文档库 最新最全的文档下载
当前位置:文档库 › 五大植物内源激素

五大植物内源激素

五大植物内源激素
五大植物内源激素

一、生长素类

增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子和果实生长,座果,顶端优势。

但是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄和植物器官种类有关。一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。细胞年龄不同对生长素的敏感程度不同。一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度是10-10mol/L左右;茎最不敏感,最适浓度是10-4mol/L左右;芽居中,最适浓度是10-8mol/L左右。

二、赤霉素类

(一)促进茎的生长

1、促进整株植物的生长

尤其是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用,

而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。GA促进矮生

植株伸长的原因是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。

2、促进节间的伸长

GA主要作用于已有的节间伸长,而不是促进节数的增加。

3、不存在超最适浓度的抑制作用

即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显著

不同。

(二)诱导开花

某些高等植物化芽的分化是受日照长度(即光周期)和温度影响的。例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。

对于花芽已经分化的植物,GA对其花的开放具有显著的促进效应。

(三)打破休眠

GA可以代替光照和低温打破休眠,这是因为GA可诱导α-淀粉酶、蛋白酶和其他水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。

在啤酒制造业中,用GA处理萌动而未发芽的大麦种子,可诱导α-淀粉酶的产生,加速酿造时的糖化过程,并降低萌芽的呼吸消耗,从而降低成本。

(四)促进雄花分化

对于雌雄异花同株的植物,用GA处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用GA处理,也会开出雄花。GA在这方面的作用与生长素和乙烯相反。

(五)其他生理效应

GA还可以加强IAA对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片的衰老等。此外,GA也可以促进细胞的分裂和分化,GA促进细胞分裂是由于缩短了G1期和S 期。但GA对不定根的形成却起抑制作用,这与生长素的作用又有所不同。

三、细胞分裂素类

(一)促进细胞分裂

细胞分裂素的主要生理功能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但它们各自所起的作用不同。细胞分裂包括核分裂和胞质分裂两个过程,生长素只促进核的分裂(因促进了DNA的合成),而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用,所以,细胞分裂素促进细胞分裂的效应只有在生长素存在的前提下才能表现出来。而赤霉素促进细胞分裂主要是缩短了细胞周期中的G1期(DNA合成准备期)和S期(DNA合成期)的时间,从而加速了细胞的分裂。

(二)促进芽的分化

促进芽的分化是细胞分裂素最重要的生理效应之一。1957年斯库格和米勒在进行烟草的组织培养时发现,细胞分裂素(激动素)和生长素的相互作用控制着愈伤组织根、芽的形成。当培养基中CTK/IAA比值高时,愈伤组织形成芽;当CTK/IAA比值低时,愈伤组织形成根;如二者的浓度相等,则愈伤组织保持生长而不分化;所以,通过调整二者的比值,可诱导愈伤组织形成完整的植株。

(三)促进细胞扩大

细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向增粗。因生长素只促进细胞的纵向伸长,赤霉素对子叶的扩大没有显著效应,所以CTK这种对子叶扩大的效应可作为CTK的一种生物测定方法。

(四)促进侧芽发育,消除顶端优势

CTK能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗第一真叶叶腋内的侧芽,一般处于潜伏状态,但若以激动素溶液滴加于叶腋部位,腋芽则可生长发育。(五)延缓叶片衰老

如在离体叶片上局部涂以激动素,则在叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿。这不仅说明了激动素有延缓叶片衰老的作用,同时也说明了激动素在一般组织中不易移动。细胞分裂素延缓衰老是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。此外,CTK还可调动多种养分向处理部位移动,因此有人认为CTK延缓衰老的另一原因,是由于促进了物质的积累。现在有许多资料证明激动素有促进核酸和蛋白质合成的作用。例如细胞分裂素可抑制与衰老有关的一些水解酶(如纤维素酶、果胶酶、核糖核酸酶等)的mRNA的合成,所以,CTK可能在转录水平上起防止衰老的作用。

由于CTK有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。如用40Omg/L的6-BA水溶液处理柑橘幼果,可显著防止第一次生理脱落,对照的坐果率为21%,而处理的可达91%,且果梗加粗,果实浓绿,果个也比对照显著增大。(六)打破种子休眠

需光种子,如莴营和烟草等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。

四、脱落酸

在植物体内,ABA不仅存在多种抑制效应,还有多种促进效果。在各种实验系统中,它的最适浓度可跨4个数量级(0.1 ~ 200μmol/L)。对于不同组织,它可以产生相反的效应。例如,它可促进保卫细胞的Ca2+水平上升,却诱导糊粉层细胞的胞液Ca2+水平下降。通常把这些差异归因于各种组织与细胞的ABA受体的性质与数量的不同。

促进:叶、花、果实的脱落,气孔关闭,侧芽、块茎休眠,叶片衰老,光合产物运向发

育着的种子,果实产生乙烯,果实成熟。

抑制:种子发芽,IAA运输,植株生长。

乙烯的生理作用

促进:解除休眠,地上部和根的生长和分化,不定根形成,叶片和果实脱落,某些植物花的诱导形成,两性花中雌花形成,开花,花和果实衰老,果实成熟,茎增粗,萎蔫。

抑制:某些植物开花,生长素的转运,茎和根的伸长生长。

常见五种内源激素的生理效应

常见五种内源激素的生理效应 一、生长素:代号为IAA。 生长素使最早被发现的植物激素,是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等,习惯上常把吲哚乙酸作为生长素的同义词。 生长素具体的生理效应表现为: 第一、促进生长。生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。另外,不同器官对生长素的敏感性不同。 第二、促进插条不定根的形成。用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。 第三、对养分的调运作用。生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。 第四、生长素的其他效应。例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。 二、赤霉素:代号为GA。 赤霉素(gibberellin)一类主要促进节间生长的植物激素,因发现其作用及分离提纯时所用的材料来自赤霉菌而得名。 赤霉素的生理效应为: 第一、促进茎的伸长生长。这主要是能促进细胞的伸长。用赤霉素处理,能显著促

进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。 第二、诱导开花。某些高等植物花芽的分化是受日照长度和温度影响的。若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。对花芽已经分化的植物,赤霉素对其花的开放具有显著的促进效应。 第三、打破休眠。对于需光和需低温才能萌发的种子,赤霉素可代替光照和低温打破休眠。 第四、促进雄花分化。对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。 第五、其他生理效应。赤霉素还可以加强生长素对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片衰老等。 三、细胞分裂素:其代号为CTK。 细胞分裂素是一类具有腺嘌呤环结构的植物激素。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。 细胞分裂素有多种生理效应。其生理效应表现为: 第一、促进细胞分裂。细胞分裂素的主要生理功能就是促进细胞的分裂。细胞分裂素主要是对细胞质的分裂起作用。 第二、促进芽的分化。促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。 第三、促进细胞扩大。这种扩大主要是因为促进了细胞的横向增粗。 第四、促进侧芽发育,消除顶端优势。细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。 第五、延缓叶片衰老。如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变

高中生物植物激素调节

植物激素调节学案 一、考点: 1.植物生长素的发现和作用(Ⅱ) 2.其他植物激素(Ⅰ) 3.植物激素的应用(Ⅱ) 二、知识梳理:创新设计第172页 三、热点分析: 一、生长素的发现 注重理解经典实验的方法,学会分析实验过程。 例1:燕麦胚芽鞘系列实验 以上实验均可设计相应对照实验,具体有: (1)图①②表明:。 (2)图①③表明:。 (3)图③④对比分析可得出结论:。 (4)图①②③④表明:。 (5)图⑤⑥对比分析表明:。(6)图⑥⑦对比分析表明:。(7)图⑤⑥⑦对比分析表明:。 (8)图③⑥⑧对比分析表明:。 (9)图③⑨⑩对比分析表明: (10)比较图⑾和⑿表明:。

变式训练: 下图中甲为对燕麦胚芽鞘所做的处理,过一段时间后,乙、丙、丁三图所示胚芽鞘的生长情况依次是() A.向右弯曲向右弯曲向右弯曲 B.向右弯曲向左弯曲向左弯曲 C.向左弯曲直立生长向右弯曲 D.向右弯曲直立生长向左弯曲 二、生长素的运输和分布 例2:如图为一棵植株被纸盒罩住,纸盒的左侧开口,右侧照光。如果固定幼苗,旋转纸盒;或固定纸盒,旋转幼苗;或将纸盒和幼苗一起旋转。一段时间后,幼苗的生长状况分别 A.直立生长、向右弯曲生长、弯向盒开口方向生长 B.向右弯曲生长、直立生长、弯向盒开口方向生长 C.向右弯曲生长、向左弯曲生长、直立生长 D.向左弯曲生长、直立生长、弯向盒开口方向生长 变式训练: 1.当植物受到环境刺激时,下图所表示的生长素分布与生长的情形正确的是(黑点代表生长素的分 布) A.①④⑥ B.②④⑧ C.③⑤⑥ D.②⑤⑦

2.(08山东理综)拟南芥P基因的突变体表现为花发育异常。用生长素极性运输抑制剂处理正常拟南芥,也会造成相似的花异常。下列推测错误的是() A.生长素与花的发育有关 B.生长素极性运输与花的发育有关 C.P基因可能与生长素极性运输有关 D.生长素极性运输抑制剂诱发了P基因突变 三、生长素的生理作用: 例3据图回答问题: (1)乙图点浓度可表示甲图①处生长素浓度, 点表示②处生长素浓度。②处结构长不出来的原因是,解决的办法是 此后②处生长素浓度将会低于mol·L-1。 (2)将该植物较长时间置于右侧光照下,乙图点浓度可表示③侧生长素浓度;点表示④侧生长素浓度。此时,植物茎将生长。 (3)将该植物向左侧放倒水平放置一段时间,可表示⑦侧浓度的是乙图中点浓度,表示⑧侧生长素浓度的是乙图中点浓度,因此根将生长。表示⑤侧浓度的是点浓度,表示⑥侧浓度的是点浓度,所以侧生长快,茎将生长。 (4)能够促进茎生长的浓度范围是mol·L-1,能够同时促进根、茎、芽生长的浓度范围是mol·L-1。 变式训练: 1.(09海南卷)(9分) 为了验证“植物主茎顶芽产生的生长素能够抑制侧芽生长”,某同学进行了以下实验: ①选取健壮、生长状态一致的幼小植株,分为甲、乙、丙、丁4组,甲组植株不做任何处理,其他三组植株均切除顶芽。然后乙组植株切口不做处理;丙组植株切口处放置不含生长素的琼脂块;丁组植株切口处放置含有适宜浓度生长素的琼脂块。②将上述4组植株置于相同的适宜条件下培养。回答下列问题:

五种植物激素的比较

五种植物激素的比较 名称产生部位生理作用 对应的生长 调节剂 应用 生长素 幼根、幼芽及发 育的种子 促进生长,促进果 实发育 萘乙酸、2, 4-D ①促进扦插枝条的生根; ②促进果实发育,防止落 花落果;③农业除草剂赤霉素 幼芽、幼根、未 成熟的种子等幼 嫩的组织和器官 ①促进细胞伸长, 引起植株长高;② 促进种子萌发和 果实发育 ①促进植物茎秆伸长;② 解除种子和其他部位休 眠,提早用来播种 细胞分裂素 正在进行细胞分 裂的器官(如幼 嫩根尖) ①促进细胞分裂 和组织分化;②延 缓衰老 青鲜素 蔬菜贮藏中,常用它来保 持蔬菜鲜绿,延长贮存时 间乙烯 植物各部位,成 熟的果实中更多 促进果实成熟乙烯利 处理瓜类幼苗,能增加雌 花形成率,增产 脱落酸 根冠、萎蔫的叶 片等 抑制细胞分裂,促 进叶和果实衰老 与脱落 落叶与棉铃在未成熟前的 大量脱落 多种激素的共同调节:在植物生长发育的过程中,任何一种生理活动都不是受单一激素控制的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称纵切至约 3 4 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相

植物激素 整理

植物激素的检测方法 1. 生物测试 生物测试法是最早采用的植物激素测定方法它是利用植物激素的生理活性通过某些植物的组织和器官对植物激素产生的特异性反应进行测定的。 优点:简便易行也能反映植物激素的生理活性 缺点:专一性较差且植物体内含有生长素类似物~ 拮抗物等影响测定的结果需在前处理中尽可能纯化所要测定的组分过程复 杂此外重复性差工作量大 2. 免疫检测 免疫学技术应用于植物激素的测定有力地促进了激素定量研究的发展它的基本原理是利用抗原和抗体的特异性竞争结合。 优点:了检测灵敏度可检测出10-12 g 的微量物质相应其前处理也得到了简化又改善了测定的专一性。 缺点:抗体的制备较复杂。 3.物理化学方法 物理化学方法分光谱法和色谱法两种 1)分光谱法:主要有紫外吸收光谱~ 红外吸收光谱和荧光法 优点:灵敏度高 缺点:专一性差 2)色谱法:利用物质在不同介质中的分配原理进行测定的,包括纸上层析,薄层层析(TLC) ,气相色谱(GC) ,高效液相色谱(HPLC) 以

及气质联用(GC-MS) 等,将分离和测定结合起来是色谱法的基本特点。 (1)纸上层析和TLC: 优点:设备简单易操作 缺点:分离效率和灵敏度有限制 (2)G C 和HPLC: 是在纸上层析和TLC 的基础上装备了商品化的色谱柱和检测器,保证了检测方法的专一、灵敏和准确 (3)GC 和HPLC 方法: 分析植物激素, 灵敏度和选择性高, 重复性好, 但对前处理要求较高; 又因保留时间的分辨有一定限制, 若达不到所需纯度要求可能会出现多种化合物的保留时间相同或接近而影响测定结果。(4)在植物激素的理化检测中, 仪器联用是当代的发展趋势:最常用的结合系统是气相色谱-质谱联用(GCMSD,技术, 它是目前最为可靠的激素检测方法, 还可验证其它测定方法的可靠性, 而且还可鉴定未知物质的结构,但需经冗长的样品纯化程序, 设备昂贵, 使用和维护成本高。此外有气液相色谱( GLCD 配以火焰热离子检测器(FTDD 快速灵敏地对植物细胞分裂素定量测定[25], 也有薄层色谱与气相色谱结合分析ABA。 内源植物激素:植物体内产生的激素 主要有:、生长素(auxin)、赤霉素(GA3)、细胞分裂素(CTK)、 脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH) 和油菜素甾醇、吲哚乙酸(IAA)玉米素(Z)、

五大植物内源激素2

植物的五大生长激素: 吲哚乙酸(IAA)的生理作用: 生长素的生理效应表现在两个层次上: 1.在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。 2.在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。 二.赤霉素(GA)的生理作用: 1.促进麦芽糖的转化(诱导α—淀粉酶形成);促进营养生长(对根的生长无促进作用,但显著促进茎叶的生长),防止器官脱落和打破休眠等。 2.赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化) 三.细胞分裂素(CTK)的生理作用 1.促进细胞分裂及其横向增粗。 2.诱导器官分化。 3.解除顶端优势,促进侧芽生长。 4.延缓叶片衰老。 四.脱落酸(ABA)的生理作用: 1. 抑制与促进生长。外施脱落酸浓度大时抑制茎、下胚轴、根、胚芽鞘或叶片的生长。浓度低时却促进离体黄瓜子叶生根与下胚轴伸长,加速浮萍的繁殖,刺激单性结实种子发育。 2. 维持芽与种子休眠。休眠与体内赤霉素与脱落酸的平衡有关。 3. 促进果实与叶的脱落。 4. 促进气孔关闭。脱落酸可使气孔快速关闭,对植物又无毒害,是一种很好的抗蒸腾剂。检验脱落酸浓度的一种生物试法即是将离体叶片表皮漂浮于各种浓度脱落酸溶液表面,在一定范围内,其气孔开闭程度与脱落酸浓度呈反比。

高考生物复习植物的激素调节知识点总结

2019年高考生物复习植物的激素调节知识 点总结 植物激素是由植物自身代谢产生的一类有机物质,并自产生部位移动到作用部位,以下是植物的激素调节知识点,请考生仔细阅读。名词: 1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。 2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。 3、激素的特点:①量微而生理作用显著;②其作用缓慢而持久。激素包括植物激素和动物激素。植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显著调节作用的微量有机物;动物激素:存在动物体内,产生和分泌激素的器官称为内分泌腺,内分泌腺为无管腺,动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。 4、胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。 5、琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。 6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运

输,从而使生长素在胚芽鞘的尖端背光一侧生长素分布多。 7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下面的部分的运输。 8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度范围内促进生长,高浓度范围内抑制生长。 9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。解出方法为:摘掉顶芽。顶端优势的原理在农业生产实践中应用的实例是棉花摘心。10、无籽番茄(黄瓜、辣椒等):在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无籽果实。要想没有授粉,就必须在花蕾期进行,因番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和受精的发生。无籽番茄体细胞的染色体数目为2N。 语句: 1、生长素的发现:(1)达尔文实验过程:A单侧光照、胚芽鞘向光弯曲;B单侧光照去掉尖端的胚芽鞘,不生长也不弯曲;C单侧光照尖端罩有锡箔小帽的胚芽鞘,胚芽鞘直立生长;单侧光照胚芽鞘尖端仍然向光生长。达尔文对实验结果的认识:胚芽鞘尖端可能产生了某种物质,能在单侧光照条件下影响胚芽鞘的生长。(2)温特实验:A把放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘向对侧

植物激素的种类及作用特点

植物激素---植物生长调节剂的种类及特点 植物生长调节剂(plant growth regulator)是指人工合成(或从微生物中提取)的,由外部施用于植物,可以调节植物生长发育的非营养的化学物质。 植物生长调节剂的种类很多,但根据其来源、作用方式、应用效果等大体分为以下几类: 1.生长素类 生长素类是农业上应用最早的生长调节剂。最早应用的是吲哚丙酸(indole propionic acid,IPA)和吲哚丁酸(indole butyric acid,IBA),它们和吲哚乙酸(indole-3-acetic acid,IAA)一样都具有吲哚环,只是侧链的长度不同。 以后又发现没有吲哚环而具有萘环的化合物,如α-萘乙酸(α-naphthalene acetic acid,NAA)以及具有苯环的化合物,如2,4-二氯苯氧乙酸(2, 4-dichlorophenoxyacetic acid,2,4-D)也都有与吲哚乙酸相似的生理活性。 另外,萘氧乙酸(naphthoxyacetic acid,NOA)、2,4,5一三氯苯氧乙酸(2,4,5-trichlorophenoxyacetic acid,2,4,5-T)、4-碘苯氧乙酸(4-iodophenoxyacetie acid,商品名增产灵)等及其衍生物(包括盐、酯、酰胺,如萘乙酸钠、2,4-D 丁酯、萘乙酰胺等)都有生理效应。目前生产上应用最多的是IBA、NAA、2,4-D,它们不溶于水,易溶解于醇类、酮类、醚类等有机溶剂。生长素类的主要生理作用为促进植物器官生长、防止器官脱落、促进坐果、诱导花芽分化。在园艺植物上主要用于插枝生根、防止落花落果、促进结实、控制性别分化、改变枝条角度、促进菠萝开花等。 2.赤霉素类 赤霉素种类很多,已发现有121种,都是以赤霉烷(gibberellane)为骨架的衍生物。商品赤霉素主要是通过大规模培养遗传上不同的赤霉菌的无性世代而获得的,其产品有赤霉酸(GA3)及GA4和GA7的混合物。还有些化合物不具有赤霉素的基本结构,但也具有赤霉素的生理活性,如长孺孢醇、贝壳杉酸等。目前市场供应的多为GA3,又称920,难溶于水,易溶于醇类、丙酮、冰醋酸等有机溶剂,在低温和酸性条件下较稳定,遇碱中和而失效,所以配制使用时应加以注意。赤霉素类主要的生理作用是促进细胞伸长、防止离层形成、解除休眠、打破块茎和鳞茎等器官的休眠,也可以诱导开花、增加某些植物坐果和单性结实、增加雄花分化比例等。 3.细胞分裂素类 细胞分裂素类是以促进细胞分裂为主的一类植物生长调节剂,都为腺嘌呤的衍生物。常见的人工合成的细胞分裂素有:激动素(KT)、6-苄基腺嘌呤(6-benzyl adenine,BA.6-BA)和四氢吡喃苄基腺嘌呤(tetrahydropyranyl benzyladenine,又称多氯苯甲酸,简称PBA)等。有的化学物质虽然不具有

手打整理植物内源激素种类及应用

植物调节剂的现状、发展方向及安全性根据农业部农药信息网统计,我国常用的植物生长调节剂登记数据有800余项。其中,登记数量比较多的原药有10余种,包括赤霉素、多效唑、萘乙酸、氯吡脲、芸苔素内酯、乙烯利、噻苯隆、苄氨基嘌呤、复硝酚钠、单氰胺等。从登记作物来看,水果中葡萄、柑橘、苹果、香蕉、菠萝登记的植物生长调节剂最多;农作物上主要登记的有棉花、水稻、小麦、玉米、油菜、花生;蔬菜上登记的主要有番茄、芹菜、菠菜、黄瓜、马铃薯和白菜;其他植物生长调节剂登记的农产品有花卉、人参、茶叶、杨树等。 植物生长调节剂的种类可分为生长素类、细胞分裂素类、赤霉素类、乙烯、脱落酸和其他类(包括芸苔素内酯、水杨酸、多胺、茉莉酸、植物多肽激素、寡糖素等),其中,生长素、赤霉素、细胞分裂素、芸苔素內酯属于生长促进剂,脱落酸、乙烯属于生长抑制剂。适当使用植物生长调节剂对提高产量、改善品质、提高抗性、延长保质期等有明显的作用[1]。下文将分类介绍各类植物生长调节剂的性质、文献报道的使用方法,以及一些在国内(国光公司)未使用的植物生长调节剂。 1生长素(IAA)类 生长素(IAA)是最早被发现、生理作用最重要的一种物质。1926年温特利用燕麦胚芽鞘实验证明其尖端有一种能促进生长的化学物质,称为生长素。1934年科戈从麦芽、人尿和根霉中分离出一种促进生长的物质,称为吲哚乙酸。之后科学家还陆续发现了萘乙酸(NAA)、苯乙酸(PAA)吲哚丁酸(IBA)等类似生长素的生理活性物质。由于吲哚乙酸性质不稳定,易在体内分解,于是人工合成了吲哚丁酸、2,4-二氯苯氧乙酸(2,4-D)、萘乙酸等,这些外源生长素性质稳定,活性较强,在各种作物上进行了大面积使用。 生长素大多集中在根尖、茎尖、嫩叶、正在发育的种子和果实等植物体内分裂和生长代谢旺盛的组织。生长素只能由植物顶部向基部运输,这种单方向的运输形式称为及极性运输。生长素的主要生理作用有:促进侧根和不定根的形成;促进胚芽鞘和茎的生长,抑制根的生长,促进顶端优势;推迟叶片的衰老脱落;诱导雌花分化和单性果实成熟;促进叶片扩大;诱导维管细胞分化,低浓度诱导韧皮部分化,高浓度诱导木质部分化。生长素在生产实践中被广泛用于番茄和茄

植物生长激素5类

【生长素】 名称(缩写)结构略: ●吲哚-3-乙酸(IAA) ●吲哚-3-丁酸(IBA) ●4-氯-3-吲哚乙酸(4-Cl-IAA) ●苯乙酸(PAA) 存在形式: 1.自由生长素:具有活性 2.束缚生长素:没有活性 注:自由生长素和舒束缚生长素可以相互转换. 分布: 1.总体:生长旺盛器官多,衰老器官少. 2.细胞:约有1/3在叶绿体内,余下在细胞质基质. 运输: 1.通过韧皮部运输:运输方向决定于有机物浓度差. 2.仅限于胚芽鞘、幼茎、幼根细胞间的单方向极性运输:只能从植物体形态学上端向下端运输. 合成: 部位: ●主要部位:叶原基、嫩叶和发育中的种子. ●少数部位:成熟叶片和根尖. 途径:依赖和不依赖色氨酸的合成途径,下面是依赖色氨酸的途径. 1.吲哚乙酰胺途径 2.吲哚乙腈途径 3.吲哚丙酮酸途径: 4.色胺途径 生理作用和应用: 1.促进作用: 促进细胞分裂,维管束分化,茎伸长,叶片扩大,顶端优势,种子发芽,侧根和不定根形成,根瘤形成,片上性生长,形成层活性,光合产物分配,雌花增加,单性结实,子房壁生长,乙烯产生,叶片脱落,伤口愈合,种子和果实生长,坐果等. 2.抑制作用 抑制花朵脱落,侧枝生长,块根形成,叶片衰老等. 【赤霉素】 缩写:GA 分类结构略: C20赤霉素:呈酸性. C19赤霉素:种类多,活性高. 存在形式: 1.自由赤霉素:易被有机溶剂提取. 2.结合赤霉素:没有活性. 分布与运输: 1.生长旺盛器官多,衰老器官少. 2.果实、种子含量比营养器官多两个数量级.

3.器官或组织有两种以上赤霉素 4.没有极性运输 合成: 部位: 发育着的果实伸长着的茎端和根部 步骤: 在质体中->内质网中->细胞基质 生理作用和应用: 1.促进作用: 促进种子萌发和茎伸长,两性花的雄花形成,单性结实,某些植物开花,花粉发育,细胞分裂,叶片扩大,抽薹,侧枝生长,胚轴弯钩变直,果实生长,以及某些植物坐果. 2.抑制作用 抑制成熟,侧芽休眠,衰老,块茎形成. 【细胞分裂素】 缩写:CTK 存在形式: 1.游离的细胞分裂素: 2.tRNA中细胞分裂素: ●自由细胞分裂素:具有生理活性 ●束缚细胞分裂素 分布:主要分布在细胞分裂的部位. 运输:主要从根部合成处通过木质部运到递上部,叶片合成部位也能通过韧皮部向下运输. 合成: 部位:在细胞质体合成但细胞分裂素糖苷位于液泡,细胞内运输还有待阐明. 途径: 1.由tRNA水解产生 2.从头合成:主要途径 生理作用和应用: 1.促进作用: 促进细胞分裂,细胞膨大,地上部分分化,侧芽生长,叶片扩大,叶绿体发育,养分移动,气孔张开,偏上性生长,伤口愈合,种子发芽,形成层活动,根瘤形成,果实生长,某些植物坐果. 2.抑制作用 抑制不定根和侧根形成,延缓叶片衰老.

五大植物内源激素

一、生长素类 增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子和果实生长,座果,顶端优势。 但是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄和植物器官种类有关。一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。细胞年龄不同对生长素的敏感程度不同。一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度是10-10mol/L左右;茎最不敏感,最适浓度是10-4mol/L左右;芽居中,最适浓度是10-8mol/L左右。 二、赤霉素类 (一)促进茎的生长 1、促进整株植物的生长 尤其是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用, 而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。GA促进矮生 植株伸长的原因是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。 2、促进节间的伸长 GA主要作用于已有的节间伸长,而不是促进节数的增加。 3、不存在超最适浓度的抑制作用 即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显著 不同。 (二)诱导开花 某些高等植物化芽的分化是受日照长度(即光周期)和温度影响的。例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。 对于花芽已经分化的植物,GA对其花的开放具有显著的促进效应。 (三)打破休眠 GA可以代替光照和低温打破休眠,这是因为GA可诱导α-淀粉酶、蛋白酶和其他水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。 在啤酒制造业中,用GA处理萌动而未发芽的大麦种子,可诱导α-淀粉酶的产生,加速酿造时的糖化过程,并降低萌芽的呼吸消耗,从而降低成本。 (四)促进雄花分化 对于雌雄异花同株的植物,用GA处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用GA处理,也会开出雄花。GA在这方面的作用与生长素和乙烯相反。 (五)其他生理效应 GA还可以加强IAA对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片的衰老等。此外,GA也可以促进细胞的分裂和分化,GA促进细胞分裂是由于缩短了G1期和S 期。但GA对不定根的形成却起抑制作用,这与生长素的作用又有所不同。

高三生物植物激素调节练习题及答案

植物激素调节 一、单选题 1.将切下的燕麦胚芽鞘顶部移到切口一侧,置于黑暗条件下,胚芽鞘的生长情况如右图。这个实验能够证明( ) A.顶端在光下产生某种“影响物” B.“影响物”具有促进胚芽鞘生长的效能 C.合成“影响物”不需要光 D.背光一侧“影响物”分布多 2.用燕麦胚芽鞘及幼苗⑦⑧进行如下实验,一段时间后,会引起弯曲现象的是(→表示单侧光)() … A.②⑤⑦B.①②③⑤⑧C.①③④⑥⑦D.②⑤⑧ 3.将植物横放,测量根和茎生长素浓度与其生长状况的关系如甲图所示。则曲线上P点最可能对应于乙图中的位置是() A.a B.b C.c D.d \ 4.松树主干长得粗壮,侧枝细弱,树冠呈“宝塔型”;而丁香却没有明显的主干与侧枝,树冠也不呈“宝塔型”,这是由于() A.松树是阳生植物,具有顶端优势;丁香是阴生植物,不具有顶端优势 B.松树是阴生植物,具有顶端优势;丁香是阳生植物,不具有顶端优势 C.松树和丁香均具有顶端优势,但松树的顶端优势较丁香显着 D.松树和丁香均具有顶端优势,由于丁香开花后顶端枯死,顶端优势随之解除 5.某兴趣小组将生物园里的二倍体黄瓜的雌花分四组,处理方法如下表。其中最可能获得二倍体无籽黄瓜的处理() 组别甲· 乙 丙丁 处理自然 状态 开花后,用适 宜浓度的生长 素处理柱头。 开花前套上纸袋,开花 后,用适宜浓度的生长素 处理柱头,然后再套上纸 袋。 | 开花前套上纸袋,开花 后,用适宜浓度的秋水 仙素处理柱头,然后再 套上纸袋。 注:黄瓜是雌雄异花植物 6.用一定浓度的植物生长素类似物可以作为除草剂除去单子叶农作物田间的双子叶杂草,

主要是由于() A.植物生长素类似物对双子叶植物不起作用 B.生长素类似物能够强烈促进单子叶农作物的生长 C.不同的植物对生长素的敏感度不同,双子叶植物比单子叶植物对生长素更敏感 D.同一株植物的不同器官对生长素浓度的反应不一样 ` 7.向日葵主要收获种子,番茄主要收获果实。上述两种植物在开花期间,遇到连续的阴雨天,影响了植物的传粉,管理人员及时喷洒了一定浓度的生长素。下列关于采取这一措施产生的结果的叙述中,正确的是() A.两种植物都能形成无籽果实,产量未受影响 B.两种植物都能形成无籽果实,向日葵的产量下降 C.两种植物都能形成无籽果实,产量下降 D.番茄形成有籽果实,产量上升;向日葵不能形成无籽果实 8.某高三某同学从生物学资料得知:“植株上的幼叶能合成生长素防止叶柄脱落”。为了验证这一结论;该同学利用如图所示的植株进行实验,实验中所需要的步骤是() ①选取同种生长状况相同的植株3株分别编号为甲株、乙株、丙株;②将3株全部去掉顶芽; ③将3株全部保顶芽:④将甲、乙两株去掉叶片,保留叶柄,并将甲株的叶柄横断面均涂上一定浓度的生长素,丙株保留幼叶;⑤将去掉叶片的甲、乙两株横断面均涂上一定浓度的生长素;⑥观察三株叶柄脱落情况。 A.①③④⑥B.①②④⑥ # C.①③⑤⑥D.①②⑤⑥ 9.下列农业生产措施中,与激素作用无关的是() A.带芽的枝条扦插易生根B.阉割猪以利于育肥 C.无籽西瓜的培育D.无籽番茄的培育 10.一般在幼果生长时期,含量最低的植物激素是() A.生长素B.赤霉素C.乙烯D.细胞分裂素 11.植物的果实从开始发育到完全成熟的过程中,主要由下列哪些激素共同起作用()①萘乙酸②生长素③2,4—D ④细胞分裂素⑤乙烯 ~ A.②④⑤B.②③④C.②③⑤D.①②⑤ 12.下表为用不同浓度的2,4—D(生长素类似物)溶液处理茄子的花蕾以后植株的结实情况。下列叙述错误的是

五大植物内源激素

一、生长素类 增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子与果实生长,座果,顶端优势。 但就是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄与植物器官种类有关。一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。细胞年龄不同对生长素的敏感程度不同。一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度就是10-10mol/L左右;茎最不敏感,最适浓度就是10-4mol/L左右;芽居中,最适浓度就是10-8mol/L 左右。 二、赤霉素类 (一)促进茎的生长 1、促进整株植物的生长 尤其就是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用, 而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。GA促进矮生 植株伸长的原因就是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。 2、促进节间的伸长 GA主要作用于已有的节间伸长,而不就是促进节数的增加。 3、不存在超最适浓度的抑制作用 即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显著 不同。 (二)诱导开花 某些高等植物化芽的分化就是受日照长度(即光周期)与温度影响的。例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。 对于花芽已经分化的植物,GA对其花的开放具有显著的促进效应。 (三)打破休眠 GA可以代替光照与低温打破休眠,这就是因为GA可诱导α-淀粉酶、蛋白酶与其她水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。 在啤酒制造业中,用GA处理萌动而未发芽的大麦种子,可诱导α-淀粉酶的产生,加速酿造时的糖化过程,并降低萌芽的呼吸消耗,从而降低成本。 (四)促进雄花分化 对于雌雄异花同株的植物,用GA处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用GA处理,也会开出雄花。GA在这方面的作用与生长素与乙烯相反。 (五)其她生理效应 GA还可以加强IAA对养分的动员效应,促进某些植物坐果与单性结实、延缓叶片的衰老等。此外,GA也可以促进细胞的分裂与分化,GA促进细胞分裂就是由于缩短了G1期与S 期。但GA对不定根的形成却起抑制作用,这与生长素的作用又有所不同。

常用植物激素介绍

常用植物激素 一、植物生长促进剂 (一)生长素类 1、吲哚乙酸,IAA 分子式:C10H9O2N 分子量:175.19 性质:纯品无色.见光氧化成玫瑰红,活性降低。在酸性介质中不稳定,PH低于2时很快失活,不溶于水,易溶于热水,乙醇,乙醚和丙酮等有机溶剂。它的钠盐和钾盐易溶于水,较稳定。用途:植物组织培养 2、吲哚丁酸,IBA 分子式:C12H13NO3 分子量:203.2 性质:白色或微黄色。不溶于水,溶于乙醇、丙酮等有机溶剂。 用途:诱导插枝生根。作用特别强,诱导的不定根多而细长。 3、萘乙酸,NAA,相似的有萘丁酸、萘丙酸 分子式:C12H10O2 分子量:186.2 性质:无色无味结晶,性质稳定,遇湿气易潮解,见光易变色。不溶于水,易溶于乙醇,丙酮等有机溶剂。钠盐溶于水。 用途:促进植物代谢,如开花、生根、早熟和增产等,用途广泛。 4、萘氧乙酸,NOA 分子式:C12H10O3 分子量:202 性质:纯品白色结晶。难溶于冷水,微溶于热水,易溶于乙醇、乙醚、醋酸等。 用途:与NAA相似。 5、2,4-二氯苯氧乙酸,2,4-D,2,4-滴 分子式:C8H6O3Cl2 分子量:221 性质:白色或浅棕色结晶,不吸湿,常温下性质稳定。难溶于水,溶于乙醇,乙醚,丙酮等。它的胺盐和钠盐溶于水。 用途:植物组织培养,防止落花落果,诱导无籽,果实保鲜,高浓度可杀死多种阔叶杂草。 6、防落素,PCPA,4-CPA,促生灵,番茄灵,对氯苯氧乙酸 分子式:C6H7O3Cl 分子量:186.6 性质:纯品为白色结晶,性质稳定。微溶于水,易溶于醇、酯等有机溶剂。 用途:促进植物生长;防止落花落果,诱导无籽果实;提早成熟;增加产量;改善品质等。常用于番茄保果。 7、增产灵,4-碘苯氧乙酸。相似的有4-溴苯氧乙酸,又称增产素 分子式:C8H7O3I 分子量:278 性质:针状或磷片状结晶,性质稳定。微溶于水或乙醇,遇碱生成盐。 用途:促进植物生长;防止落花落果,提早成熟和增加产量等。 8、甲萘威,西维因,N-甲基-1-萘基氨基甲酸酯 分子式:C12H11O2N 分子量:201.2 性质:纯品为白色结晶,工业品灰色或粉红色。微溶于水,易溶于乙醇、甲醇、丙酮等有机溶剂。遇碱(PH大于10)迅速分解失效。 用途:干扰生长素运输,使生长较弱的幼果得不到充足养分而脱落,用于苹果的疏果剂。同时它也是一种高效低毒沙虫剂。 9、2,4,5-T,2,4,5-三氯苯氧乙酸 分子式:C8H5O3Cl3 分子量:255.5 性质:与2,4-D相似。

植物激素

生长素 生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。 生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。 在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。 植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。 生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。 在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。 在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。 近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。 施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞生长得以进行。 赤霉素 赤霉素是一类属于双萜类化合物的植物激素。1926年日本病理学家黑泽在水稻恶苗病的研究中发现水稻植株发生徒长是由赤霉菌的分泌物所引起的。1935年日本薮田从水稻赤霉菌中分离出一种活性制品,并得到结晶,定名为赤霉素(GA)。第一种被分离鉴定的赤霉素称为赤霉酸(GA3),现已从高等植物和微生物中分离出70余种赤霉素。因为赤霉素都含有羧基,故呈酸性。内源赤霉素以游离和结合型两种形态存在,可以互相转化。 赤霉素pH值3~4的溶液中最稳定,pH值过高或过低都会使赤霉素变成无生理活性的伪赤霉素或赤霉烯酸。赤霉素的前体是贝壳杉烯。某些生长延缓剂,如阿莫-1618和矮壮素等能抑制贝壳杉烯的形成,福斯方-D能抑制贝壳杉烯转变为赤霉素。赤霉素在植物体内的形成部位一般是嫩叶、芽、幼根以及未成熟的种子等幼嫩组织。不同的赤霉素存在于各种植物不同的器官内。幼叶和嫩枝顶端形成的赤霉素通过韧皮部输出,根中生成的赤霉素通过木质部向上运输。 赤霉素中生理活性最强、研究最多的是GA3,它能显著地促进植物茎、叶生长,特别是对遗传型和生

五种植物激素的比较

的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称 纵切至约34 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相同,请根据生长素作用的特性,解释产生这种结果的原因:_________________________。 (2)将切割后的茎段浸没在一未知浓度的生长素溶液中,测得其半边茎的弯曲角度α1,从图乙中可查到与α1对应的两个生长素浓度,即低浓度(A)和高浓度(B)。为进一步确定待测溶液中生长素的真实浓度,有人将待测溶液稀释至原浓度的80%,另取切割后的茎段浸没在其中,一段时间后测量半边茎的弯曲角度将得到α2。请预测α2与α1相比较的可能结果,并

植物激素知识大全

植物激素知识大全 一、五大植物激素比较 二、植物生长与植物激素的关系 (1)生长素与细胞分裂素:植物的生长表现在细胞体积的增大和细胞数目的增多,生长素能促进细胞伸长,体积增大,使植株生长;而细胞分裂素则是促进细胞分裂,使植株的细胞数目增多,从而促进植物生长。 (2)生长素与乙烯:生长素的浓度接近或等于生长最适浓度时,就开始诱导乙烯的形成,超过这一点时,乙烯的产量就明显增加,而当乙烯对细胞生长的抑制作用超过了生长素促进细胞生长的作用时,就会出现抑制生长的现象。 (3)脱落酸与细胞分裂素:脱落酸强烈地抑制生长,并使衰老的过程加速,但是这些作用又会被细胞分裂素解除。 (4)脱落酸与赤霉素:脱落酸是在短日照下形成的,而赤霉素是在长日照下形成的。因此,夏季日照长,产生赤霉素使植物继续生长,而冬季来临前日照变短,产生脱落酸,使芽进入休眠状态。

三、植物生长调节剂的应用 1、概念:人工合成的对植物的生长素有调节作用的化学物质。 2、特点: (1)容易合成 (2)原料广泛 (3)效果稳定 3、实例 (1)剩用乙烯利催熟,如凤梨的有计划上市,香蕉、柿子、番茄等上市前的催熟。 (2)利用赤霉素溶液处理芦苇,增加纤维长度,如在芦苇生长期用一定浓度的赤霉素溶液处理,就可以使芦苇的纤维长度增加50%左右。 (3)用赤霉素处理大麦,可使大麦种子无须发芽就可产生α一淀粉酶。 (4)青鲜素可以抑制发芽,延长马铃薯、大蒜、洋葱的贮藏期。 4、植物生长调节剂应用的两面性 (1)农产品在生产过程中使用植物生长调节剂的例子很多,如马铃薯、莴苣使用赤霉素处理可打破休眠,促进萌发;芹菜、苋菜、菠菜等在采收前用一定浓度的赤霉素喷施可促进营养生长,增加产量;黄瓜、南瓜用一定浓度的乙烯利喷施可促进雌花分化。 (2)生产过程中使用植物生长调节剂可能会影响农产品的品质,如青鲜素可用于洋葱、大蒜、马铃薯块茎,延长休眠,抑制发芽,延长贮藏期,但青鲜素是致癌物质,对人体健康不利;另外如果水果远未达到成熟期,营养物质没有足够的积累,此时就盲目地用乙烯利催熟,必然改变水果的营养价值及风味。

人教版高中生物必修三-第三章植物的激素调节(含答案)

第03章植物的激素调节 (时间45分钟满分100分) 一、选择题 1. 在植物的生长发育过程中起调节作用的植物激素是 A.生长素 B.细胞分裂素 C.多种激素 D.乙烯 2. 植物具有向光性,是因为 A.单侧光抑制了生长素的产生 B.单侧光引起生长素分布不均匀,背光侧生长素分布多,生长快 C.单侧光引起生长素分布不均匀,向光侧生长素分布多,生长快 D.单侧光破坏了生长素的结构 3. 若从植物中提取生长素,下面几个选项中最理想的材料是 A. 根 B. 茎 C. 叶 D.幼嫩的种子 4. 在现代农业生产中植物生长素已被广泛使用。下列各项,与植物生长素应用无关的是 A.培育无籽番茄 B.棉花保蕾、保铃 C.延长种子寿命 D.促进插枝生根 5. 如右图所示,曲线Ⅲ表示的是在一定浓度的生长素作用下,某植物芽的生长状况,如果将同样浓度范围的植物生长素施用于根,能表示根生长状况的曲线是 A.ⅠB.ⅡC.ⅣD.Ⅴ 6. 在生产实践中,用生长素处理植物难以奏效的是 A.获得无籽辣椒 B.促进果实成熟 C.处理扦插枝条促进生根 D.除杀田间的双子叶植物杂草 7.采用几种不同浓度的生长素类似物溶液处理扦插枝条的基部,然后在沙床中培养,观察生根情况,其实验结果如下,则选择最佳的生长素类似物浓度应为 A.9mg/ml B.3mg/ml C.4.5mg/ml D.6mg/ml 8.我国成功发射的“神舟”三号宇宙飞船中,放置有一株水平方向伸展的豌豆幼苗,在太空

飞行中培养若干天后,根、茎的生长特点是 A.根向下生长,茎向上生长 B.根、茎都向下生长 C.根、茎水平生长 D.根水平生长,茎向上生长 9.用燕麦幼苗做如下两个实验:①组实验是将切下的胚芽鞘尖端C水平放置,分别取两个琼脂块A、B进贴C切面上,数小时后如图中甲所示处理。②组实验是将附有琼脂X和Y的胚芽鞘顶端放在旋转器上匀速旋转,数小时后如图中乙所示处理。以下说法错误的是 A.两天后,胚芽鞘D的生长向左,因B侧生长素多,向下运输多,右侧生长快 B.两天后,胚根E的生长向右,因B侧生长素浓度高,抑制根的生长 C.两天后,胚芽鞘G直立生长,因为X、Y两侧的生长素浓度相同 D.两天后,胚根E的生长向左,因B侧生长素浓度低,根的生长慢 10.下表为用不同浓度的2,4-D(生长素类似物)溶液处理茄子的花蕾以后植株的结实情况。下列叙述错误的是

相关文档