文档库 最新最全的文档下载
当前位置:文档库 › MIDASGen 中做Pushover 分析的步骤

MIDASGen 中做Pushover 分析的步骤

MIDASGen 中做Pushover 分析的步骤

问: 在MIDAS/Gen中做Pushover分析的步骤?

答: Pushover Analysis 中文又称为静力弹塑性分析或推倒分析。

在MIDAS/Gen中混凝土结构和钢结构的静力弹塑性分析的步骤不尽相同。

混凝土结构的静力弹塑性分析步骤为分析->设计->静力弹塑性分析。

钢结构的静力弹塑性分析步骤为分析分析->静力弹塑性分析。

即混凝土结构必须经过配筋设计之后才能够做静力弹塑性分析,因为塑性铰的特性与配筋有关。

设计结束后,静力弹塑性分析的步骤如下:

1. 在静力弹塑性分析控制对话框中输入迭代计算的控制数据。

2. 定义静力弹塑性分析的荷载工况。在此对话框中可选择初始荷载、位移控制量、是否考虑重力二阶效应和大位移、荷载的分布形式(推荐使用模态形式)。

3.定义铰类型(提供标准类型,用户也可以自定义)

4.分配塑性铰。用户可以全选以后,按"适用"键。

5. 运行静力弹塑性分析。

6. 查看分析曲线。

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

SAP2000之Pushover分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以A TC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。本文中,将两方面的内容统称为“Pushover 分析”。基于结构行为设计使用Pushover分析包括形成结构近似需求和能力曲线并确定曲线交点。需求曲线基于反应谱曲线,能力谱基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需求曲线与能力曲线的有交点,则称此交点为性能点。利用性能点能够得到结构在用需求曲线表征的地震作用下结构底部剪力和位移。通过比较结构在性能点的行为与预先定义的容许准则,判断设计目标是否满足。在结构产生侧向位移的过程中,结构构件的内力和变形可以计算出来,观察其全过程的变化,判别结构和构件的破坏状态,Pushover分析比一般线性抗震分析提供更为有用的设计信息。在大震作用下,结构处于弹塑性工作状态,目前的承载力设计方法,不能有效估计结构在大震作用下的工作性能。Pushover分析可以估计结构和构件的非线性变形,结果比承载力设计更接近实际。Pushover分析相对于非线性时程分析,可以获得较为稳定的分析结果,减少分析结果的偶然性,同时可以大大节省分析时间和工作量。

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。 关键词:Pushover 剪力墙结构超限高层 Midas/Gen 静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。 Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。 对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例): 一 Pushover分析步骤 1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题: 1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义; 2) 需要定义自重、质量; 3) 需要定义层信息,以及墙编号; 此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。 2. 输入Pushover分析控制用数据 荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。 图1 10分步,每步最大10次迭代结果

学习midas心得

r Calculate Propertes Now MIDAS/SPC U 1.5.1 - Sectional Property Calculate Iriported AutoCAD DXF model data -Model: Cunie [140], Point [仙町 I —I —JI —1\ Procts# Message / i r I r 练习 midas 时的心得 I Generate Section Type ---------------- ti Plane 广 Line ? ■■I. ..■■■. .■■■ . ?■■■■■ ^11 ■■■ :_■■■■■? ?■■■. . ■■■ r i^lerge Strai^t Line^— Angle | [Deg] rjame [ r Location I 厂 Group I Sectior Color Apply Clos e I 馆 SEcliQn ]

HIDA^/src V 1 ■応~I - 5e[;n re]… PtLilt [*] H PW pl4ihr ii^cl L?i (S^Etitii f1 J a n 缈?叶 fr^pgrti ?& >f 1 CBqrinn 町?町駁|c ?)4Eud ? 首先在CAD 中将需要导入的截面画好(注意截面必须是闭合的!),然后保存 为DXF 文件;在midas 中打开截面特性计算器,选择与 导入DXF 文件,然后点生成截面、计算截面特性再保存为 中截面添加选择spc 数值,点击导入spc 截面就是保存的sec 文件!然后只需 要设置一些截面的参数就可以了! 7! > V tt ■,■ 10 u Hart Sortian I- Marhbo-EHr CciaiE Fne ke<^LJdt^ [占田 a I CtKt ] V ¥1* Ei 七 尹打*■冷劈《 T<-ilc K+lp 'D 磴U 曾I 口 垢 PnriBfhf HnJ _ lb IlH ■ *C 1 2户怕口怕3胶I 厂 血I |>Pdr m2、 f 畅(5性 F : hd mVfiR 甩口F Irntidl ['Iv% 何rrn ■哎 oL|「*nii 广 Irf 『Em nri Iratq] L ] 口cram Zn- L JJ. T U a Bf 7 niBAS/y^C V ii5 +1 £Htr ?rMi m 托 uw* |vf?rrF<1 A ?FinR4? Kr rw4l*l 4?la -ItodHp Curve ffl]. P*lnt [fl] 决? pl?e fPCLl.n [lectio.-PI] y^ner^tea. ItiF prftfiertiFS - ?-F 1 arctinn ATF C -J J 匚 ulalrd. I i I CAD 一致的单位,再 sec 文件;在 midas 刁:>■ V r > . 1£ tie 4 >

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

SAP2000之Pushover分析

Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

弹塑性时程分析实例

80 第40卷 增刊 建 筑 结 构 2010年6月 北京某超高层商住楼动力弹塑性时程分析 徐晓龙,高德志,桂满树,姜毅荣,何四祥,王 侃 (北京迈达斯技术有限公司,北京 100044) [摘要] 基于梁柱塑性铰和剪力墙纤维模型,利用MIDAS Building 软件实现了超高层建筑结构的弹塑性时程分析。结合该结构研究了在大震作用下结构将出现的破坏模式、塑性发展特点等,并与弹性分析进行了对比,说明弹塑性分析更能反映实际情况,能对结构的抗震性能给出较为合理全面的评价,并对工程设计给出指导。 [关键词] 动力弹塑性时程分析;MIDAS Building ;纤维模型 Elastic-plastic time-history analysis on the super-high business-living building in Beijing Xu Xiaolong, Gao Dezhi, Gui Manshu, Jiang Yirong, He Sixiang, Wang Kan (Beijing MIDAS Technology Information Co.,Ltd,. Beijing 100044,China ) Abstract: Based on the theory of plastic hinges (beams and columns ) and fiber model (walls ), elastic-plastic time-history analysis is performed on the super-high business-living building in Beijing by MIDAS Building software under the scarce earthquake load. Failure Modes and plastic zone development are researched according to the feature of the structure. Through the comparison with the elastic analysis, it is considered that evaluation on the structure can be deduced from the elastic-plastic analysis more reasonably and comprehensively, and there will be better instruction to the projects. Keywords: dynamic elastic-plastic analysis; MIDAS Building; fiber model 1 结构特点 某50层的超高层商住两用建筑,地上50层,结构高度达到236.3m ,采用钢骨混凝土柱框筒结构形式,平面尺寸64.8m ×43.8m (轴线尺寸)。结构已经超过型钢混凝土框架-钢筋混凝土筒体结构8度(0.2g )抗震设防下的最大适用高度(150m ),该结构为抗震超限结构,故有必要对结构进行动力弹塑性时程分析,以考察其在罕遇地震作用下的响应、薄弱环节、破坏模式等。结构整体模型及首层平面见图1,2。 2 动力弹塑性时程分析 图1 结构模型图 图2 首层平面图 时程分析法[1]被认为是目前结构弹塑性分析的最可靠和最精确的方法,它不仅能对结构进行定性分析,同时又可给出结构在罕遇地震下的量化性能指标,并且得到结构在各个时刻的真实地震反应。弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过逐步积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接积分法。 弹塑性动力时程分析有如下优点:1)输入的是罕遇地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、内力、损伤状态(开裂和破坏)等;2)有些程序通过定义材料的本构关系来考虑结构的弹塑性性能,故可以准确模拟任何结构,计算模型简化较少;3)该方法基于塑性区的概念,对带剪力墙的结构,结果更为准确可靠。 基于MIDAS Building 动力弹塑性分析平台,对北京某超高层商住楼进行了罕遇地震作用下的动力时程分析,研究其各个抗震性能指标以及破坏模式。 2.1 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤:1)建立结构

静力非线性分析pushover

pushover分析 2011-07-08 20:03:25| 分类:默认分类|举报|字号订阅 SAP2000高级应用: 1.基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具, 得到了重视和发展。 这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。 第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式; 第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应, 目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理 论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移 和结果评价的内容。本文中,将两方面的内容统称为“Pushover分析”。 基于结构行为设计使用Pushover分析可以得到能力曲线,并确定结构近似需 求谱与能力曲线的交点。其中需求曲线是基于反应谱曲线,能力谱是基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表 征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需

(整理)运用midas_Building进行超限分析基本流程指导书

运用midas Building进行超限分析基本流程 指 * 导 * 书 初稿:王明 校对:李法冰 审核:卫江华 审定:陈德良 (2012.12版)

目录 1 运用midas进行超限分析基本流程简介 (3) 2 反应谱分析、设计基本流程及要点 (4) 2.1 概述 (4) 2.2 基本流程 (4) 2.3 反应谱分析要点及注意事项 (5) 3 弹性时程分析基本流程及要点 (10) 3.1 概述 (10) 3.2 基本操作及要点 (10) 4 静力/动力弹塑性时程分析基本流程及要点 (15) 4.1 概述 (15) 4.2弹塑性分析基本流程 (16) 4.3静力弹塑性分析要点 (16) 4.4动力弹塑性分析要点 (20) 5 相关补充分析与计算 (21) 5.1 温差工况分析 (21) 5.2 楼板详细分析 (23) 5.3 转换结构分析 (24) 5.4 舒适度分析 (25) 5.5 工程量统计 (26) 6 主要附件一览表 (29) 7 主要参考文献 (30)

1 运用midas 进行超限分析基本流程简介 midas building/Gen 在超限分析流程中应用的主要环节可见如下示意图1.1。 图1.1 超限分析基本流程示意图 注:1.图中黄色框选内容为可运用midas Building/Gen 进行分析主要内容。 或大震

2 反应谱分析、设计基本流程及要点 2.1 概述 反应谱分析是抗震设计中最常用的分析方法,反应谱分析中需要定义设计反应谱、振型组合方法、地震作用方向等数据。设计规范一般考虑地震强度和远近的影响、建筑的重要性等综合因素提供了设计反应谱函数。 2.2 基本流程 图2.2.1 运用midas Building 进行反应谱分析基本流程图 注: 1. 实际工程中基本以PKPM 导入为主,已进行过的数十个分析显示:模型中构件与荷载能够完全准确导入,但所有参数需要重新定义,具体导入过程详见[附件一]。若导入ETABS 模型,出错较多,可尝试通过广厦或盈建科二次转换; 2. 若仅进行反应谱阶段分析,则无需进行设计(浪费时间); 3. 本过程参数调整阶段基本流程见下图2.2.2。 图2.2.2 参数调整基本流程图

管理学决策树习题及答案

注意答卷要求: 1.统一代号:P 为利润,C 为成本,Q 为收入,EP 为期望利润 2.画决策树时一定按照标准的决策树图形画,不要自创图形 3.决策点和状态点做好数字编号 4.决策树上要标出损益值 某企业似开发新产品,现在有两个可行性方案需要决策。 I 开发新产品A ,需要追加投资180万元,经营期限为5年。此间,产品销路好可获利170万元;销路一般可获利90万元;销路差可获利-6万元。三种情况的概率分别为30%,50%,20%。 II.开发新产品B ,需要追加投资60万元,经营期限为4年。此间,产品销路好可获利100万元;销路一般可获利50万元;销路差可获利20万元。三种情况的概率分别为60%,30%,10%。 (1)画出决策树 销路好 0.3 170 90 -6 100 50 20

(2)计算各点的期望值,并做出最优决策 求出各方案的期望值: 方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元) 方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元) 求出各方案的净收益值: 方案A=770-180=590(万元) 方案B=308-60=248(万元) 因为590大于248大于0 所以方案A最优。 某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。相关的收益数据如表所示。 (1)画出决策树 (2)计算各点的期望值,并做出最优决策 投资收益 表单位:万元 解(1)画出决策树,R为总决策,R1为二级决策。

决策树算法分析报告

摘要 随着信息科技的高速发展,人们对于积累的海量数据量的处理工作也日益增重,需发明之母,数据挖掘技术就是为了顺应这种需求而发展起来的一种数据处理技术。 数据挖掘技术又称数据库中的知识发现,是从一个大规模的数据库的数据中有效地、隐含的、以前未知的、有潜在使用价值的信息的过程。决策树算法是数据挖掘中重要的分类方法,基于决策树的各种算法在执行速度、可扩展性、输出结果的可理解性、分类预测的准确性等方面各有千秋,在各个领域广泛应用且已经有了许多成熟的系统,如语音识别、模式识别和专家系统等。本文着重研究和比较了几种典型的决策树算法,并对决策树算法的应用进行举例。 关键词:数据挖掘;决策树;比较

Abstract With the rapid development of Information Technology, people are f acing much more work load in dealing with the accumulated mass data. Data mining technology is also called the knowledge discovery in database, data from a large database of effectively, implicit, previou sly unknown and potentially use value of information process. Algorithm of decision tree in data mining is an important method of classification based on decision tree algorithms, in execution speed, scalability, output result comprehensibility, classification accuracy, each has its own merits., extensive application in various fields and have many mature system, such as speech recognition, pattern recognition and expert system and so on. This paper studies and compares several kinds of typical decision tree algorithm, and the algorithm of decision tree application examples. Keywords: Data mining; decision tree;Compare

midas时程分析注意点

一般地震时程分析的步骤如下: 1. 在“荷载/时程分析数据/时程荷载函数”中选择地震波。时间荷载数据类型采用无量纲加速度即可。其他选项按默认值,详细可参考用户手册或联机帮助。 2. 在“荷载/时程分析数据/时程荷载工况”中定义荷载工况。 结束时间:指地震波的分析时间。如果地震波时间为50秒,在此处输入20秒,表示分析到地震波20秒位置。 分析时间步长:表示在地震波上取值的步长,推荐不要低于地震波的时间间隔(步长)。 输出时间步长:整理结果时输出的时间步长。例如结束时间为20秒,分析时间步长为0.02秒,则计算的结果有20/0.02=1000个。如果在输出时间步长中输入2,则表示输出以每2个为单位中的较大值,即输出第一和第二时间段中的较大值,第三和第四时间段的较大值,以此类推。 分析类型:当有非线性单元或非线性边界单元时选择非线性,否则选择线性。 分析方法:自振周期较大的结构(如索结构)采用直接积分法,否则选择振型法。 时程分析类型:当波为谐振函数时选用线性周期,否则为线性瞬态(如地震波)。 无零初始条件:可不选该项。 振型的阻尼比:可选所有振型的阻尼比。 3. 在“荷载/时程分析数据>地面加速度”中定义地震波的作用方向。 在对话框如果只选X方向时程分析函数,表示只有X方向有地震波作用,如果X、Y方向都选择了时程分析函数,则表示两个方向均有地震波作用。 系数:为地震波增减系数。 到达时间:表示地震波开始作用时间。例如:X、Y两个方向都作用有地震波,两个地震波的到达时间(开始作用于结构上的时间)可不同。 水平地面加速度的角度:X、Y两个方向都作用有地震波时如果输入0度,表示X方向地震波作用于X方向,Y方向地震波作用于Y方向;X、Y两个方向都作用有地震波时如果输入90度,表示X方向地震波作用于Y方向,Y方向地震波作用于X方向;X、Y两个方向都作用有地震波时如果输入30角度,表示X方向地震波作用于与X轴方向成30度角度的方向,Y方向地震波作用于与Y方向成30度角度的方向。 另外,地震时程分析不能与地震反应谱分析同时进行,用户应分别保存为两个模型,分别进行反应谱分析和时程分析。 时程分析注意事项: 1、截面需要使用“数据库/用户”来指定截面的尺寸,不然非弹性铰的特征值程序无法自动计算,之后的计算也会有问题(如计算速度特别慢,计算会出错); 2、加柱的P-M-M铰时候,不管截面形状,需要在“屈服面特性值”里选择“自动计算”,对于梁和支撑是在“滞回模型”旁边的“特征值”里选择“自动计算”; 3、如果需要考虑“时变静力荷载”,在用地震动进行计算的时候,“时程荷载工况”里“加载顺序”要“接续前次”,考虑时变静力荷载的作用,必须注意有一个顺序的问题:在添加“时程荷载工况”和“定义时程分析函数”的时候,需要先定义“时变静力荷载”,然后才定义地震动函数(定义地震波),并且在“时程荷载工况”的定义里,时变静力荷载和地震波的分析类型及其它参数的定义应该一致; 4、在“时程荷载工况”的定义里,考虑弹塑性一般使用“非线性”的分析类型,“直接积分法”的分析方法,“阻尼计算方法”一般使用“质量和刚度因子”,可以通过第一、第二振型的周期来计算“质量和刚度因子”。“阻尼计算方法”的“应变能比例”和“单元质量和刚度因子”一般是和组阻尼一起使用,两者的区别是“应变能比例”是根据单元的变形来计算阻尼,“单元质量和刚度因子”计算阻尼的时候和振型有关。

PUSHOVER分析

静力非线性(Pushover)分析 静力非线性(包括 pushover)分析是一个强有力的功能,仅提供在ETABS 非线性版本中。除了为基于抗震设计性能执行 Pushover 分析外,此功能还可用于执行常规静力非线性分析和分段式(增加)构造的分析。 执行任何非线性将花费许多时间与耐性。在执行静力非线性分析前,请仔细阅读下列全部信息。要特别注意其中的重要事项。 非线性 静力非线性分析中可以考虑几类非线性特征。 在框架/线单元中不连续的用户定义铰的材料非线性。铰沿着任何框架单元长度指定到任何位置数上(参见线对象的框架非线性铰指定)。非耦合弯矩、扭矩、轴力和剪力铰是有效的。也有根据铰位置上的交互作用轴力和弯矩所屈服的耦合 P-M2-M3 铰。在相同的位置可存在多于一种的铰类型。例如,可以指定一个 M3(弯矩)和一个 V2(剪力)铰到框架单元的相同端部。所提供的默认铰属性是基于 ATC-40 和 FEMA-273 标准的。 在连接单元中材料的非线性。有效非线性特征包括沿任何自由角度的缝隙(仅压力)、hook(仅张力)、单轴塑性,以及两种基本隔震器类型(双轴塑性和双轴磨擦/摆动)(参见线对象的连接属性指定)。连接阻尼属性在静力非线性分析中没有效应。 所有单元中的几何非线性。可以选择仅考虑 P-△ 效应或考虑 P-△ 效应加上大位移(请参见几何非线性效应)。大位移效应考虑变形配置的平衡,并允许用于大平移和旋转。但是,每个单元中的应变被假设保留为小值。 分段(顺序)施工。在每个分析工况中,可按阶段施工顺序添加或删除构件(请参见静力非线性分段施工)。 分析工况 静力非线性分析可由任何数量的工况组成。每个静力非线性工况在结构中可有不同的荷载分布。例如:典型静力非线性分析可由三种工况组成。 第一种为结构应用重力荷载,其次为在结构的高度上应用一个横向荷载分布,第三种将在结构高度上应用另一个横向荷载分布。 静力非线性工况可从零初始状态开始,或从前一工况末的结果开始。 在前一例子中,重力工况将从零初始状态开始,两个横向工况可从重力工况末开始。 每个分析工况可由多个施工阶段组成。例如:这可能在结构逐层施工中被用于重力分析工况。 静力非线性分析工况完全独立于所有 ETABS 中其它的分析类型。尤其是,任何为线性和动态分析执行的初始 P-Δ分析在静力非线性分析工况中没有影响。只有线性模态形状交互作用可在静力非线性工况中用于荷载。 静力非线性分析工况可被用于设计。通常把线性和非线性结果组合起来没有意义,所以可以被用于设计的静力非线性工况应包括所有的荷载、适当的尺度,它们可为设计检查进行组合。 荷载 应用在给定的静力非线性工况结构上的荷载分布,定义为下列的一个或多个项的成比例组合:

相关文档