文档库 最新最全的文档下载
当前位置:文档库 › 载货汽车驱动桥部分设计

载货汽车驱动桥部分设计

载货汽车驱动桥部分设计
载货汽车驱动桥部分设计

东风EQ1090E型载货汽车驱动桥部分设计车辆工程专业张平(099054065)指导教师童宝宏副教授

摘要

本次设计为EQ1090载货汽车驱动桥设计。汽车驱动桥作为汽车传动系中一重要组成部分,它设置在传动系的末端,由主减速器、差速器、半轴和桥壳等组成。它将经万向传动装置传来的发动机转矩通过主减速器、差速器、半轴等传到驱动车轮。它通过主减速器的主、从动齿轮之间的配合,改变由传动轴传到主动齿轮上的转速,使之在工作中实现增大转矩、降低转速,改变转矩的传递方向[1]。

本说明书中,根据给定的参数,首先对主减速器进行设计。主要是对主减速器的结构,以及几何尺寸进行了设计。主减速器的形式主要有单级主减速器和双级主减速器。本次设计采用的是双级主减速器,第一级采用一对螺旋锥齿轮,第二级采用一对斜齿圆柱齿轮。其次,对差速器的形式进行选择,并对差速器齿轮的几何尺寸进行了设计和计算。之后,对半轴的尺寸、支承形式,以及桥壳的形式和特点进行了分析设计。接着,对齿轮的强度进行了校核。最后对二级主减速器、差速器总成、半轴、轮胎做了三维模型,将它们装配起来,以分析设计与布置的合理性,并通过PRO/E对装配体进行运动仿真来了解运动速度情况。

采用非断开式驱动桥具有结构简单,加工工艺性好,制造容易,拆装,调整方便,工作可靠等优点。采用双级主减速器,保证要求的离地间隙和预定的传动比。采用普通锥齿轮差速器,结构简单、工作平稳、制造方便。

关键词: 驱动桥;主减速器;差速器;半轴;齿轮

Abstract

This design of EQ1090’s medium truck drive axle is introduced in the graduation. As one of the major parts in the automobile transmission, the drive axle locates at the end of the transmission, which consists of main reducer, differential, half axle and drive axle case. Drive axle can pass the engine torque which is brought from universal joint to the drive wheel through main reducer, differential, half axle. The speed of the main drive gear is changed with the help of the cooperation of the main drive gear and driven gear. It can decelerate, increase the torque and change its transmitting direction in the process[1].

The main reducer is designed in this paper firstly accounting to the given parameters. Single and double reducers are the two major types of main reducer. The double-level main reducer is used in my article. The first level reduction uses one pair of spiral bevel gears. The second level reduction uses a pair of helical-spur gears. Secondly, the main form of differential are General symmetric cone planetary gear differential and Non-slip differential. The form of differential is chosen and the geometry size of the differential gear is calculated. Thirdly, the size of half axle and its supporting form is analysis. Then, the intensity is checked up. Finally made a three-dimensional model of the tire, the two main gear, differential assembly, axle. They are assembled to analyze the rationality of design and layout and by PRO/E for assembly motion simulation to understand the situation velocity.

Non-breakaway drive axle has a simple structure, good processing, easy to manufacture

,easy adjustment reliable work and so on using ordinary bevel gear differential, simple structure, smooth, easy to manufacture.

keywords :Drive axle;the main reducer;differential;Axle;gear

总论

驱动桥一般由主减速器、差速器、半轴和驱动桥壳等组成。其功用是:将万向传动装置传来的发动机转矩通过主减速器、差速器、半轴等传到驱动车轮,实现降速、增大转矩;通过主减速器圆锥齿轮副改变转矩的传递方向;通过差速器实现两侧车轮差速作用,保证内、外车轮以不同转速转向。

汽车传动系的首要任务是与发动机协同工作,以保证汽车在各种行驶条件下正常行驶所必需的驱动力与车速,并使汽车具有良好的动力性与燃油经济型。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。

首先,是因为绝大多数的发动机在汽车上是纵向安置的,为使其转矩能传给左、右驱动车轮,必须经由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。

其次,是因为变速器的主要任务仅在于通过选择适当的档位数及各档传动比,以使发动机的转矩——转速特性能适应汽车在各种行驶阻力下对动力性与经济性的要求。而驱动桥主减速器的功用则在于当变速器处于最高档位(通常为直接档,有时还有超速档)时,使汽车有足够的牵引力,适当的最高车速和良好的燃料经济性。为此,则需将通过变速器或分动器经万向传动装置传来的动力,通过驱动桥的主减速器,进行进一步增大转矩,降低转速的变化。因此,要想使汽车传动系设计得合理,首先必须选择好传动系的总传动比,并适当地将它分配给变速器和驱动桥。后者的减速比称为主减速比。当变速器处于最高档位时,汽车的动力性及燃油经济性主要取决于主减速比。在汽车的总布置设计时,应根据该车的工作条件及发动机、传动系、轮胎等有关参数,选择合适的主减速比来保证汽车具有良好的动力性和燃料经济性。

差速器的功用是当汽车转弯行驶或在不平路面行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动车轮与地面间作纯滚动运动。

汽车行驶过程中,车轮对路面的相对运动有两种状态——滚动和滑动,其中滑动又有滑转和滑移两种。

汽车行驶时,左右车轮在同一时间内所滚过的路程往往是不相等的。左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,则不可避免地产生驱动轮在路面上的滑移或滑转,这不仅会加剧轮胎的磨损与功率和燃料的消耗,而且可能导致转向沉重,通过性和操纵稳定性变坏。

为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学要求。

差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。

驱动桥的传动效率主要决定于其齿轮啮合及轴承运转是的摩擦损失和润滑油的扰动、飞溅引起的功率损失。除齿轮精度及支承刚度外,正确选择润滑油可减小齿面间的摩擦损失,改善啮合;除转速影响外,正确选择轴承的尺寸及型号、间隙或预紧度,改善润滑等是减小轴承摩擦损失的有效措施;除主减速器从动齿轮轮缘的宽度、切线速度及润滑油黏度的影响外,选择合理的油面高度,可控制润滑油的扰动、飞溅引起的功率损失,这些都是减小驱动桥的功率损失提高其传动效率的主要方法。

随着高速公路网状况的改善和国家环保法规的完善,环保、舒适、快捷成为货车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为货车主减速器技术的发展趋势[3]。

货车发动机向低速大扭矩方向发展的趋势,使得驱动桥的传动比向小速比发展。为顺应节能、环保的大趋势,货车的技术性能在向节能、环保、安全、舒适的方面发展。因此,要求货车车桥也要轻量化、低噪声、高效率、大扭矩、宽速比、长寿命和低生产成本。

对不同用途的汽车来说,驱动桥的结构形式虽然可以不同,但在使用中对他们的基本要求却是一致的。综上所述,对驱动桥的基本要求可以归纳为以下几点:所选择的主减速器比应满足汽车在给定使用条件下具有最佳的动力性和经济性;当两驱动车轮以不同角速度转动时,应能将转矩平稳且连续不断地传递到两个驱动车轮上;当左右两驱动车轮的附着系数不同时,应能充分利用汽车的牵引力;能承受和传递路面与车架或车厢之间的铅垂力、纵向力和横向力及其力矩;驱动桥各零部件在强度高、刚性好、工作可靠及使用寿命长的条件下,应力求做到质量小,特别是非悬挂质量应尽量小,以减小不平路面给驱动桥的冲击载荷,从而改善汽车的平顺性;轮廓尺寸不大,以便于汽车的总布置及与所要求的驱动桥离地间隙相适应;齿轮及其他传动机件工作平稳,无噪音或低噪音;驱动桥总成及零部件的设计应能尽量满足零件的标准化、部件的通用化和产品的系列化汽车变型的要求;在各种载荷及转速工况下有高的传动效率;结构简单,修理、保养方便;机件工艺性好,制造容易[19]。

第一章EQ1090载货汽车驱动桥设计方案确定

1.1 驱动桥结构方案的确定

驱动桥的结构形式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性。

普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,对汽车平顺性和降低动载荷不利。这是它的一个缺点。

断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。

本次设计为EQ1090型货车驱动桥。由于非断开式驱动桥与断开式驱动桥相比,其形式结构简单、成本低、维修和调整方面也很简单,经济性好。所以,本次EQ1090中型货车驱动桥的设计采用非断开式驱动桥。

1.2 主减速器形式及选择

主减速器的形式主要分为两种:即单级式主减速器和双级式主减速器。

主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的一端连续而平稳的地转向另一端,所以工作平稳,噪声和振动小。而弧齿锥齿轮还存在一些缺点,比如对啮合精度比较敏感,齿轮副的锥顶稍有不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大;但是当主传动比一定时,

主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达99%。

本次设计任务的总质量为9290kg ,最小离地间隙为265mm 。此时为满足较大的主传动比,由一对锥齿轮构成的单级主减速器,已满足不了最小离地间隙的要求。所以,在本次设计中,主减速器的形式采用双级主减速器[2],纵向布置。如图1.1所示。

图1.1 双级主减速器布置形式

1.3 主减速器齿轮的齿型

第一级传动齿轮采用弧齿圆锥齿轮。因为采用了双级主减速器,动力的传递由两组齿轮共同完成,考虑其成本,则不需采用双曲面齿轮。

第二级传动齿轮采用斜齿圆柱齿轮。因为此时动力传递为直线传递,所以只能选取圆柱齿轮,而又为保证自身的轴向位置,所以采用斜齿圆柱齿轮。

1.4 双级主减速器传动比分配

一般情况下第二级减速比i 02与第一级减速比i 01之比值(i 02/i 01)约在1.4~2.0范围内,而且趋于采用较大的值,以减小从动锥齿轮的半径及负荷并适应当增多主动锥齿轮的齿数,使后者的轴径适当增大以提高其支承刚度;这样也可降低从动圆柱齿轮以前各零件的负荷从而可适当减小其尺寸及质量。在这里取i 0/i 01=1.5。则可算得:01i ==5

.10i 2.054,其 02i =010i i =054

.233.6=3.081,修定总传动比得02010i i i ==6.328。

第二章 EQ1090载货汽车主减速器设计

2.1 汽车弧齿圆锥齿轮设计[1]

2.1.1 主动锥齿轮计算载荷的确定

1)按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩je T

M N M N n k I T T TL e je ?=????==

8.146961

19.026.46353***0max η (2.1) 式中: je T ——按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩,单位 N·

m ; max e T _____发动机的输出的最大转矩,单位 N·m max e T =353N·m ;

TL i _____发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比

TL i =26.4631.7328.610=?=?i i ;

0k _____由于猛结合离合器而产生冲击载荷时的超载系数,0k =1;

η______传动系上述传动部分的传动效率,η=0.9;

n ______驱动桥数目,n =1;

2)按驱动桥打滑转矩确定从动锥齿轮的计算转矩αj T

M N i n m r G T LB LB r j ?=????=****=4.3292711496.085.015.1679142αα (2.2)

φj T ____按驱动轮打滑转矩确定从动锥齿轮的计算转矩,单位N·

m ; 2G _____汽车满载时一个驱动桥给水平地面的最大负荷, 2G =67914N ;

α_____轮胎附着系数,α=0.85;

r r ______车轮的滚动半径,r r =0.496m ;

m ______汽车最大加速度时的后桥负荷转移系数,m=1.15;

LB η_____主减速器从动齿轮到驱动车轮之间的传动效率,LB η=1;

LB i _____主减速器从动齿轮到驱动车轮之间的传动比,LB i =1;

3)按汽车日常行驶平均转矩确定从动链齿轮的计算转矩cf T

M N M N f f f n n i r G G T j h r m m r r a cf ?=?+????=++****+=37.4425)08.0018.0(1

11496.091042)()( (2.3) m ______满载质量,m =9290kg ;

g _____重力加速度,g =9.8m/s 2;

a G _____满载时总重力,a G =91042N ;

T G _____挂车满载总重力,0N ;

R f _____滚动阻力系数, 0.1-0.2,取0.018;

H f _____平均爬坡能力系数,0.05-0.09之间,取0.08;

p f ______性能系数。取0。

取)(min ?j je j T T T 、,即=m i

n j T 14696.8(m N ?)为强度计算中用以验算主减速器从动齿轮最大应力的计算载荷。T cf =4425.37M N ?为强度计算中用以验算锥齿轮疲劳寿命的计算载荷。 主动锥齿轮的计算转矩:g

c z n i T T ?=

0 0i _____主减速比 g n _____主从动锥齿轮间的传动效率,取9.0=g n

当[]

M N T T T j je c ?==8.14696,min α时,M N T z ?=7.2579

当cf c T T =时,M N T z ?=8.776 2.1.2 主减速器齿轮基本参数的选择

主减速器锥齿轮的主要参数有主、从动齿轮的齿数1z 和2z ,从动锥齿轮大端分度圆直径2D 、端面模数t m 、主从动锥齿轮齿面宽1b 和2b 、中点螺旋角β、法向压力角α等。

1)主、从动锥齿轮齿数1z 和2z

选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀,1z ,2z 之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于

40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车1z 一般不小于6;主传动比0i 较大时,1z 尽量取得小一些,以便得到满意的离地间隙;对于不同的主传动比,1z 和2z 应有适宜的搭配。又由i 01=2.054,估取Z 1=17,Z 2=35

2)节圆直径的选择

节圆直径的选择可根据从动锥齿轮的计算转矩(见式2.4,式2.5中取两者中较小的一个为计算依据)按经验公式选出:

3

22j d T K d ?= (2.4)

式中:2d K ——直径系数,取2d K =12~16;

j T ——计算转矩,m N ?,取?j T ,je T 中较小的,第一级所承受的转矩:

j T =02

i T je =M N M N ?=?14.4770081.38.14696(m N ?) (2.5) 把式(2.5)代进式(2.4)中得到2022=d ~269.3mm ;初取2d =210mm 。

3)主、从动锥齿轮齿面宽1b 和2b

锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面过窄及刀尖圆角过小,这样不但会减小了齿根圆角半径,加大了集中应力,还降低了刀具的使用寿命。此外,安装时有位置偏差或由于制造、热处理变形等原因使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间减小。但齿面过窄,轮齿表面的耐磨性和轮齿的强度会降低。

对于从动锥齿轮齿面宽2b ,推荐不大于节锥2A 的0.3倍,即223.0A b ≤,而且2b 应满

足t m b 102≤,对于汽车主减速器圆弧齿轮推荐采用: 22155.0D b =

一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适。

4)中点螺旋角β

螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,弧齿锥齿轮副的中点螺旋角是相等的,选β时应考虑它对齿面重合度∑F ,轮齿强度和轴向力大小的影响,β越大,则∑F 也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,∑F 应不小于1.25,在1.5~2.0时效果最好,但β过大,会导致轴向力增大。

汽车主减速器弧齿锥齿轮的平均螺旋角为35°~40°,而商用车选用较小的β值以防止轴向力过大,通常取35°。

5)螺旋方向

主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。

6)法向压力角

加大压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般对于“格里森”制主减速器螺旋锥齿轮来说,规定重型载货汽车可选用22.5°的压力角。载货汽车20°

查表得: 主动齿轮齿数:17

从动齿轮齿数:35

端面模数: mm mm Z d m 635

21022=== 齿面宽: mm d F 55.32210155.0155.02=?==取40mm

齿工作高: mm m H h g 2.1067.11=?==

齿全高: mm m H h 328.116888.12=?==

法向压力角: 20=α (载重汽车)

轴交角: 90=∑

节圆直径: mm m z d 10217611=?==

mm m z d 21063522=?==

节锥角: 2635

17arctan arctan 211===z z γ 641735arctan arctan

122===z z γ 节锥距: mm d d A 3.11664

sin 220126sin 2102sin 2sin 222110===== γγ 周节: mm m t 8496.1861416.31416.3=?==

齿顶高: mm m K h a 894.36649.0'2=?==

mm h h h g 306.6894.320.10''21=-=-=

齿根高: mm h h h 022.5'"11=-=

mm h h h 434.7'"22=-=

径向间隙: mm h h c g 128.1=-=

齿根角: 47.23

.116022.5arctan "arctan 011===A h δ 66.33

.116434.7arctan "arctan 022===A h δ 面锥角: 66.2966.3262101=+=+=δγγ

47.6647.2641202=+=+=δγγ

根锥角: 53.2347.226111=-=-=δγγR

34.6066.364222=-=-=δγγR

外圆直径: mm h d d 36.11326cos 306.62102cos '211101=?+=+= γ

mm h d d 41.21364cos 894.32210cos '222202=?+=+= γ

节锥顶点至齿轮外圆距离:

mm h d x 24.10226sin 306.62

210sin '211201=?-=-= γ mm h d x 50.4764sin 894.32102sin '222102=?--=

γ 理论弧齿厚: mm s t s 3.151.54.2021=-=-=

mm m s s k 10.56850.02=?=?=

齿侧间隙: 由表查得mm B 4.0=

螺旋角: ?35

2.2 主减速器第二级圆柱齿轮设计

1)齿轮计算转矩

n i i i k T K T f d ce ÷??????=η01max

19.033.631.713531÷?????=M N ?=70.14700

(2.6) 2)按驱动轮打滑扭矩确定齿轮计算转矩 )1081.3/(496.085.01.167914)/(22????=????=m m r cs i V m G T ηα

=M N ?59.10222

(2.7) 式中:d K _____由于猛接触离合器而产生的动载系数,取1;

K _____液力变矩器变矩系数,取1;

1i _____变速器一档传动比,1i =7.31;

f i _____分动器传动比,取1;

0i _____主减速器传动比,0i =6.33;

η_____发动机到主减速器从动齿轮的传动效率,η=0.9;

n _____驱动桥数目,n =1;

2G _____满载时驱动桥静载荷,N G 679142=;

2m _____最大加速时,后轴负荷转移系数,2m =1.1;

φ_____轮胎附着系数,φ=0.85;

m i _____主减速器从动齿轮到驱动轮间的传动比,m i =3.081;

m η_____主减速器从动齿轮到驱动轮间的传动效率,m η=1;

r r _____车轮滚动半径。

3)初选从动圆柱齿轮的分度圆直径

初选:2D =?2D k 3c T

cd T 为ce T 与cs T 的较小者,取10222.59 N·m

所以:2D =2D K ?359.10222

=24.34714.282--mm,取301mm 从动齿的齿数初取43,则主动齿轮的齿数为14

齿轮模数:m=D 2/z 2=301/43=7mm 所以,m=7mm

4)斜齿圆柱齿轮设计几何参数

螺旋角一般取7°~12°: β=12°

基圆柱螺旋角: 2.0)20cos 12arctan(tan )cos tan(tan =???=?=t b a are ββ

法面模数: n m =7mm

端面模数: 16.712cos /7cos /=?==βn t m m

法面压力角: n a =20°

端面压力角 ?=??==3.20)12cos /20tan(tan )cos /arctan(tan are a a n t β

法面齿距: 22714.3=?=?=n n m p π

端面齿距: 48.2216.714.3=?=?=t t m p π

法面基圆齿距: 673.2020cos 22cos =??=?=n n bn a p p

法面齿顶高系数: *an h =1

法面顶隙系数: *

n c =25.0

分度圆直径: 24.10016.71411=?=?=t m z d

88.30716.74322=?=?=t m z d

基圆直径: 01.943.20cos 24.100cos 11=??=?=t b d d α

75.2883.20cos 88.307cos 22=??=?=t b d d α

端面顶高系数: 98.012cos 1cos =??=?=*βan at h h

最少齿数: 56.53.20sin /98.02sin /2min =??=?=t at a h z

齿顶高: 017.798.016.7=?=?=at t a h m h

齿根高: 76.8)244.098.0(16.7)(=+?=+?=t t t f c h m h

齿顶圆直径: 27.114017.7224.100211=?+=?+=a a h d d

91.321017.7288.307212=?+=?+=a a h d d

齿根圆直径: 72.8276.8224.100211=?-=?-=f f h d d

36.29076.8288.307222=?-=?-=f f h d d

法面齿厚: 99.1072/14.32/=?=?=n n m S π

端面齿厚: 304.112.72/14.32/=?=?=t t m S π

齿宽: 19.8024.1008.01=?=?=d b d θ

2.3 强度计算

2.3.1 螺旋锥齿轮强度校核[10]

完成螺旋锥齿轮的几何参数计算后,还应对其进行强度计算,以保证主减速器锥齿轮有足够的强度和寿命,能安全可靠地工作。

汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为20万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过210.9MPa 。表2.1给出了汽车驱动桥齿轮的许用应力数值。

表2.1 汽车驱动桥齿轮的许用应力 MPa

实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩je T 和最大附着转矩j T f 并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据。

主减速器圆弧齿螺旋锥齿轮的强度计算

1)单位齿长上的圆周力

在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即

2

b P p = N /mm (2.8) 式中:P ——作用在齿轮上的圆周力,按发动机最大转矩max e T 和最大附着力矩r r G ?2 两种

载荷工况进行计算,N ;

2b ——从动齿轮的齿面宽;

按发动机最大转矩计算时:

213

m a x 2

10b d i T p g e ?= N /mm (2.9) 式中:max e T _____发动机输出的最大转矩,在此取353N·m ;

g i _____变速器的传动比;

1d _____主动齿轮节圆直径,在此取102mm.

按上式 m m N p /9.1264402

1021031.73533

=???= 按最大附着力矩计算时:

223

22

10b d r G p r ?=? N /mm (2.10) 式中:2G ——汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车

最大加速时的负荷增加量,在此取67914N ;

?——轮胎与地面的附着系数,在此取0.85;

r r ——轮胎的滚动半径,在此取0.496m ;

按上式 mm N p /27.6817402

2101000496.085.067914=????= 由于载货汽车一档的单位齿长上的圆周力许p =1427m N (查《汽车设计课程设计指导

书》表2.1可知。式(2.10)所算出来的值小于许p ,所以符合要求,虽然附着力矩产生的

p 很大,但由于发动机最大转矩的限制p 最大只有1427m N 。可知,校核成功。

2)轮齿的弯曲强度计算

汽车主减速器锥齿轮的齿根弯曲应力

J m d F K K K K T v m

S j w ?????????=03102σ (2.11)

式中:T _____该齿轮的计算转矩,N·m;

0K _____超载系数;在此取1.0;

s K _____尺寸系数,反映材料的不均匀性,与齿轮尺寸和热处理有关,

当m6.1≥时,44.25m K s =

,在此s K =0.697 m K _____载荷分配系数,取 =1.15;

v K _____质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度

高时,可取1.0;

b _____计算齿轮的齿面宽,mm ;

d _____所讨论的齿轮大端分度圆直径,mm ;

m _____端面模数,mm;

J _____计算弯曲应力的综合系数(或几何系数),它综合考虑了齿形系数。由《汽

车设计课程设计指导书》选取,小齿为0.26,大齿为0.24。

①按j T =min[je T ,j T f ]计算时:

2

231/700/70.58426.0621040115.1697.014.4779102mm N mm N ≤=?????????=σ (2.12)

②按T j =cf T 计算时:

2

23/3.210/36.190081.324.0621040115.1697.0137.44251022mm N mm N ≤=??????????=σ (2.13)

所以主减速器齿轮满足弯曲强度要求。

3) 轮齿的表面接触强度计算

锥齿轮的齿面接触应力为

bJ K K K K TK d C v f m s p j 3

01102?=σ N/2mm (2.14)

式中:T ——主动齿轮的计算转矩;

p C ——材料的弹性系数,对于钢制齿轮副取232.6m m N /2

1;

0K ,v K ,m K ——见式(2-10)下的说明;

s K ——尺寸系数,它考虑了齿轮的尺寸对其淬透性的影响,在缺乏经验的情况下,可取1.0;

f K ——表面质量系数,决定于齿面最后加工的性质(如铣齿,磨齿等),即表面粗糙度及表面覆盖层的性质(如镀铜,磷化处理等)。一般情况下,对于制造精确的齿轮可取1.0;

J ——计算接触应力的综合系数(或称几何系数)。它综合考虑了啮合齿面的相对曲率半径、载荷作用的位置、轮齿间的载荷分配系数、有效尺宽及惯性系数的因素的影响,按图2.1选取J=0.115

图2.1 接触计算用综合系数

当按[]αj T T je ,min 计算时,代入数据,得 Mpa Mpa j 280020.2162115.0401101115.1697.07.257921026.2323

≤=????????=σ (2.15) 当按T cf 计算时,代入数据,得

Mpa Mpa j 17504.1186115.0401101115.1697.08.77621026.2323

≤=????????='σ (2.16) 主、从动齿轮的齿面接触应力相等,所以均满足要求。

经过校合可知主减速器的主、从齿轮符合强度要求。

2.3.2 斜齿圆柱齿轮弯曲强度校核

1)主、从动齿轮的弯曲强度计算得:

[]Mpa Mpa MP Y Y m bd KT F a Sa Fa n F 68024.53155.196.2054

.2724.10019.80104.47794.1223

11111=≤=????????==σσ

(2.17)

[]Mpa Mpa MP Y Y m bd KT F a Sa Fa n F 68035.30970.135.27

88.30719.80104.47794.1223

22211=≤=???????==σσ (2.18)

齿轮的弯曲强度满足要求。

2)齿面接触强度计算:

][122H H E H u u bd KT Z Z Z σσβ≤+?==2200a MP (2.19) 式中:E Z ——材料弹性系数,E Z =2.5;

H Z ——区域系数,H Z =189.8;

βZ ——螺旋角系数,βZ =βcos =0.98;

u ——齿数比,=u 主从z z =3.081;

主动齿轮的齿面接触强度为:

u u bd KT Z Z Z H E H 1221

11+?=β

σ (2.20) =2.5??8.189 16cos a MP 081

.31081.324.10019.80104.47794.1223+????? =2181.04a MP a H MP 2200][=≤σ

主动齿轮的齿面接触强度符合要求。

从动齿轮的齿面接触强度为:

u u bd KT Z Z Z H E H 1222

22+?=β

σ (2.21) =2.5??8.189 16cos a MP 081

.31081.388.30719.80108.146964.1223+????? =1245.23a MP a H MP 2200][=≤σ

从动齿轮的齿面接触强度也符合要求。根据上面的校核,一级和二级减速齿轮都满足要求,校核成功。

2.4 主减速器齿轮的材料及热处理

驱动桥齿轮的工作条件是相当恶劣的,与传动系的其它齿轮相比,具有载荷大,作用时间长,载荷变化多,带冲击等特点。其损坏形式主要有齿轮根部弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。根据这些情况,对于驱动桥齿轮的材料及热处理应有以下要求:

1、具有较高的疲劳弯曲强度和表面接触疲劳强度,以及较好的齿面耐磨性,故齿表

面应有高的硬度;

2、轮齿心部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;

3、钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律易于控制,以提高产品的质量、缩短制造时间、减少生产成本并将低废品率;

4、选择齿轮材料的合金元素时要适合我国的情况。

汽车主减速器用的螺旋锥齿轮以及差速器用的直齿锥齿轮,目前都是用渗碳合金钢制造,齿轮所采用的钢为20CrMnTi。

用渗碳合金钢制造的齿轮,经过渗碳、淬火、回火后,轮齿表面硬度应达到58~64HRC,而心部硬度较低,当端面模数m>8时为29~45HRC。

由于新齿轮接触和润滑不良,为了防止在运行初期产生胶合、咬死或擦伤,防止早期的磨损,圆锥齿轮的传动副(或仅仅大齿轮)在热处理及经加工(如磨齿或配对研磨)后均予与厚度0.005~0.010~0.020mm的磷化处理或镀铜、镀锡。这种表面不应用于补偿零件的公差尺寸,也不能代替润滑。

对齿面进行喷丸处理有可能提高寿命达25%。对于滑动速度高的齿轮,为了提高其耐磨性,可以进行渗硫处理。渗硫处理时温度低,故不引起齿轮变形。渗硫后摩擦系数可以显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和擦伤等现象产生。

2.5 主减速器齿轮的支承

1)主动锥齿轮的支承形式有两种:悬臂式和跨置式。

(1)悬臂式:齿轮以其轮齿大端一侧的轴颈悬臂式的支承于一对轴承的外侧(如图2.2所示)。

(2)跨置式:齿轮前后两端的轴颈均以轴承支承,故又称为“两端支承式”(如图2.3所示)。

图2.2悬臂式图2.3跨置式

装于轮齿大端一侧轴颈上的轴承,多采用两个可以预紧以增强支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,后部紧靠齿轮背面的称为主动锥齿轮后轴承;当采用跨置式支承时,装于齿轮小端一侧轴颈上的轴承一般称为导向轴承。本次设计主动锥齿轮采用悬臂式。

为了减小悬臂长度和增加两支承间的距离,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由

另一轴承承受。为了方便拆装,应使靠近齿轮的轴承轴径比另一轴承的支承轴径大些。

2)从动齿轮的支承形式

从动锥齿轮采用圆锥滚子轴承支承(如图2.4所示)。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸d c +。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,d c +应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能均匀分配在两轴承上,应是c 等于或大于d 。

图2.4从动锥齿轮的支承型式

2.6 轴承的选择和校核

2.6.1 主减速器锥齿轮上作用力的计算[1]

1)锥齿轮齿面上的作用力

锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切向方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。

为计算作用在齿轮的圆周力,首先需要确定计算转矩。汽车在行驶过程中,由于变速器挡位的改变,且发动机也不全处于最大转矩状态,故主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式为疲劳损伤,所以应按输入的当量转矩d T 进行计算。作用在主减速器主动锥齿轮上的当量转矩可按下式计算:

3

1

3333332223111m a x 1001001001001001??

??????????????????? ??++??? ??+??? ??+??? ??=TR gR iR T g i T g i T g i e d f i f f i f f i f f i f T T (2.22) 式中:max e T ——发动机最大转矩,在此取353m N ?;

1i f ,2i f …iR f ——变速器在各挡的使用率,可参考表2.2选取;

1g i ,2g i …gR i ——变速器各挡的传动比,分别为7.31;4.31;2.45;1.51;1;

1T f ,2T f …TR f ——变速器在各挡时的发动机的利用率,可参考表2.2选取;

驱动桥差速器设计说明书

摘要 汽车驱动桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能。汽车差速器位于驱动桥内部,为满足汽车转弯时内外侧车轮或两驱动桥直接以不同角度旋转,并传递扭矩的需求,在传递扭矩时应能够根据行驶的环境自动分配扭矩,提高了汽车通过性。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 随着汽车技术的成熟,轻型车的不断普及,人们根据差速器使用目的的不同,设计出多种类型差速器。与国外相比,我国的车用差速器开发设计不论在技术上,还是在成本控制上都存在不小的差距,尤其是目前兴起的三维软件设计方面,缺乏独立开发与创新能力,这样就造成设计手段落后,新产品上市周期慢,材料品质和工艺加工水平也存在很多弱点。 本文认真地分析了国内外驱动桥中差速器设计的现状及发展趋势,在论述汽车驱动桥的基本原理和运行机理的基础上,提炼出了在差速器设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等关键技术;阐述了汽车差速器的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了轻型车差速器总成及半轴的结构型式;轻型车差速器的结构设计强度计算运用了理论分析成果;最后运用CATIA软件对汽车差速器进行建模设计,提升了设计水平,缩短了开发周期,提高了产品质量,设计完全合理,达到了预期的目标。 关键词:驱动桥;差速器;半轴;结构设计;

Automobile driving axle is one of the main components of cars, its basic function is increased by the transmission shaft or directly by coming from torque, again will torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function. Auto differential drive to meet internal, located in car wheel or when turning inside and outside two axles directly with different point of view, and transfer the rotating torque transmission torque in demand, according to the environment should be driving torque, improve the automatic assignment car through sex. Its quality, performance will have a direct impact on the security of the vehicle, economy, comfort and reliability. As car technology maturity, the increasing popularity of small, people of different purposes according to differential, the design gives a variety of types differential. Compared with foreign countries, China's automotive differential development design whether in technology, or in the cost control there are large gap, especially at present the rise of 3d software design, lack of independent development and innovation ability, thus causing design means backward, new products listed cycle slow, materials quality and craft processing level also has many weaknesses. This paper conscientiously analyzes the differential drive axle design at home and abroad in the present situation and development trend of automobile driven axle, this basic principle and operation mechanism, carry on the basis of the differential practiced a meet the design should be mastered in smooth and automobile driving through sexual, noise reduction technology application and parts of standardization, parts of generalization, serialization of products, and other key technology; Expounds the basic principle and automotive differential system analysis; According to economic, applicable, comfortable, safe and reliable design principles and analysis comparison, determine the small differential assembly and half shaft structure type; Small differential structure design strength calculation using theoretical analysis results; Finally using CATIA software modeling design of automotive differential, promoted design level, shorten the development cycle, improve the product quality, design completely reasonable, can achieve the desired goals. Key words:Differential mechanism;Differential gear;Planetary gear;Semiaxis;

解放CA1092货车双级主减速器驱动桥毕业设计

摘要 本次设计的题目是中型货车驱动桥设计。驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。 本文首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程,及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴型式采用全浮式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴、桥壳的设计工作。 关键词:驱动桥;主减速器;全浮式半轴;桥壳;差速器

目录 摘要............................................................................................ ................ (2) 第1章绪论 (4) 1.1 课题研究的目的和意义 (4) 1.2 课题研究现状 (4) 1.2.1主减速器型式及其现状 (5) 1.2.差速器形式发展现状............................................................................................................. .4 1.2.半轴形式发展现状............................................................ .................. . (5) 1.2.桥壳形式发展现状......................................................... .................. . (5) 1.3 设计主要内容 (9) 第2章设计方案的确定 (7) 2.1 基本参数的选择 (7) 2.2 主减速比的计算 (7) 2.3 主减速器结构方案的确定 (8) 2.4差速器的选择 (8) 2.5半轴型式的确定 (9) 2.6桥壳型式的确定 (9) 2.7本章小结 (9) 第3章主减速器的基本参数选择与设计计算 (13) 3.1 主减速齿轮计算载荷的计算 (13) 3.2 主减速器齿轮参数的选择 (14) 3.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算 (15) 3.3.1 主减速器螺旋锥齿轮的几何尺寸计算 (15) 3.3.2 主减速器螺旋锥齿轮的强度计算 (16) 3.4 主减速器齿轮的材料及热处理 (19) 3.5 第二级斜齿圆柱齿轮基本参数的选择 (19) 3.6 第二级斜齿圆柱齿轮校核 (21) 3.7 主减速器轴承的计算 (19) 3.8 主减速器的润滑 (22) 3.9 本章小结 (26) 第4章差速器设计 (27) 4.1 差速器的作用 (27) 4.2 对称式圆锥行星齿轮差速器 (27) 4.2.1 差速器齿轮的基本参数选择 (28)

五十铃轻型货车驱动桥的设计

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键字:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed,bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given ,firstly determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

江淮帅铃汽车驱动桥设计说明书

第1章绪论 1.1 本课题的目的和意义 本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这

不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350N·m 以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过 程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。 1.2 驱动桥的分类 1.2.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最

载货汽车驱动桥设计方案(DOC 52页)

目录 摘要 .................................................... 错误!未定义书签。Abstract ................................................. 错误!未定义书签。 1 绪论 ................................................... 错误!未定义书签。 本课题研究的目的和意义................................ 错误!未定义书签。 汽车驱动桥国内外发展状况............................. 错误!未定义书签。 本课题研究的主要任务................................. 错误!未定义书签。 汽车驱动桥概述....................................... 错误!未定义书签。 2 主减速器设计 ........................................... 错误!未定义书签。 主减速器结构形式简介及选择........................... 错误!未定义书签。 主减速器的基本参数选择与设计计算..................... 错误!未定义书签。 主减速齿轮计算载荷的确定 ......................... 错误!未定义书签。 主减速齿轮基本参数的选择 ......................... 错误!未定义书签。 齿轮的几何尺寸计算 ............................... 错误!未定义书签。 主减速器齿轮的材料选择............................... 错误!未定义书签。 主减速器齿轮强度计算................................. 错误!未定义书签。 主减速器齿轮支承形式的选择........................... 错误!未定义书签。 主减速器齿轮轴承的载荷计算........................... 错误!未定义书签。 锥齿轮齿面上的作用力 ............................. 错误!未定义书签。 锥齿轮齿面上的轴向力和径向力 ..................... 错误!未定义书签。 主减速器齿轮轴承的选择 ........................... 错误!未定义书签。 3 差速器设计 ............................................. 错误!未定义书签。 差速器介绍........................................... 错误!未定义书签。 差速器的原理......................................... 错误!未定义书签。 差速器齿轮主要参数选择................................ 错误!未定义书签。 差速器齿轮几何尺寸计算............................... 错误!未定义书签。 差速器齿轮的强度计算................................. 错误!未定义书签。 4 半轴设计 ............................................... 错误!未定义书签。 半轴的类型与选择..................................... 错误!未定义书签。 全浮式半轴的设计计算................................. 错误!未定义书签。

轻型货车驱动桥设计

目录 1 前言 (1) 本课题的来源、基本前提条件和技术要求 (1) 本课题要解决的主要问题和设计总体思路 (1) 预期的成果 (2) 2 国内外发展状况及现状的介绍 (3) 3 总体方案论证 (4) 4 具体设计说明 (7) 主减速器的设计 (7) 主减速器的结构型式 (7) 主减速器主动锥齿轮的支承型式及安装方法 (10) 主减速器从动锥齿轮的支承型式及安装方法 (11) 主减速器的基本参数的选择及计算 (11) 差速器的设计 (14) 差速器的结构型式 (14) 差速器的基本参数的选择及计算 (16) 半轴的设计 (17) 半轴的结构型式 (17) 半轴的设计与计算 (17) 驱动桥壳结构选择 (20) 5 结论 (22) 参考文献 (23)

1 前言 本课题是进行轻型货车汽车后驱动桥的设计。设计出小型轻型货车汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。 本课题的来源、基本前提条件和技术要求 a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。 b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。 c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。 本课题要解决的主要问题和设计总体思路 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻

商用车驱动桥设计说明书

商用车驱动桥设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率的需要时,必须要搭配一个高效、可靠的驱动桥。本文参照传统驱动桥的设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支撑轴承进行了寿命校核。本文还是采用传统的锥齿轮作为商用车的主减速器。 关键词:商用车,驱动桥,主减速器,螺旋锥齿轮

THE DESIGNING OF BUSINESS AUTOMOBILE REAR DRIVE AXLES ABSTRACT Drive axle is one of automobile four important assemblies. Its performance directly influence on the entire automobile, especially for the heavy truck. When using the big power engine with the big driving torque to satisfy the need of high speed, heavy-loaded, high efficiency, high benefit. Today heavy truck must exploit the high driven efficiency single reduction final drive axle. Becoming the heavy traditional designing method of the drive axle: first, make up the main parts structure and the key designing parameters; then reference to the similar driving axle structure, decide the entire designing project; finally check the strength of the axle drive bevel pinion, bevel gear wheel, the differential planetary pinion, differential side gear, full-floating axle shaft and the banjo axle housing, and the life expection of carrier bearing. The designing takes spiral bevel gear as the gear type of business automobile’ final drive. KEY WORDS: business automobile, drive axle, final drive , spiral bevel gear

车辆工程毕业设计14CA1040轻型货车驱动桥设计

本科学生毕业设计 CA1040轻型货车驱动桥设计 学院名称:汽车与交通工程学院 专业班级:车辆工程 学生姓名: 指导教师: 职称:实验师

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。轻型货车在商用货运汽车生产中占有很大的比重,为满足目前当前载货汽车的高速度、高效率、高效益的需要,必须要搭配一个高效、可靠的驱动桥。因此设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本课题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键词:驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT Drive axle is at the end of the power train, and its basic function is increasing the torque and reducing the speed, bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance. According to the design parameters given ,firstly determine the overall vehicle parameters in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear, the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle, we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ universality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words: Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

轻型货车驱动桥的毕业设计

摘要 轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。为满足目前当前载货汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器、差速器、半轴、桥壳进行设计计算并完成校核。最后运用AUTOCAD完成装配图和主要零件图的绘制。 关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT . Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance. In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

轻型货车驱动桥设计

目录 1 前言 (2) 1.1 本课题的来源、基本前提条件和技术要求 (2) 1.2 本课题要解决的主要问题和设计总体思路 (2) 1.3 预期的成果 (2) 2 国内外发展状况及现状的介绍 (4) 3 总体方案论证 (5) 4 具体设计说明 (8) 4.1 主减速器的设计 (8) 4.1.1 主减速器的结构型式 (8) 4.1.2 主减速器主动锥齿轮的支承型式及安装方法 (10) 4.1.3 主减速器从动锥齿轮的支承型式及安装方法 (11) 4.1.4 主减速器的基本参数的选择及计算 (12) 4.2 差速器的设计 (15) 4.2.1差速器的结构型式 (15) 4.2.2差速器的基本参数的选择及计算 (16) 4.3 半轴的设计 (17) 4.3.1半轴的结构型式 (17) 4.3.2半轴的设计与计算 (18) 4.4驱动桥壳结构选择 (21) 5 结论 (23) 参考文献 ............................................................................... 错误!未定义书签。

1 前言 本课题是进行轻型货车汽车后驱动桥的设计。设计出小型轻型货车汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。 1.1 本课题的来源、基本前提条件和技术要求 a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。 b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。 c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。 1.2 本课题要解决的主要问题和设计总体思路 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总 任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻其重量。所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。对载货汽车,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。驱动桥的噪声主要来自齿轮及其他传动机件。提高它们的加工精度、装配精度,增强齿轮的支承刚度,是降低驱动桥工作噪声的有效措施。驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。 1.3 预期的成果 设计出小型轻型货车汽车的驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,配合其他同组同学,协调设计车辆的全局。使设计出的产品使用方便,材料使用最少,经济性能最高。 a.提高汽车的技术水平,使其使用性能更好,更安全,更可靠,更经济,更

相关文档
相关文档 最新文档