 环刀高度为2cm ) 解:加荷前土体的孔隙比 330(1) 1 2.710/(140%)/18/1 1.10s w G e kN m kN m γωγ += -=?+-= 加荷后土体的孔隙比,饱和土中 e ω 为定值。 00/0.34 1.1/0.400.935e e ωω==?= 压缩量0(1.10.935) 20 1.57(1)1 1.1 e H H mm mm e ?-?= =?=++ 33(1)/(1) 2.710/(10.34)/(10.935)18.7/s w G e kN m kN m γγω=++=?++= 3.从一黏土层中取样做室内压缩试验,试样成果列于表5—9中。试求: (1)该黏土的压缩系数a 1-2及相应的压缩模量E s,1-2,并评价其压缩性; (2)设黏土层厚度为2m ,平均自重应力σc =50kPa ,试计算在大面积堆载p 0=100kPa 的作用下,黏土层的固结压缩量。 表 黏土层压缩试验资料 解:(1)11212120.7100.650 0.60.20.1 e e a MPa p p ----= ==-- 1,1212110.710 2.850.6 s e E MPa a --++= == 该土属高压缩性土。 (2)050,100,p kPa p kPa =?=

材料力学课程大纲

中国海洋大学本科生课程大纲 一、课程介绍 1.课程描述(中英文): 材料力学为船舶与海洋工程专业的学科基础必修课程。通过本课程的学习,使学生对工程设计中结构构件的强度、刚度和稳定性问题具有明确的基本概念,必要的基本知识及一定的计算能力和分析能力。能将常见的结构构件简化为力学模型,较熟练地确定杆件的内力并绘制内力图,较熟练地分析计算杆件由基本变形引起的应力、变形和位移,并运用强度、刚度和稳定性条件,对杆件的承载能力进行分析、计算和校核,熟悉基本的材料力学实验,并能测定常用钢材在常温、静载下的力学性能。 Mechanics of materials is a compulsory course for students majoring in naval architecture and marine engineering. By studying this course, students can have a clear concept, necessary basic knowledge, and certain analysis ability for the strength, stiffness and stability of structure in engineering design. Students can simplify common structures into mechanical models, determine the internal forces, analyze the stress and strain caused by the basic deformation of the members, and use the strength, stiffness and stability conditions to analyze, calculate and check the bearing capacity of the structures. Students should be familiar with basic material mechanics experiments, and can determine the mechanical properties of common steel under normal temperature and static load. 2.设计思路: 材料力学是船舶与海洋工程专业的一门重要课程,本课程从圆截面杆件的材料力 - 5 -

材料力学基本概念及公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位: (112,11×106 ,11×109 ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

材料力学复习提纲

材料力学复习提纲(二) 弯曲变形的基本理论: 一、弯曲力 1、基本概念:平面弯曲、纯弯曲、横力弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形心主轴、形心主矩、抗弯截面模 2、弯曲力:剪力方程、弯矩方程、剪力图、弯矩图。 符号规定 3、剪力方程、弯矩方程 1、首先求出支反力,并按实际方向标注结构图中。 2、根据受力情况分成若干段。 3、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力的代数和即为该截面的剪力方程,截面左侧向上的外力为正,向下的外力为负,右侧反之。 4、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力对该截面形心之矩的代数和即为该截面的弯矩方程,截面左侧顺时针的力偶为正,逆时针的力偶为负,右侧反之。 对所有各段均应写出剪力方程和弯矩方程 4、作剪力图和弯矩图 1、根据剪力方程和弯矩方程作图。剪力正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出。 2、利用微积分关系画图。 二、弯曲应力 1、正应力及其分布规律 ()() max max max 3 2 4 3 411-12 6 64 32 z z Z z z z z z z I M E M M M y y y W EI I I W y bh bh d d I W I W σ σσρ ρππα=== = === = = = ?抗弯截面模量矩形 圆形 空心

2、剪应力及其分布规律 一般公式 z z QS EI τ* = 3、强度有条件 正应力强度条件 [][][] max z z z M M M W W W σσσσ= ≤≤≥ 剪应力强度条件 [] max max max z maz z QS Q I EI E S τττ** ≤= = 工字型 4、提高强度和刚度的措施 1、改变载荷作用方式,降低追大弯矩。 2、选择合理截面,尽量提高 z W A 的比值。 3、减少中性轴附近的材料。 4、采用变截面梁或等强度两。 三、弯曲变形 1、挠曲线近似微分方程: ()EIy M x ''=- 掌握边界条件和连续条件的确定法 2、叠加法计算梁的变形 掌握六种常用挠度和转角的数据 3、梁的刚度条件 ; []max y f l ≤ max 1.5 Q A τ= max 43Q A τ= max 2 Q A =max max z z QS EI *=

《材料力学》

《材料力学》

沈阳建筑大学2011年硕士研究生入学考试 初试《材料力学》科目考试大纲 一、考查目标 明确材料力学的研究对象、基本假设,掌握分析、研究问题的基本方法,并熟练应用材料力学问题的基本方法分析、解决工程实际简单问题的综合能力。 二、考试形式与试卷结构 (一)试卷满分及考试时间 满分为150分,考试时间为3小时。 (二)答题方式 答题方式为闭卷、笔试。 (三)试卷内容结构 客观题,包括判断题、选择填空题。主观计算题。 (四)试卷题型结构 客观题40分,计算题110分。 三、考查范围 (一)材料力学概述: 变形体,各向同性与各向异性弹性体,弹性体受力与变形特征;工程结构与构件,杆件受力与变形的几种主要形式;用截面法求指定截面内力。 (二)轴向拉伸与压缩: 轴向拉压杆的内力、轴力图,横截面和斜截面上的应力,轴向拉压的应力、变形,轴向拉压的强度计算,轴向拉压的超静定问题,轴向拉压时材料的力学性质。 (三)剪切与扭转: 连接件剪切面的判定,切应力和挤压应力的计算;切应力互等定理和剪切虎克定律;外力偶矩的计算、扭矩和扭矩图;圆轴扭转时任意截面的扭矩,扭转切应力,圆轴扭转时任意两截面的相对扭转角,圆截面的极惯性矩及抗扭截面模量的计算。

(四)弯曲内力: 剪力和弯矩的计算,根据载荷集度、剪力和弯矩间的微分关系画出剪力图和弯矩图。 (五)弯曲应力: 弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力,提高弯曲强度的措施;弯曲惯性矩和抗弯截面系数的计算。 (六)弯曲变形 挠曲线微分方程,用积分法求弯曲变形,用叠加法求弯曲变形,解简单静不定梁,梁的刚度条件。 (七)应力和应变分析与强度理论 应力状态,主应力和主平面的概念,二向应力状态的解析法和图解法;计算斜截面上的应力、主应力和主平面的方位;三向应力状态的应力圆画法;掌握单元体最大剪应力计算方法;各向同性材料在一般应力状态下的应力一应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系;一般应力状态下的应变能密度,体积改变能密度与畸变能密度;四种常用的强度理论。 (八)组合变形 组合变形和叠加原理;拉压与弯曲组合变形杆的应力和强度计算;偏心压缩;扭转与弯曲组合变形下,圆轴的应力和强度计算;组合变形的普遍情况。 (九)压杆稳定 压杆稳定的概念;常见约束下细长压杆的临界压力、欧拉公式;压杆临界应力以及临界应力总图;压杆失效与稳定性设计准则;压杆失效的不同类型,压杆稳定计算;中柔度杆临界应力的经验公式;提高压杆稳定的措施。 (十)动载荷

土力学课堂作业答案

(第二次作业) 2-1 某办公楼工程地质勘察中取原状土做试验,用体积为1003 cm 的环刀取样试验,用天平测得环刀加湿土的质量为245.00g ,环刀质量为55.00g ,烘干后土样质量为170.00g ,土粒比重为2.70。计算此土样的天然密度、干密度、饱和密度、天然含水率、孔隙比、孔隙率以及饱和度,并比较各种密度的大小。 解:已知:V=100 cm 3;M=245-55=190g ;M s =170g ;土粒比重Gs=M s /V s =2.70; M w = M - Ms=186-170=16g ,ρw=1 g/cm 3;所以V w =16cm 3; 土粒比重G s =M s /V s =2.70;所以V s = M s /2.70=62.96cm 3; V=100 cm 3;Vs=62.96cm 3;Vw=16cm 3; 所以V v =V-V s =100-62.96=37.04cm 3;V a =V v -V w =37.04-16=21.04 cm 3; 因此:天然密度V m = ρ =190/100=1.90 g/cm 3; 干密度/d s m V ρ= =170/100=1.70 g/cm 3; 饱和密度()/sat s v w m V V ρρ=+=(16+170+21.04×1)/100=2.07 g/cm 3; 天然含水率%42.9%100170 16%100=?=?= s w m m w 孔隙比/v s e V V == 37.04/62.96=0.588 孔隙率()/100v n V V =?%=V v /V=37.04/100=37.04% 饱和度()/100r w v S V V =?%=16/37.04=43.2% 综上所述:ρsat >ρ>ρd 2-3某住宅地基土的试验中,已测得土的干密度d ρ=1.643 /cm g ,含水率w =21.3﹪,土粒比重 S G =2.65。计算土的e 、n 和r S 。此土样又测得L w =29.7﹪、P w =17.6﹪,计算P I 和L I ,描述土的物 理状态,定出土的名称。 解:(1)根据换算公式求e 、n 、r S 值: 616.0164 .11 65.21 1)1()1(1)1(=-?= -=-++= -+= d s d w s w s G G G e ρρ ωρρωρ ρωω 381.0616 .01616.01=+=+= e e n %64.91616 .065 .2213.0=?== e wG S s r (2)已知:w =21.3﹪、L w =29.7﹪、P w =17.6﹪

土力学第七次作业解答

1.表述朗肯土压力理论和库仑土压力理论的相同点和不同点,主要分析假设条件,实用土的种类、误差等等。 答:朗肯上压力理论是根据半空间体的应力状态和土单元体(土中一点)的极限平衡理论得出的上压力计算理论。 相同点:都要求挡土墙的移动是以使墙后填土的剪力达到抗剪强度土压力。两种土压力理论都是极限平衡状态下作用在挡土墙上的土压力,都属于极限平衡理论。 不同点: 1)假设条件不同:郎肯假设墙背直立、光滑、填土水平面无限延伸; 库仑假定:填土为均匀,各自同性,无粘土;滑动土体看做滑动土楔,其滑裂面为通过墙踵的平面;滑动土楔视为刚体。 2)求解方法不同:郎肯是从一点的应力状态出发,先求出压力强度,再求出总压力,属于极限应力法,适用于填土表面为水平的无粘土或粘性土的土压力计算;而库仑考虑整个滑动楔体静力平衡,直接求出总土压力,需要时再求解压力强度,属于滑动楔体法,只适用于填土表面为水平的粘性土,对无粘性土只能用图解法计算。 3)适用范围不同:库仑要广。 4)计算精度不同:郎肯主动土压力偏大,被动土压力偏小,墙体粗糙;库仑主动土压力接近实际土压力,被动土压力差距较大,墙体滑动面为平面。 2.某挡土墙高5m ,墙后填土为黏土,重度3 18.6/kN m γ=,饱和重度319.6/sat kN m γ=,粘聚力20c kPa =,内摩擦角0 25?=,地下水2w H m =,试计算该挡土墙后静止土压力 分布图,总静止土压力值及其作用点位置。【本题按照“水土分算”计算】

解: 21.58B kPa σ=38.28C kPa σ=30wC kPa σ=A B C 2m 3m 地下水位以上(下)的静止土压力系数001sin 1sin 250.58 K ?=-=-= B 点土压应力为 300.5818.6/221.58B K z kN m m kPa σγ==??= 水位以下,C 点土压应力()300.5819.610/338.28C B K z kN m m kPa σγσ==+?-?= C 处的水压力 3310/30wc m kN m kPa σ=?=(图中红色所示) 总的整体土压力包括地下水位上下土压力和水压力。 AB BC wBC F F F F =++∑ 0.521.58221.58/AB F kPa m kN m =??= ()21.5830.538.2821.58364.7425.0589.79BC F kPa m kPa m kN kN kN =?+?-?=+= 0.533045/wBC F m kPa kN m =??=

土力学第三次作业答案

1.什么叫流网,它是什么样的图象流网两簇曲线的物理意义是什么构成流网的这两簇曲线必须满足的条件是什么在整个渗流场中流网有哪些特点 答:流网指流线和等势线两组相互垂直交织的曲线。其中流线指稳定渗流情况下表示水质点的运动路线;等势线表示势能或水头的等值线。流线和等势线必须满足正交及各个网格的长宽比为常数的条件。流网中,流线越密的部位流速越大,等势线越大的部位水力坡降越大。 2.什么是流砂与管涌现象他们有什么区别和联系如何防治 答: 在向上的渗流力作用下,粒间有效应力为零时,颗粒群发生悬浮、移动的现象称为流砂(土)现象。这种现象多发生在颗粒级配均匀的饱和细、粉砂和粉土层中,一般具有突发性、对工程危害大。 在水流渗透作用下,土中的细颗粒在粗颗粒形成的孔隙中移动,以至流失;随着土的孔隙不断扩大,渗流速度不断增加,较粗的颗粒也相继被水逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌陷,这种现象称为管涌。它多发生在砂性土中,且颗粒大小差别大,往往缺少某种粒径,其破坏有个时间发展过程,是一种渐进性质破坏。 流砂现象的防治:①减小或消除水头差,如采取基坑外的井点降水法降低地下水位,或采取水下挖掘;②增长渗流路径,如打板桩;③在向上渗流出口处地表用透水材料覆盖压重以平衡渗流力;④土层加固处理。如冻结法、注浆法等。 管涌现象的防治:①改变水力条件,降低水力梯度,如打板桩;②改变几何条件,在渗流逸出部位铺设反滤层是防止管涌破坏的有效措施。 3.习题图3-1为一板桩打入透土层后形成的流网。已知透水土层深18.0m,渗透系数k=3×10-4mm/s。板桩打入土层表面以下9.0m,板桩前后水深如图3-13所示。试求:(1)图中所示a、b、c、d、e各点的孔隙水压力;(2)地基的单位透水量。 (理解PPT以及讲义中关于流网性质以及流网绘制部分内容;PS:题目中已经画好了等势线和流线,解题时特别要注意边界流线和边界等势线) 不透水层 习题3-1图 (本题中关于孔隙水压力的概念没有明确给出,本题目第一问在评分时会放松要求,但是请大家根据参考解答仔细研究本题) 注意:题目中d点得位置修改过了,与b点在同一水平面,但是在板桩墙的两侧。如果继续按照之前位置,需要按照c点得算法求解,g取10。(本题目批改时,d点得孔隙水压力

〈材料力学〉考试大纲

材料力学 一、课程的性质与设置目的和要求 材料力学是由基础理论课向设计课程过渡的技术基础课。该课程对后续专业课及工程应用都有深远的影响。通过对材料力学课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础理论知识、比较熟练的计算能力、一定的分析能力和实验能力。 二、课程内容与考核目标 本课程主要讲述杆件的强度、刚度和稳定性理论及其应用,包括四种基本变形与组合变形的应力和变形,强度和刚度计算,能量方法与超静定问题,压杆稳定,动载荷与交变应力。 第一章拉伸与压缩 1. 学习目的与要求:本章介绍杆件在拉伸或压缩时的应力和变形计算。通过学习,要求能熟练绘制杆件的轴力图;能熟练进行杆件强度计算和变形计算。 2. 课程内容:轴向拉、压的概念;外力、内力、应力、应变、变形、位移等概念;拉(压)杆的内力、内力图;应力和强度计算、材料的拉、压力学性能、杆件的变形计算;简单的超静定问题。 3. 考核知识点:轴力、轴力图;轴向拉压时截面上的应力;轴向拉压时的变形、虎克定律;材料的力学性能(低碳钢、铸铁的拉伸试验的应力应变图;低碳钢和铸铁的压缩试验及两类材料的比较);轴向拉压的强度条件及强度计算; 4. 考核要求:能熟练运用截面法计算杆件的轴力,正确绘制轴力图;掌握杆件拉、压时的强度计算;掌握杆件的变形计算;了解材料的基本力学性能以及试件拉、压破坏时的现象和原因;掌握求解简单超静定问题的方法。 第二章剪切 1.学习目的与要求:本章介绍连接件的实用计算。通过学习,要求会计算简单的连接件的强度问题。 2.课程内容:剪切构件的受力和变形特点,连接处可能的破坏形式,剪切和挤压的实用计算。 3.考核知识点:剪切和挤压的概念,剪切和挤压的应力计算。 4.考核要求:了解剪切和挤压的概念,会计算简单的连接件的强度问题。 第三章扭转 1.学习目的与要求:本章介绍杆件扭转时的应力和变形,通过学习,要求能熟练绘制杆件的扭矩图;掌握应力和变形的计算公式,能熟练进行轴类零件的强度和刚度计算 2.课程内容:纯剪切概念、剪切胡克定律、切应力互等定理;功率、转速与外力偶矩的关系;扭矩和扭矩图、应力和变形的计算、强度条件和刚度条件;弹簧的应力和变形计算;简单扭转超静定问题的计算;非圆截面杆扭转的应力和变形简介。 3.考核知识点:扭矩与扭矩图;切应力、剪切胡克定理;切应力计算公式;扭转强度条件及其应用;刚度条件的简单应用。 4.考核要求:掌握扭矩计算与扭矩图绘制;了解剪切胡克定理;掌握切应力计算公式;能熟练地应用

土力学地基基础作业及参考答案

《土力学与地基基础》作业 (一)填空 1.颗粒级配曲线越,不均匀系数越,颗粒级配越。为获得较大密实度,应选择级配的土料作为填方或砂垫层的土料。 2.对无粘性土的工程性质影响最大的是土的,工程上用指标、来衡量。 3.在粘性土的物理性质指标中,对粘性土的性质影响较大的指标是。4.粘性土的塑性指标I p,液性指标I L。 5.工程上常用C u表示土的颗粒级配,C u时视为均匀的, C u时视为不均匀的。 6.土中应力按起因分为和,按作用原理或传递方式可分为和。 7.附加应力自起算,自重应力自起算。 8.应力引起土体压缩,应力影响土体的抗剪强度。 9.土的渗透破坏形式通常为和。 10.某点处于极限平衡状态时,其破坏面与大主应力作用面的夹角为。11.土的抗剪强度的两种表达式为和。 12.土的抗剪强度指标的常用测定方法有、、和。 13.随荷载增加,地基变形的三个阶段是、和。14.荷载试验曲线上,从线性关系开始变成非线性关系时的界限荷载称为。 15.在太沙基极限承载力理论中,假设地基的破坏形式为。 16.郎肯土压力理论中,当墙后填土达到主动郎肯状态时,填土破裂面与水平面夹角为。 17.相同地基上的基础,当宽度相同时,埋深越大,地基的承载力。18.柔性基础在均布荷载作用下,其基底反力分布呈。 19.钢筋混凝土扩展基础指和。 20.浅基础指埋深的基础。

21.浅基础按刚度可分为和;按构造可分 为,、、、。 答案: 1.平缓(陡);大(小);好(差);良好 2.密实度;相对密度Dr;孔隙比e 3.液性指数 4.=w L-w p;=(w-w p)/I P 5.不均匀系数;小于5;大于10 6.自重应力;附加应力;有效应力;孔隙水压力 7.基础底面;天然地面 8.附加;自重 9.流土;管涌 10.450+φ/2 11.总应力法;有效应力法 12.直接剪切试验;三轴剪切试验;无侧限剪切试验;十字板剪切试验 13.弹性阶段;塑性阶段;破坏阶段 14.临塑荷载 15.整体剪切破坏 16.450+φ/2 17.越大 18.均匀分布 19.柱下钢筋混凝土独立基础;墙下钢筋混凝土条形基础 20.小于等于5m 21.刚性基础;柔性基础;独立基础;条形基础;筏板基础;箱型基础;壳体基础 (二)选择题

07310150材料力学性能教学大纲.docx

材料力学性能 Mechanical Properties of Materials 课程编号: 07310150 学分:2 学时:30(其中:讲课学时: 26实验学时: 4上机学时:) 先修课程:材料科学基础、工程力学、材料工艺学或组织控制等课程 适用专业:金属材料、无机非金属材料、高分子材料、光电、复合材料、材料成型与 加工等各专业本科三年级学生 教材:《工程材料力学性能》,束德林主编,机械工业出版社, 2008 年 6 月第 2 版开课学院: 一、课程的性质与任务: 《材料力学性能》是材料类专业的一门主要的技术基础课程。 《材料力学性能》的基本任务是通过课堂教学和实验教学,使学生掌握材料在不同条件 下的力学行为及其变化规律,掌握表征材料力学性能的各项指标和测定方法,以及影响 材料性能的内外因素,进一步明确材料的组成―工艺―结构―性能的关系,提高学生正 确选择和合理使用材料、改进材料性能方面的能力。二、课程的基本内容及要求: 一、绪论 1、教学内容 (1)本课程的目的、性质和主要内容; (2)本课程与其它课程的关系、课程学习方法。 2、基本要求 (1)理解本课程的目的、性质和主要内容; (2)了解本课程与其它课程的关系、课程学习方法。 二、材料在单向静拉伸载荷下力学性能 1、教学内容 (1)拉伸曲线和应力应变曲线; (2)弹性变形:弹性变形及其本质、弹性模量、比例极限与弹性极限、弹性比功; (3)弹性不完整性:包申格效应、弹性后效、弹性滞后和循环韧性; (4)塑性变形:塑性变形方式与特点、屈服现象与屈服强度、影响屈服强度的因素、应变硬化、颈缩现象、抗拉强度、塑性; (5)材料的断裂:断裂类型和断裂过程、断裂机理和微观断口特征、断裂强度、断裂理论的应用、韧性与韧度。

《材料力学 》

材料力学 一、1-5 CCACA 6-10 DDBAD 二、1-5 ABABB 6-10 ABABA 11-15 ABAAA 16-20 ABBBA 21-25 BBAAA 26-30 BABAA 31-35 BBAAB 36-40 ABAAA 一、单选题(共 10 道试题,共 20 分。) V 1. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度; B. 增加构件表面硬度; C. 加大构件的几何尺寸; D. 减缓构件的应力集中 满分:2 分 2. 如图: A. A

C. C D. D 满分:2 分 3. 截面上的切应力的方向() A. 平行于截面 B. 垂直于截面 C. 可以与截面任意夹角 D. 与截面无关 满分:2 分 4. 如图1:

B. B C. C D. D 满分:2 分 5. 如图2: A. A B. B C. C D. D 满分:2 分 6. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高; B. 工作应力增大,持久极限降低; C.

工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 满分:2 分 7. 脆性材料的破坏应力是() A. 比例极限 B. 弹性极限 C. 屈服极限 D. 强度极限 满分:2 分 8. 圆截面杆受扭转作用,横截面任意一点(除圆心)的切应力方向() A. 平行于该点与圆心连线 B. 垂直于该点与圆心连线 C.

不平行于该点与圆心连线 D. 不垂直于该点与圆心连线满分:2 分 9. 如图3: A. A B. B C. C D. D 满分:2 分 10. 材料的持久极限与试件的()无关 A. 材料 B. 变形形式 C.

土力学第4 5章作业答案

第四章土中应力 4-8某建筑场地的地层分布均匀,第一层杂填土厚1.5m ,γ=17kN/m 3;第二层粉质黏土厚4m , γ=19kN/m 3,d s =2.73,ω=31%,地下水位在地面下2m 深处;第三层淤泥质黏土厚8m ,γ=18.2kN/m 3,d s =2.74,ω=41%;第四层粉土厚3m , γ=19.5kN/m 3,d s =2.72,ω=27%;第五层砂岩未钻穿。试计算各层交界处的竖向自重应力σc ,并绘出σc 沿深度分布图。 解:(1)求 e V V W 1w s s w s 11s s s s w s e e V W W 代入上式得: ) 1() (s w s ,从而得: 32 kN/m 191.9 33 kN/m 197.8 34 kN/m 709.9 (2)求自重应力分布 kPa 0c0 kPa 5.255.17111c1 h kPa 0.355.0195.25211c h h 水kPa 169.675.3191.90.3542c 2c )(水h kPa 745.1328197.8169.6733 c23c h kPa 872.1613709.9745.13244 c3c4 h 上kPa 872.306)0.30.85.3(10872.161w w c4c4 h 下

4-9某构筑物基础如右图所示,在设计地面标高处 作用有偏心荷载680kN ,偏心距 1.31m ,基础埋深为2m ,底面尺寸为4m ×2m 。试求基底平均压力p 和边缘最大压力p max ,并绘出沿偏心方向的基底压力分布图。解:(1)合力的偏心距e e F e G F )(m 891.010008.8902242068031.1680 G F e F e >m 667.06 l 基底出现部分拉力区(2)则应用 891.023) (2max l b G F p 计算p max kPa 57.300654.62000 891.02423)22420680(2max p (3)基底平均压力p kPa 29.150109.1231000 23 e l b G F A G F p 或kPa 29.1502 57 .3002max p p 4-10某矩形基础的底面尺寸为4m ×2.4m ,设计地面下埋 深为 1.2m (高于天然地面0.2m ),设计地面以上的荷载为1200kN ,基底标高处原有土的加权平均重度为18kN/m 3。试求基底水平面1点及2点下各3.6m 深度M 1点及M 2点处的地基附加应力σz 值。 解:(1)基底压力 kPa 1492.1204 .241200G d A F A G F p (2)基底附加应力 kPa 1310.118149m 0 d p p

《 材料力学 》课程教学大纲

《材料力学》课程教学大纲 二、课程简介 材料力学课程是一门用以培养学生在工程检验与设计中有关力学方面设计与计算能力的技术基础课,本课程主要研究工程结构中构件的承载能力问题。通过材料力学的学习,能够对构件的强度、刚度和稳定性问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实践能力。 材料力学课程是高等工科院校中土木工程专业一门主干专业课程。在教学过程中要综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行土木工程毕业生所需的基本训练,为学生进一步学习有关后续专业课程和有目的从事工程检验与设计工作打下基础。因此材料力学课程在土木工程专业的教学计划中占有重要的地位和作用。 三、课程目标 材料力学是由基础理论课过度到专业课程的技术基础课。通过该课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力、一定的分析能力和初步的实验能力。 四、教学内容及要求 第一章绪论及基本概念(2课时) 内容:材料力学的任务和研究对象;变形固体的基本假设;内力、截面法;应力的概念;线应变和剪应变;杆件变形的基本形式。 重点讲解:内力、应力和应变的概念和胡克定律。介绍本课程重点内容及学习方法。 第二章轴向拉伸与压缩(6课时) 内容:轴向拉伸和压缩的基本概念和实例;截面法、轴力和轴力图;直杆横截面和斜截面上的应力,最大剪切应力;低碳钢和铸铁的拉伸试验及拉伸时材料的力学性质;低碳钢和铸铁的压缩试验及压缩时材料的力学性质;许用应力,强度条件;圣维南原理;轴向拉伸和压缩时的变形;应变能、比能;应力集中的概念。 重点讲解轴向拉(压)杆内力、应力以及强度计算的概念,截面法在求解拉(压)杆内力中的具体应用。详细介绍材料在拉伸与压缩时的力学性能。重点讲解轴向拉(压)杆的应变和变形计算

材料力学基本概念

材料力学 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应 变沿横截面均匀分布N F A σ= 2、 材料力学应力分析的基本方法:①几何方程:const ε=即变形关系②物理方程:E σε=即应力应变 关系③静力学方程:N A F σ?=即内力构成关系 3、 N F A σ= 适用范围:①等截面直杆受轴向载荷(一般也适用于锥角小于5度的变截面杆)②若轴向载荷沿横截面非均匀分布,则所取截面应远离载荷作用区域 4、 圣维南原理(局部效应原理):力作用于杆端的分布方式,只影响杆端局部范围的应力分布,影响区的 轴向范围约离杆端1—2个杆的横向尺寸 5、 拉压杆斜截面上的应力:0c o s /c o s N N F F p A A αασαα= ==;2 0cos cos p αασασα==, sin sin 22 p αασταα==;0o α=, max 0σσ=;45o α=,0 max 2 στ= 第二节 材料拉伸时的力学性能 1、 材料拉伸时经过的四个阶段:线弹性阶段,屈服阶段,硬化阶段,缩颈阶段 2、 线(弹)性阶段:E σε=;变形很小,弹性;p σ为比例极限,e σ为弹 性极限 3、 屈服阶段:应力几乎不变,变形急剧增大,含弹性、塑性形变;现象是出 α p α α τα

土力学第五次作业答案

1.在荷载为100kPa 作用下,非饱和土样孔隙比e=1.0,饱和度为80%,当荷载增加之200kPa 时,饱和度为90%,试问土样的压缩系数a 为多少?并求出土样的压缩模量s E 。 解:由s r G S e ω?= 可知,当w V 、s V 不变(也即 w s V V ω=不变时),r S e 为常数。 12280% 1.00.88990% r r S e e S = =?= 压缩系数61122110.889 1.1110 1.11()200100 e e a Pa MPa p p -----= ==?=-- 压缩模量111 1.801.11 s e E MPa a ++= == 2.一个饱和土样,含水率为40%,重度18kN/m 3,土粒比重G s 为2.70,在压缩试验中,荷 载从0增至150kPa ,土样含水率变为34%,试问土样的压缩量和此时的重度各位多少?(环刀高度为2cm ) 解:加荷前土体的孔隙比 330(1) 1 2.710/(140%)/18/1 1.10s w G e kN m kN m γωγ += -=?+-= 加荷后土体的孔隙比,饱和土中 e ω 为定值。 00/0.34 1.1/0.400.935e e ωω==?= 压缩量0(1.10.935) 20 1.57(1)1 1.1 e H H mm mm e ?-?= =?=++ 33(1)/(1) 2.710/(10.34)/(10.935)18.7/s w G e kN m kN m γγω=++=?++= 3.从一黏土层中取样做室内压缩试验,试样成果列于表5—9中。试求: (1)该黏土的压缩系数a 1-2及相应的压缩模量E s,1-2,并评价其压缩性; (2)设黏土层厚度为2m ,平均自重应力σc =50kPa ,试计算在大面积堆载p 0=100kPa 的作用下,黏土层的固结压缩量。 表 黏土层压缩试验资料 解:(1)11212120.7100.650 0.60.20.1 e e a MPa p p ----= ==-- 1,1212110.710 2.850.6 s e E MPa a --++= == 该土属高压缩性土。 (2)050,100,p kPa p kPa =?=

相关文档