文档库 最新最全的文档下载
当前位置:文档库 › ZTC4的变形组织及力学性能研究

ZTC4的变形组织及力学性能研究

ZTC4的变形组织及力学性能研究
ZTC4的变形组织及力学性能研究

ZTC4的变形组织及力学性能研究

(华北工学院,太原 030051)

张治民 张星 王强 吴海峰

摘 要:对铸造Ti 26Al 24V 的原始组织进行了分析,给出了原始组织形态的影响规律;分析铸造Ti 26Al 24V 合金在850℃的变形组织,通过研究(α+β)两相区等温变形组织变化规律及拉伸对比实验,得出变形组织的强度、塑性均比原始组织有较大提高。结果表明:在两相区一定范围内变形(<80%)时,随变形量的增大,组织更加细小,强度明显提高。

关键词:ZTC4;等温变形;变形组织;力学性能

中图分类号:TG 113125 文献标识码:A 文章编号:100722012(2004)0120006203

张 星 E 2mail :xingzh0315@sina 1com 1cn

作者简介:张治民,男,1956年生,山西人,博士生导师,研究方向为金属精密成形及控制

收稿日期:2003203209;修订日期:2003209227

1 引 言

Ti 26Al 24V 合金是1954年美国研制成功的第一

个实用钛合金。由于它具有良好的抗蚀性、高的强

度/重量比、优良的疲劳抗力以及断裂韧性,因而成为钛工业中的王牌合金,用量占全部钛合金的50%以上[1]。但由于钛合金材料成本高,压力加工困难,且工艺复杂,为节约原材料,缩短加工工艺,提出由铸坯直接成形产品的方案。一般的铸坯都是在950℃左右轧制或挤压变形,然后成形工件。而由铸坯直接成形工件,其成形性及成形对产品性能的影响研究甚少,工艺制定上也缺少参考依据,为此,本文研究了铸造Ti 26Al 24V 的变形组织特征和变形对力学性能的影响。

2 实验过程

原材料为铸造方坯,尺寸为160mm ×160mm ×80mm ,由宝鸡有色金属加工厂提供,供货状态为直接浇注后空冷。其化学成分见表1。

表1 ZTC4的化学成分Tab 11 Chemical composition of ZTC4

元素名称

Al V Fe Si

C

N

H

O

Ti

含量

(wt %)

614

411

0115

<0104<0101<0103<01001<0120

其余

为了消除表面的细晶区对变形实验的影响,利用线切割机将铸坯的6个外表面各切除10mm ,切

割后铸坯尺寸为140mm ×140mm ×60mm 。再将其加工成条形试样,规格为140mm ×20mm ×10mm ,选取中心部位的试样进行等温平面压缩变形(实验工装如图1)。变形程度分别为40%~80%,变形温度为850℃,变形速率为011s -1。设备为YA322315液压机,变形后水冷。 将变形前和变形后的试样加工成图2所示的拉伸试样,在WDW 2E100D 型电子万能试验机进行拉伸,所得结果见表2。最后,将原始铸坯和变形后的试样制成金相试样,进行组织观察,所用浸蚀剂为2%HF +4%HNO 3水溶液,实验用显微镜为Neophot21。

图1 实验工装示意图

12保温桶;22上模;32试样;42下模Fig 11 The schematic of experiment device

图2 拉伸试样示意图Fig 12 The sample of drawing 表2 ZTC4变形前后的性能对比

Tab 12 ZTC4properties before and after drawing

σb (MPa )

δ(%)

硬度(HRC )

变形前(铸态)

983438变形后(60%)

1373942

第11卷第1期2004年2月

塑性工程学报

J OURNAL OF PLASTICIT Y EN GIN EERIN G

Vol 111 No 11Feb 1 2004

3 结果讨论

311 原始组织的影响

观察原始铸态组织,发现远离表层、冷速较慢时,由于产生的过冷度小,晶核只能在晶界上形成,并在晶界区长大为晶界α。而后,许多在晶界区的晶核从晶界向晶内生长,形成位向相同、互相平行的长条状组织,一般称为平直α组织(如图3a 所示)。而表层冷速较快,则在晶内部也可形核,并长成独自的α片丛(如图3b 所示)。此外钛合金片状

(

β转变)组织的特征是有原始α相的晶粒存在,这些晶粒镶以α相,

而且β晶粒由α丛组成,α丛为成束的平行α片,α片被β相中间层隔开。冷速较慢时,过冷度较小,形核率较低,α丛就比较大;冷速较快时,形核位置及晶核数量增多,故每丛中互相平行的α条数变少、变宽,且互相交错,有如宽

针状。

由于坯料的原始组织对加工后的组织有影响[2],所以在设计和制造铸坯时,应考虑如何利用和控制组织,为变形组织做准备。

图3 原始铸态组织

Fig 13 The microstructure in cast

图4 两相区不同变形程度下变形组织变化过程(850℃

)a )40%;b )50%;c )60%;d )70%;e )80%

Fig 14 The evolution progress of microstructure after deformation at duplex phase (850℃

)7

 第1期张治民等:ZTC4的变形组织及力学性能研究

312 ZTC4两相区变形的规律

TC4合金的铸态金相组织是以片状α为特征。在(α+β)合金组织中,片状α按一定位向排列,原始的β晶界由不同形态尺寸的α相组成,非常清晰。采用热处理工艺虽能在一定程度上细化原β晶内的α针丛,但粗大的原始β晶粒难以用热处理消除。要细化原始β晶粒,一般需要进行热变形,而且变形度要大于50%,变形度不够时,只能使长条(α+β)发生歪扭,形成变形的魏氏组织[3]。

美国学者Weiss通过对TC4合金进行形变热处理,证明了采用高温形变及随后的热处理可以控制α相形态和最终的晶粒尺寸[4]。经过变形后获得的细小等轴组织,具有较高的疲劳强度和塑性,是多数情况希望获得的组织,而这种组织只有在两相区变形才能得到[5]。

在850℃时,ZTC4仍为(α+β)两相区,实验结果表明,其组织随变形程度的变化如图4所示。在变形的初期,晶内α片以及沿晶界的α镶边的形状决定于它相对于金属流动方向的初始取向,垂直于该方向的片经受的变形最大,平行于变形方向的片拉长、压扁,而横向片发生折皱,其组织为未充分变形的α片,且保留连续的原始β晶界(如图4b、4c所示)。变形量超过60%以后,原有粗大的β晶界已不明显,在该变形温度下,原有晶界及晶内位置开始形成新的等轴β晶粒(如图4d所示)。

随变形程度的进一步增加(<80%),β相的再结晶过程急剧加速,新的等轴β晶粒不仅沿变形的原始β晶界,而且在β晶内、在α片层的β中间层内出现,同时在α相中产生动态再结晶,在变形的α片内形成新的等轴的α晶粒(如图4e所示)。由于提高变形程度能增加点阵缺陷密度,促进再结晶的形核,故有效的细化了ZTC4的组织。

313 变形对力学性能的影响

在(α+β)两相区变形,使组织的细化效果非常明显,由于组织的细化,导致了综合力学性能的提高。由实验可知:经过压缩变形,试样的σb (1373MPa)比铸态的(983MPa)提高了3916%,硬度提高了4个HRC,延伸率δ也由4%提高到9%。另外,实验还发现,当变形量超过一定程度后,其强度有下降的趋势。对于强度增量随变形程度变化的现象,主要原因为:在较低的变形程度下,随着变形程度的增加,晶粒细化,强度增加;变形程度增大到一定程度(>80%)后,由于较高的变形程度提供了更多的能量,使得相界的扩散能力增强,有机会吞并附近细小的晶粒,从而使得晶粒数量减少,尺寸变大,即畸变能的增加为晶粒的长大提供了条件[6]。从而出现上述随变形程度增大,强度增量不再增大反而减小的现象。

4 结 论

1)空冷铸坯的表层为细晶组织和典型的魏氏组织混合区,中心组织为粗大的具有平直α片丛的魏氏组织,处于表层和心部之间的组织为交错的、宽针状α片丛的魏氏组织。由于原始组织对TC4变形组织有较大影响,在设计和制造铸坯时,应考虑利用和控制组织,为变形组织做准备。

2)在(α+β)两相区变形,随变形程度的增加,在α相中产生动态再结晶,而在变形的α片内形成新的等轴的α晶粒。当变形量超过60%以后,才能打破原有粗大的α晶界,在原有晶界及晶内位置形成许多新的等轴β晶粒。

3)在(α+β)两相区(850℃)变形,ZTC4强度可达到1373MPa;且未发现挤压缺陷,表现出有较好的塑性变形能力。

参考文献

[1] 高敬等.国内外钛合金研究发展动态1世界有色金

属,2000

[2] Wang Shao lin.Study on TC11Titanium Alloy Disk

Forging Quality Control and Numerical Simulation.

Journal of tsinghua university,1992

[3] [苏]E A鲍利索娃等著,陈石卿译.钛合金金相

学.北京:国防工业出版社,1986

[4] I Weiss1Modification of Alpha Morphology in Ti26Al24V

by Thermomechanical processing,Metallurgical Trans2

actions A,1989,17A(10)

[5] 张宝昌等1有色金属及热处理1西安:西北工业大

学出版社,1993,10

[6] 陆辛,海锦涛等.Ti26Al24V在压缩状态下的超塑性

行为1第六届全国钛及钛合金学术交流会文集,

1987,9

(下转第12页)

8塑性工程学报第10卷

sic time measure:Plasticity as a limit of the endochronic

theory,Arch.Mech,1980(32):171~191

[3] H C Wu,H K Hong1Endochronic description of plastic

anisotropy in sheet metal1International Journal of S olids

and Structures,1999(36):2735~2756

[4] Fan Jinghong,Ph D Dissertation1University of Cincin2

nati,USA,1983

[5] C F Lee1Recent finite element applications of the incre2

mental endochronic plasticity1International Journal of

Plasticity,1995,7(11):843~865[6] X Peng,Y Y ang,S Huang1A comprehensive descrip2

tion for shape memory alloys with a two2phase constitu2

tive model.International Journal of S olids and Struc2

tures,2001(38):6925~6940

[7] Su2Yuen Hsu,O Hayden Griffin1Algorithmic tangent

matrix for mixed hardening model of endochronic plas2

https://www.wendangku.net/doc/3e2808559.html,puter Methods in Applied Mechanics and En2

gineering,1996(133):1~14

[8] 黄克智1非线性连续介质力学1北京:清华大学出

版社,北京大学出版社,1989

Algorithmic consistent tangent m atrix approach of endochronic plasticity and its application in bulging simulation

J IAN G Wu2gui

(Nanchang institute of Aeronautical Technology,Nanchang 330034)

FU Ming2fu

(Institute of engineering mechanics,Nanchang University,Nanchang 330029)

Abstract:Endochronic plasticity based on non2yield surface is deduced into the displacement2based finite element method and the plastic strain direct method is proposed for the plane stress problem.A convergent solution can’t be obtained by means of Newton methods from the Nonlinear equation proposed in the paper because of the ill2condition in the solution neighboring region during solving the non2 linear equation.Bisection Method is modified to solve the nonlinear equation.The displacement2based endochronic finite element method is applied to simulate the hemispherical punch bulging process and compared with the mises yield model.The results indicate that the method proposed in this paper is convergent and https://www.wendangku.net/doc/3e2808559.html,pared with the existing constitutive models,the proposed one is concise and can easily be applied in practice.

K ey w ords:endochronic;displacement2based finite element method;tangent matrix approach;bulging

(上接第8页)

R esearch on formed tissue and mechanical behaviors of ZTC4

ZHAN G Zhi2min ZHAN G Xing WAN G Qiang WU Hai2feng

(Engineering Technology Research Center for Integrated Precision Forming of Shanxi Province,

North China Institute of Technology,Taiyuan030051)

Abstract:By analyzing the tissue of Ti26Al24V in cast,the regulation of effecton original structure has been obtained,and by analyzing the formed tissue of ZTC4,the change rule has been studied that isothermally formed in(α+β)duplex phase1Through the contrast ex2 periment of mechanical behaviors,the conclusion is draw that the formed tissue of ZTC4is more excellent in strengths and plasticity than the unformed tissue at some deforming degree(less than80%),with the increase of distortion in duplex phase,the tissue is more fine and intensity is elevated.

K ey w ords:ZTC4;isothermal forming;deformation microstructure;mechanical properties

21塑性工程学报第11卷

Q235拉伸力学性能研究报告

Q235钢轴向拉伸试验报告 1.研究目的 观察Q235钢在拉伸时的各种现象,并测定Q235钢在拉伸时的屈服极限σs,强度极限σb,伸长率δ和断面收缩率ψ,研究Q235钢拉伸时的力学性能。 2.实验原理 试件装在试验机上,受到缓慢增加的拉力作用,对应每一个拉力F,试件标距l有一个伸长量?l。表示F和?l的关系的曲线,称为F-?l曲线。F-?l曲线与试件的尺寸有关。为了消除试件尺寸的影响,把拉力F除以试件的横截面积A,得出正应力σ;同时,把伸长量?l除以标距的原始长度l,得到应变ε: σ= F ε=?l l 以σ为纵坐标,ε为横坐标做出表示σ与ε的关系曲线,称为σ-ε曲线(应力-应变曲线),通过应力-应变曲线得到Q235钢在轴向拉伸下的力学性能。 3.实验方法 为了便于比较不同材料的实验结果,对试件的形状、加工精度、加载速度、实验环境等,国家标准都有统一规定。按国家标准 GB228

—2010中的有关规定,本实验中的拉伸试件采用国家标准中规定的圆截面长试件即: l0 =10 d0 (长试件) 式中: l0--试件的初始计算长度(即试件的标距); d0 --试件在标距内的初始直径。 实验前用游标卡尺和圆规测量试件的直径d0和标距l0,所用游标卡尺的量程为200mm精度为±0.02mm。经多次测量求平均值,试件的直径d0和标距l0尺寸如表1,使用万能试验机上的传感器测量试件受力大小,用引伸计测定试件的变形量。 实验采用YYU-15/50轴向变形引伸计, 引伸计的标距为50mm,变形为15mm,相对误差优于一级,用于常规拉伸试验机。引伸计测量精度一级:标距相对误差±1.0%,示值误差(相对)±1.0%,(绝对)±3.0微米。引伸计由传感器、放大器和记录器三部分组成。传感器直接和被测构件接触。构件上被测的两点之间的距离a1b1为标距,构件被拉伸或压缩后被测的两点之间的距离a2b2,标距的变化a2b2与a1b1之差即为线变形。把引伸计用橡皮筋固定在试件上,随着构件变形,引伸计的传感器会随着变形,记录器(或读数器)将自动记录变形信息。

竹材的防霉处理

竹材的防霉处理发布时间:2012-4-7 10:00:28 阅读次数232 前言 我国竹资源丰富,竹材被誉为第二森林资源,是木材的重要替代材料。当世界森林面积在逐渐减小时,竹林面积却在以每年3%的速度递增。因此,竹子被认为是21世纪最有希望和潜力的植物。我国是世界上最主要的产竹国,约有500 万hm2竹林。 全世界竹类植物有1200多种,中国拥有500多种。中国的竹类资源主要分为四个区域:黄河-长江竹区;长江-南岭竹区;华南竹区和西南高山竹区,毛竹主要分布在长江-南岭竹区。众多竹种类中,我们选择的是毛竹--其颜色、纤维结构、密度、强度最适合生产各种竹板材。其主要位于北纬25︿30°之间,这个地区的气候年平均温度15-20℃,1月份平均温度4-8℃,年降水量1200-2000mm最适宜毛竹生长。中国的毛竹面积约400万公顷,竹产量占到世界的一半以上,其中浙江、福建、江西、湖南四省面积约占全国的80%。 竹材特性 毛竹又称楠竹,系草本植物,它的繁殖主要依赖毛竹根部竹鞭上的芽,每年3月由芽生长发育成竹笋再成长成新竹,4-5月新竹生长旺盛,每日可长80-100cm左右,四年即可成材。而大量埋在地底下的竹鞭(每1公顷竹林,0-10cm土层中根系的总长为24620km)。当成熟的毛竹采伐后,又重新发芽长笋、成竹,实现自身的持续生长。四年成材的毛竹,具有良好的物理力学性能,可与高密度的阔叶材相媲美。静曲强度、弹性模量、强度是一般木材的2倍。竹材密度约为0.789g/cm3,顺向抗拉强度达到201.7Mpa,抗压强度74.2Mpa。 竹材的密度因竹龄(成熟的密度较大)、部位(梢段或秆壁外缘密度较大)和竹种而异,平均约0.64克/厘米3。竹材的干缩率低于木材,弦向干缩率最大,径向次之,纵向最小;干燥时失水快而不匀,容易径裂;气干竹材吸水性强。顺纹抗拉强度较高,平均约为木材的2倍,单位重量的抗拉强度约为钢材的3~4倍,顺纹抗剪强度低于木材。强度从竹秆基部向上逐渐提高,并因竹种、年龄和立地条件而异。 竹子在地球的纬度分布范围为北纬46度—南纬47度,包括热带和亚热带的广大地区。其生长的海拔可高达4000米,主要分布在喜马拉雅山区和中国的部分地区。竹子具有很强的环境适应性,有落叶类和常绿类。 竹材的化学成分为:纤维素40%~60%,半纤维素14%~25%或更多,木质素16%~34%,有随年龄增长的趋势。 竹材的使用领域 竹材的利用在中国已有数千年的历史,比如原始的简单制作的竹椅、竹床、竹筐等等,竹材的利用一直处在这种低水平、小规模的分散状态。经进近十多年来的不断开发使用,竹材的利用已发展成为一种新兴的产业。高品质的竹地板、竹家具板材、竹装饰板材、竹钢琴应运而生。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

材料力学性能

《材料力学性能[焊]》课程简介 课程编号:02044014 课程名称:材料力学性能[焊] / The mechanical property of materials 学分: 2.5 学时:40(实验: 8 上机: ) 适用专业:焊接技术与工程 建议修读学期:5 开课单位:材料科学与工程学院,材料加工工程系 课程负责人:陈汪林 先修课程:工程力学、材料科学基础、材料热处理 考核方式与成绩评定标准:闭卷考试,期末考试成绩70%,平时(包括实验)成绩30%。 教材与主要参考书目: 主要教材: 1.工程材料力学性能. 束德林. 机械工业出版社, 2007 参考书目: 1.材料力学性能. 郑修麟. 西北工业大学出版社, 1991 2.金属力学性能. 黄明志. 西安交通大学出版社, 1986 3. 材料力学性能. 刘春廷. 化学工业出版社, 2009 内容概述: 《材料力学性能》是焊接技术与工程专业学生必修的专业学位课程。通过学习本课程,使学生掌握金属变形和断裂的规律,掌握各种力学性能指标的本质、意义、相互关系及变化规律,以及测试技术。了解提高力学性能的方向和途径,并为时效分析提供一定基础。强调课堂讲授与实践教学紧密结合,将最新科研成果用于课程教学和人才培养的各个环节,最终使学生能够独立地进行材料的分析和研究工作。 The mechanical property of materials is a core and basic course for the students of specialty of welding. By the study on this course, the studies should be master the deformation and fracture mechanisms of metals, and understand the essence and significance of each mechanical property of metal materials, as well as their correlations, the laws of variation and corresponding test methods of each mechanical property of materials. In addition, the studies should understand how to improve the mechanical properties of materials, and provide relevant basis for the failure analysis of materials. This course emphasizes the close combination of classroom teaching and practice teaching, and the latest research results will be applied in the course of teaching and personnel training in all aspects. Finally, this course will make the students acquired the capability on conducting research by adopting reasonable technologies by oneself.

基于ABAQUS和EXCEL的泡棉静态力学性能分析

龙源期刊网 https://www.wendangku.net/doc/3e2808559.html, 基于ABAQUS和EXCEL的泡棉静态力学性能分析 作者:周万里黄攀 来源:《科技风》2017年第09期 摘要:手机中大量应用泡棉作为缓冲材料保护关键器件,不同泡棉的缓冲效果完全不 同,对器件的保护作用大小也不同。通过泡棉的单轴压缩和回弹实验测试可以得到材料的位移-力曲线,但有限元软件ABAQUS中需要的材料参数不能直接在该软件中拟合得到。故基于EXCEL的VB模块构建新公式和使用规划求解功能拟合材料参数。在ABAQUS中建立有限元模型验证了用EXCEL拟合材料的准确性和该分析方法的正确性。 关键词:泡棉;有限元;ABAQUS;hyperfoam;Mullins软化效应;EXCEL;规划求解 泡棉因为具有良好的密封性和可压缩性,在手机中被大量应用根据用途可以分为导电泡棉、缓冲泡棉、双面胶泡棉和防尘防水泡棉等,根据应用的位置可以分为LCM泡棉、摄像头泡棉、音腔泡棉、受话器泡棉等。不同的用途和位置对泡棉的要求完全不同。国内文献对泡棉的研究主要在后期仿真应用上和没有考虑泡棉的应力软化效应,没有详细介绍如何从基础实验数据中获取有限元仿真所需要的参数再到仿真应用的过程。 本文首先使用高精度试验机对泡棉进行单轴压缩和回弹实验,获取位移-力曲线;然后转换为名义应变-名义应力曲线。利用EXCEL的VB模块构建新公式,再把名义应变-名义应力 曲线输入到EXCEL表格,并使用规划求解功能拟合曲线获取基于ABAQUS的hyperfoam本构模型和Mullins软化效应的材料参数;最后通过建立有限元模型验证该本构模型和拟合方法的正确性。 1 压缩和回弹实验 使用高精度试验机对泡棉进行压缩和回弹实验。因为该泡棉太薄只有0.3mm的厚度,为 减小误差把4层泡棉叠加在一起进行测试。具体样品尺寸为25mmX25mmX0.3mmX4。 2 记录压缩和回弹数据 压缩试验机记录力的单位为g,位移为mm。 3 处理数据 因为前面有一段行程为空压,需要处理数据,减掉这部分位移并减少数据点。处理后的数据见下图:

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

缓冲材料力学性能的测试方法研究

缓冲材料力学性能的测试方法研究 摘要 缓冲材料一直伴随着人类社会的进步而在不断地发展着,从以前的碎纸屑、木屑、泡沫塑料发展到现在的很多绿色的缓冲包装材料,比如有蜂窝纸板、玉米秸秆缓冲材料、瓦楞纸板、纸浆模塑制品、珍珠棉以及发泡聚乙烯缓冲材料等,这些新型环保缓冲材料的出现,大大促进了包装工业的发展。 为了能在日常生活中更好的利用缓冲包装材料,所以对缓冲材料力学性能的测试是非常必要的。本文介绍了缓冲材料的主要力学性能包括:压缩性能、拉伸性能、弯曲性能、剪切性能、缓冲性能等,并对各力学性能的测试方法进行了对比分析,尤其是对正交试验、曲线拟合法、计算机仿真设计以及数字相关测量方法等等进行了详细地介绍,为现代缓冲包装材料的开发和研究提出了新的方向。 关键词:缓冲材料,力学性能,测试方法研究

BUFFER MATERIAL MECHANICS PERFORMANCE TESTING METHOD ABSTRACT Buffer material has been accompanied by the progress of human society and developing, and from the previous paper, broken wood, foam development of many green until now, for instance a cushion packaging material of honeycomb paperboard, corn straw cushioning material, corrugated, paper pulp molding products, pearl cotton and foaming polyethylene buffer material, these new environmental buffer material greatly promoted the development of packaging industry. In daily life, in order to better use and so on cushion packaging material buffer material mechanics performance test is very necessary. The paper introduces the main buffer material mechanics properties including compression performance, tensile properties, bending, cutting performance and buffering properties, and the performance of the mechanical properties test methods were analyzed, especially the orthogonal experiment, curve-fitting method of computer simulation, the design and digital correlation method etc. Carried on the detailed introduction to modern cushion packaging material, for the development and research of new direction. KEYWORDS: cushioning materials, mechanical properties, test methods

材料力学性能期末考试

一、名词解释 包辛格效应、疲劳门槛值、应力腐蚀门槛值、平面应力状态、平面应变状态、蠕变极限、低周疲劳、高周疲劳、滞弹性、弹性比功、冲击韧性、断裂韧性、氢脆、应力腐蚀、粘着磨损、磨粒磨损、微动磨损、蠕变、持久强度、应力松弛、腐蚀疲劳、加工硬化指数 二、指出下列力学性能指标的名称,物理意义及单位 A K 、K 1、K IC 、K 1SCC 、c a 、E 、σf 、σb 、σ 0.2、σys 、σP 、δ、σ-1、th K ?、C 650103σ、ε、?、H B 、HRC 、H V 、G 、G IC 、 三、填空题 1、低碳钢拉伸试验的过程可以分为 、 和 三个阶段。 2、材料常规力学性能的五大指标为: 、 、 、 。 3、陶瓷材料增韧的主要途径有 、 、 、 显微结构增韧以及复合增韧六种。 4、常用测定硬度的方法有 、 和 测试法。 1、聚合物的弹性模量对 非常敏感,它的粘弹性表现为滞后环、 和 ,这种现象与温度、时间密切有关。 2、影响屈服强度的内在因素有: 、 、 、 ;外在因素有: 、 、 。 3、缺口对材料的力学性能的影响归结为四个方面: 、 、 、 。 4、材料或零件在 和腐蚀介质的共同作用下造成的失效叫腐蚀疲劳。 四、请说明下面公式各符号的名称以及其物理意义 c IC c a Y K /=σ、、n SS A σε= 、n K S ε=、 m K c dN da )(?= 五、简答题 1. 金属疲劳破坏的特点是什么?典型疲劳断口具有什么特征?提高疲劳强度的途径有哪些? 2. 和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在? 3. 提高金属材料的屈服强度有哪些方法?试用已学过的专业知识就每种方法各举一例。 4. 缺口对材料的性能有哪些影响?为什么缺口冲击韧性被列为材料常规性能的五大指标之一?它和断裂韧性有何关系? 5. 为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性? 6. 提高零件的疲劳寿命有哪些方法? 试就每种方法各举一应用实例,并对这种方法具体分析,其在抑制疲劳裂纹的萌生中起有益作用,还是在阻碍疲劳裂纹扩展中有良好的效果? 7. 为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义? 8. 缺口冲击韧性为什么被列为材料常规性能的五大指标之一,怎样正确理解冲击韧性的功能:(a)它是

材料的力学性能.

第五章材料的力学性能 §5.1 概述 前一章讨论变形体静力学时,研究、分析与解决问题主要是利用了力的平衡条件、变形的几何协调条件和力与变形间的物理关系。物体系统处于平衡状态,则系统中任一物体均应处于平衡状态,物体中的任一部分亦应处于平衡状态。力的平衡问题,与作用在所选取研究对象上的力系有关;在弹性小变形条件下,变形对于力系中各力作用位置的影响可以不计,故力的平衡与材料无关;用第二章所讨论的平衡方程描述。变形的几何协调条件,是在材料均匀连续的假设及结构不发生破坏的前题下,结构或构件变形后所应当满足的几何关系,主要是几何分析,也不涉及材料的性能。 因此,研究变形体静力学问题,主要是要研究力与变形间的物理关系。力与变形间的物理关系显然是与材料有关的。不同的材料,在不同的载荷、环境作用下,表现出不同的力学性能(或称材料的力学行为)。前一章中,我们以最简单的线性弹性应力-应变关系—虎克定律,来描述力与变形间的物理关系,讨论了变形体力学问题的基本分析方法。这一章将对材料的力学性能进行进一步的研究。 材料的力学性能,对于工程结构和构件的设计十分重要。例如,所设计的构件必须足够“强”,而不至于在可能出现的载荷下发生破坏;还必须保持构件足够“刚硬”,不至于因变形过大而影响其正常工作。因此需要了解材料在力的作用下变形的情况,了解什么条件下会发生破坏。由力与变形直至破坏的行为研究中确定若干指标来控制设计,以保证结构和构件的安全和正常工作。 材料的力学性能是由试验确定的。试验条件(温度、湿度、环境)、试件几何(形状和尺寸)、试验装置(试验机、夹具、测量装置等)、加载方式(拉、压、扭转、弯曲;加载速率、加载持续时间、重复加载等)、试验结果的分析和描述等,都应按照规定的标准规范进行,以保证试验结果的正确性、通用性和可比性。

瓦楞结构材料瓦楞方向静力学性能的研究

瓦楞结构材料瓦楞方向静力学性能的研究瓦楞结构材料,因其无污染、可再生、质量轻、刚度好、缓冲吸能、易加工成型、可回收且成本低廉,在造船、汽车、建筑、航空航天、铁路运输和包装等行业有着广泛的应用。目前对瓦楞结构材料的研究主要集中在平压方向的力学性能上,而在实际应用中瓦楞结构材料常在其瓦楞方向上承载。因此研究瓦楞结构材料瓦楞方向的力学性能,对于促进其应用具有十分重要的意义。瓦楞结构材料是由瓦楞芯材和面材复合而成。根据瓦楞形状不同,瓦楞可分为U、V和UV形。瓦楞楞型有A、C、B和E型。通过静态拉伸试验对瓦楞原纸的物理性能进行了测定,得到相关物理参数,为有限元模拟提供基材的力学参数。对瓦楞结构材料进行静态压缩试验,验证有限元模型的可靠性。建立不同种类的瓦楞结构材料的有限元静力学分析模型,并使用试验结果验证模型的可靠性。基于此,通过能量效率法分别研究不同楞型和楞形瓦楞结构材料的力学性能,深入分析它们对瓦楞结构材料瓦楞方向静力学性能的影响。不同楞型、楞形和壁厚的瓦楞结构材料,瓦楞方向的变形模式都是呈现自上而下的折曲变形,应力应变曲线形态都是由弹性、屈服、平台和密实化四个阶段组成,能量效率曲线都是呈现先增大后减小的变化趋势。对于任一楞型的瓦楞结构材料,瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。对于任一壁厚的瓦楞结构材料,A、C、B和E楞瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收依次增大。对于

U、V和UV任一楞形的瓦楞结构材料,其瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。它们之间的相互关系,可拟合为一定的关系曲线,基于计算结果给出了相关经验公式。对于任一壁厚的瓦楞结构材料,U、V和UV形瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收总是呈现出V形瓦楞 最小,U形瓦楞最大,UV形瓦楞介于两者之间的规律。综上所述,楞型、楞形和壁厚对瓦楞结构材料瓦楞方向的静力学性能,影响较大,相关 规律可以为瓦楞结构材料在缓冲包装设计方面提供指导性参考与帮助。

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什 么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

闸式剪板机力学性能分析与优化

闸式剪板机力学性能分析与优化* 王 勇1,朱世凡1,陈 胜1,王 奇1,于 珺2,陈达兵2 (1.合肥工业大学机械工程学院,安徽合肥230009;2.马鞍山市中亚机床制造有限公司,安徽马鞍山243131) 摘 要:剪板机结构力学性能对剪切精度具有重要影响三以6×3200型数控闸式剪板机为对象,基于数值模拟方法对上刀架进行了静力学分析和瞬态动力学分析,得到了剪切过程中的最大等效应力与最大变形;对机架进行了模态分析,给出了剪板机系统可能发生共振的固有频率和相应振型;基于分析结果对闸式剪板机结构进行了优化三 关键词:闸式剪板机 静力学分析 动力学分析 模态分析 优化设计 中图分类号:TP13 文献标识码:A 文章编号:1002-6886(2019)02-0001-04 Analysis and optimization of mechanical properties of braking-type plate shearing machine WANG Yong,ZHU Shifan,CHEN Sheng,WANG Qi,YU Jun,CHEN Dabing Abstract:The mechanical properties of shearing machine have important influence on the shearing accuracy.Based on the numerical simulation method,the static analysis and transient dynamic analysis of the upper tool holder are carried out for the6×3200numerical control gate shear machine.The maximum equivalent stress and maximum deformation in the shearing process are obtained.The modal analysis of the frame is carried out to obtain the natural frequency and corresponding vibra?tion mode of the shearing machine.Based on the analysis results,the structure of the brake shearing machine is optimized. Keywords:braking-type plate shearing machine,statics analysis,dynamic analysis,modal analysis,optimization design 0 引言 与摆式剪板机相比,闸式剪板机从结构上避免了游隙的存在并可调节剪切角,具有更高的效率二精度和可靠性三但闸式剪板机在剪切宽厚板或高强度薄板时,仍存在机床变形影响剪切精度等问题三现有文献多研究剪切参数对剪切精度的影响[1]二剪板机组控制系统设计与自动化改造[2-3]或者以有限的 离散点模拟剪切过程[4],有关闸式剪板机的力学性能分析与结构优化的研究目前尚少见三本文通过机床的静动态特性分析,模拟剪板机剪切过程,获得连续的剪切数据,并给出优化方案三 1 静力学分析 以一款6×3200型数控闸式剪板机为例,其结构模型如图1所示三工作时,滚柱丝杠驱动的后挡料装置调节剪切长度,压料油缸将被剪板料压紧,设置刀刃间隙和剪切角等剪切参数后,两端的液压缸驱动上下刀刃相对运动完成板料的剪切三 仿真分析时,忽略过渡圆角二螺纹孔等[5],将简化的三维模型导入到有限元分析软件中,上刀架两侧面作固定约束,设置绑定接触模拟上刀架零部件的焊接和螺纹固定[6]三 图1 6×3200闸式剪板机结构模型 根据诺沙里公式[7]: P=0.6σbδs h2tanα1+ z tanα 0.6δs+ 1 1+10δsσ b y2 ? è ? ? ? ? ÷ ÷ x (1) 四1四

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

材料力学性能 (1)

工程材料力学性能复习重点 选择:20 填空:20 名词解释:10 简答计算:50 一.选择题(10道从下面抽,10道英语出题) 1.材料力学性能研究的问题不涉及(物理问题)。 2.工程材料在使用过程中(弹性变形)是不可避免的。 3.工程构件生产过程(提高)塑性,(降低)强度。 4.工程构件使用过程(降低)塑性,(提高)强度。 5.断裂力学解决(含缺陷材料)抗断裂方面的问题。 6.拉伸试样直径一定,标距越长则测出的抗拉强度值(越低)。 7.拉伸试样直径一定,标距越长则测出的延伸率(越低) 8.拉伸试样直径一定,标距越长则测出的断面收缩率(不变)。 9.拉伸试样的标距长度I 0应满足关系式(I 0=5.650A 或I 0=10d 0)。 10.均匀变形阶段,金属的伸长率与截面收缩率通常满足关系式(δ=ψ/(1-ψ))。 11.长材料甲δ10=18%,短材料乙δ5=18%,则两种材料的塑性(甲>乙)。 12.表征脆性材料的力学性能的参量是(E )、(σb )。 13.在设计时用来确定构件截面大小的机械性能指标(σb ,σ0.2) 14.10mm 直径淬火钢球,加压3000kg ,保持30s ,测得布氏硬度为150的正确表达方式为(150HBS10/3000/30)。 15.(韧窝断口)是非脆性断裂。 16.裂纹体变形的最危险形式是(张开型)。 17.表示的是(持久强度)。 18.晶粒度越小,耐热性(越差)。 19.真空应力应变曲线在拉伸时位于工程应力应变曲线的(左上方)。 20.若材料的断面收缩率小于延伸率,则属于(低塑性)材料 21.材料的弹性常数是(E )、(G )、(ν)。 22.影响弹性模量最基本的原因是(点阵间距)。 23.加载速率不影响材料的(弹性)。 24.机床底座用铸铁制造的主要原因是价格(低),内耗(高),模量(大)。 25.多晶体金属塑性变形的特点是(不同时性,不均匀性,相互协调性)。 26.细晶强化不适用于(高温) 27.位错增殖理论可用于解释(屈服现象)和(形变强化)。 28.应力状态软性系数最大的是(压)。 29.工程测硬度最常用(压入法)。 30.同种材料的(布氏硬度)和(维氏硬度)可以相互参比。 26.与抗拉强度之间存在相互关系的是(布氏硬度)。 27.材料失效最危险的形式是(断裂)。 28.解理断裂是(穿晶断裂)。 29.(韧窝断口)是韧性断裂。<同13> 30.双原子模型计算出的材料理论断裂强度比实际值高出一个数量级,是因为(实际材料有缺陷)。 31.韧性材料在(增大加载速度)的条件下可能变成脆性材料。 32.在实验中不同材料的(冲击)性能指标可比性差。 a 200σ600103MP

Q235低温力学性能研究

Q235B钢低温力学性能研究 摘要:本文将Q235B管材加工成拉伸试样和冲击试样,拉伸试样按照国家标准GB6397-86进行加工,冲击试样按照GB/T229-1994进行加工。分别在15℃、0℃、-10℃、-20℃、-30℃的温度下,将试样保持一定的时间,然后进行拉伸和冲击试验,考察了不同温度下材料组织和性能的变化规律。 0 前言 某燃气公司的输气管道所用材质为Q235B钢,该管道在使用过程中曾经输送过-20℃左右的液化燃气,为检验管道钢材的组织和性能是否发生了变化,本文研究了Q235B低温钢力学性能研究,并对不同温度下的组织进行了观察。 1.实验材料及方法 实验材料为Q235B管材;分别在15℃、0℃、-10℃、-20℃、-30℃保持一定的时间,然后测试其力学性能,每种状态测试3个试样,实验结果取平均值。低温拉伸试验在MTS810岩石电子万能试验机上完成,冲击试样经48小时以上低温保存后在低温冲击试验机上完成。 2.实验结果及分析 2.1 金相组织观察 各种试验状态下的金相组织见图1。 (a)Q235B常温显微组织(100x)(b)Q235B 0℃保温恢复到室温显微组织(100x)

(c )Q235B-10℃保温恢复到室温显微组织(100 x ) (d )Q235B-20℃保温恢复到室温显微组织(100 x ) (e )Q235B-30℃保温恢复到室温显微组织(100 x ) 图1 Q235B 钢不同温度保温恢复到室温显微组织 由图可见,不同温度保温后,材料的微观组织未发生明显的变化。每个试样组织分别为铁素体加珠光体的带状组织,带状级别1-2级,含有少量的夹杂物,夹杂物级别1-2级,局部2-3级,符合Q235B 材料要求。 2.2 硬度测量 将经过不同低温保持后的实验恢复到室温,然后按国家标准(GB231-84)测量布氏硬度,实验结果见图2。由图可以看出,硬度值基本保持稳定,没有明显变化。

张力腿平台的整体设计及拟静力性能分析

第38卷 第5期2009年10月 船海工程SH IP &OCEA N ENG IN EERI NG V ol.38 N o.5 O ct.2009 收稿日期:2009-02-25修回日期:2009-04-30 基金项目:国家自然科学基金(50538050);国家863 计划(2006A A09A 103,2006A A09A 104)。 作者简介:闫功伟(1982-),男,博士生。研究方向:深水海洋平台的动力响应。E -mail:yango ng wei_hit@qq.co m DOI:10.3963/j.issn.1671-7953.2009.05.034 张力腿平台的整体设计及拟静力性能分析 闫功伟1 ,欧进萍 1,2 (1.哈尔滨工业大学土木工程学院,哈尔滨150090;2.大连理工大学土木水利学院,辽宁大连116024)摘 要:结合南海海域条件对传统式张力腿平台进行整体设计,计算平台所受各种环境荷载的大小,并采用拟静力分析法分析此平台的非线性运动响应,考虑平台水平漂移和下沉的非线性关系以及张力腿预张力、横截面面积、就位长度和立柱横截面面积等参数对平台运动响应的影响。 关键词:张力腿平台;整体设计;拟静力分析;非线性运动响应 中图分类号:U 674.38;T E952 文献标志码:A 文章编号:1671-7953(2009)05-0142-04 张力腿平台(tension leg platform,T LP),是一种垂直系泊的顺应式平台,通过数条张力腿与海底相接,具有半固定、半顺应的运动特征。它可以分为三部分:平台本体、张力腿系统和基础部分。平台本体的主要运动形式[1]有横荡、纵荡、垂荡、横摇、纵摇、首摇。整个结构的频率跨越海浪的一阶频率谱两端,从而避免了结构和海浪能量集中的频率发生共振,使平台结构受力合理,动力性能良好。 TLP 的结构形式发展倾向于多元化、小型化,以适应于不同油藏条件及边际油田的开发。按平台本体形式[2]不同可以分为传统式张力腿平台(CT LP)、海星式张力腿平台(seastar TLP)、迷你式张力腿平台(M OSES T LP)和延伸式张力腿平台(ETLP)。T LP 示意见图1、2 。 结合我国南海海域海况条件,开展了CT LP 平台的整体方案设计。 1 T LP 的整体设计 TLP 平台的整体设计[3] 需要做以下几方面的工作:1根据平台的功能要求,确定出比较合理的平台总体尺度;o规划设备位置,均衡平台中心;?进行张力腿的张力估算;?确定出设计能力界限。 平台总体规划流程见图3,中间框内4 项工 图3 TLP 总体设计规划流程 作是一个小循环,需要反复调整以达到设计要求。1.1 TLP 环境荷载的确定 风、浪、流等海洋环境参数选用文献[4]提供数据。考虑两种工况:工况1,1年一遇环境条件;工况2,100年一遇环境条件。 1)平台风荷载计算。作用于平台上体各部分的风力F 应按下式计算: F 风=C h C s S p (1) 式中:p )))风压,kPa ; S )))平台在正浮或倾斜状态时受风构件 的正投影面积,m 2; C h )))受风构件的高度系数,其值可根据 构件高度h(构件形心到设计水面的垂直距离)由规范查表确定; 142

相关文档