文档库 最新最全的文档下载
当前位置:文档库 › 高考复习-电磁感应 交流电

高考复习-电磁感应 交流电

高考复习-电磁感应 交流电
高考复习-电磁感应 交流电

[专题点拨]

电磁感应交流电

[知识结构]

[重点知识回顾]

一. 法拉第电磁感应定律

1. 引起某一回路磁通量变化的原因

(1)磁感强度的变化

(2)线圈面积的变化

(3)线圈平面的法线方向与磁场方向夹角的变化

2. 电磁感应现象中能的转化

感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。在转化和转移中能的总量是保持不变的。

3. 法拉第电磁感应定律:

(1)决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢

(2)注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同

—磁通量,—磁通量的变化量,

(3)定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。

(4)感应电动势大小的计算式:

注:(1)若闭合电路是一个匝的线圈,线圈中的总电动势可看作是一个线圈感应电动势的n倍。

(2)E是时间内的平均感应电动势

(5)几种题型

①线圈面积S不变,磁感应强度均匀变化:

②磁感强度不变,线圈面积均匀变化:

③B、S均不变,线圈绕过线圈平面内的某一轴转动时,计算式为:

二. 导体切割磁感线时产生感应电动势大小的计算式:

1. 公式:

2. 题型:(1)若导体变速切割磁感线,公式中的电动势是该时刻的瞬时感应电动势。

(2)若导体不是垂直切割磁感线运动,v与B有一夹角,如图:

(3)若导体在磁场中绕着导体上的某一点转动时,导体上各点的线速度不同,不能

用计算,而应根据法拉第电磁感应定律变成“感应电动势大小等于直线导体在单位时间内切割磁感线的条数”来计算,如图:

,转过的角度从图示位置开始计时,经过时间,导体位置由oa转到oa

1

,则导体扫过的面积

切割的磁感线条数(即磁通量的变化量)

单位时间内切割的磁感线条数为:,单位时间内切割的磁感线条数(即为磁通量的变化率)等于感应电动势的大小:

即:

计算时各量单位:

三. 楞次定律应用题型

1. 阻碍变化阻碍原磁通的变化

2. 阻碍变化阻碍(导体间的)相对运动,即“来时拒,去时留”

3. 阻碍变化阻碍原电流的变化,应用在解释自感现象的有关问题。

四. 综合应用题型

1. 电磁感应现象中的动态过程分析

2. 用功能观点分析电磁感应现象中的有关问题

3. 交变电流

(1)交变电流的产生,从中性面开始计时

()

(2)交变电流的有效值和最大值

(3)理想变压器,

(4)电能的输送

[典型例题]

电磁感应交流电

例1如图11-12所示,长为6m的导体AB在磁感强度B=0.IT的匀强磁场中,以AB上的一点O为轴,沿着顺时针方向旋转。角速度ω=5rad/s,O点距A端为2m,求AB的电势差。

【错解】

根据法拉第电磁感应定律

ε=Blv

v=ωl

ε=Bl2ω

断路时导体端电压等于电动势

【错解原因】

法拉第电磁感应定律的导出公式ε=Blv是有条件的。它适用于导体平动且速度方向垂直于磁感线方向的特殊情况。不符合本题的转动情况,本题用错了公式。另外判断感应电动势方向上也出现了问题。

【分析解答】

由于法拉第电磁感应定律ε=Blv适用于导体平动且速度方向垂直于磁感线方向的特殊情况。将转动问题转化为平动作等效处理。因为v=ωl,可以用导体中点的速度的平动产生的电动势等效于OB转动切割磁感线产生的感应电动势。

U BO =U

B

-U

O

BO

=4(V)

U AO =U

A

-U

O

AO

=1(V)

U AB =U

A

-U

B

=(U

A

-U

O

)-(U

B

-U

O

)

=U

AO -U

BO

=1-4=-3(V)

【评析】

本题中的等效是指产生的感应电动势相同。其基础是线速度与角速度和半径成正比。

例2 如图11-13所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A,B为该磁场的竖直边界,若不计空气阻力,则 [ ]

A.圆环向右穿过磁场后,还能摆至原来的高度。

B.在进入和离开磁场时,圆环中均有感应电流

C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大

D.圆环最终将静止在平衡位置。

【错解】

如图11-13所示,当圆环从1位置开始下落,进入磁场和摆出磁场时(即2位置和3位置),由于有磁通量变化,圆环上产生感应电流,选项B正确。由于金属圆环自身存在内阻,所以必然有热量产生(既有能量损失)。因此,圆环不会再摆到4位置。选项A错。当圆环进入磁场后,穿过环内的磁通量不再发生变化,无感应电流产生。选项C错误。由于每次通过磁场都有能量损失,所以圆环最终将静止在平衡位置,D选项正确。

【错解原因】

物体有惯性,人的思维也有惯性。这个同学对ABC选项的判断是正确的。只有D选项选错了。在圆环穿过磁场时,要发生电磁感应现象造成机械能转化为电能,电能再进一步转化为内能。但是,这位同学忘记分析当圆环仅在匀强磁场内摆动时,穿过圆环内的磁通量还变化呢?导致了选择错误。

【分析解答】

如图11-13所示,当圆环从1位置开始下落,进入磁场时(即2和3位置),由于圆环内磁通量发生变化,所以有感应电流产生。同时,金属圆环本身有内阻,必然有能量的转化,即有能量的损失。因此圆环不会摆到4位置。随着圆环进出磁场,其能量逐渐减少圆环摆动的振幅越来越小。当圆环只在匀强磁场中摆动时,如图11-14所示。圆环内无磁通量的变化,无感应电流产生,无机械能向电能的转化。题意中不存在空气阻力,摆线的拉力垂直于圆环的速度方向,拉力对圆环不做功,所以系统的能量守恒,所以圆环将在AB间来回摆动。

【评析】

电磁感应现象产生的条件是穿过线圈所包围的平面内的磁通量发生

只有回路中有ΔΦ≠0,即当面积S一定时,ΔB≠0,才会有感应电动势,才有感应电流的存在。可见,在分析物理问题时,要严格按照物理规律成立的条件办事。

例3 如图11-15所示,在磁感强度B= 2T的匀强磁场中,有一个半径r=0.5m的金属圆环。圆环所在的平面与磁感线垂直。OA是一个金属棒,它沿着顺时针方向以20rad/s的角速度绕圆心O匀速转动。A端始终与圆环相接触OA棒的电阻R=0.1Ω,图中定值电阻R

=100

1Ω,R2=4.gΩ,电容器的电容C=100pF。圆环和连接导线的电阻忽略不计,求:

(1)电容器的带电量。哪个极板带正电。

(2)电路中消耗的电功率是多少?

【错解】

(1)由于电容器两板间分别接在做切割磁感线导体棒的两端,电容器两端的电压就等于导体OA上产生的感应电动势。

根据右手定则,感应电流的方向由O→A,故电容器下板由于与O相接为正,上极板与A 相接为负。

(2)根据闭合电路欧姆定律

电路中消耗的电功率P

=I2R=4.9(W)

【错解分析】

(1)电容器两板虽然与切割磁感线的导体相连,但两板间并不等于导体棒OA产生的感应电动势。因为导体棒有电阻。所以电容器的电压应等于整个回路的端电压。

(2)电路中消耗的功率由于导体棒有电阻,即相当于电源有内阻,所以电路中消耗的

功率不仅在外电阻R

2上,而且还消耗在内阻R上。P

=I

2

(R+R

2

)或根据能量守恒P

=Iε。

【分析解答】

(l)画出等效电路图,图11-16所示。导体棒OA产生感应电动势

根据右手定则,感应电流的方向由O→A,但导体棒切割磁感线相当于电源,在电源内部电流从电势低处流向电势高处。故A点电势高于O点电势。又由于电容器上板与A点相接即为正极,同理电容器下板由于与O相接为负极。

(2)电路中消耗的电功率P

消=I

2

(R+R

2)

=5(W),或P

=Iε=5(W)

例4用均匀导线弯成正方形闭合金属线框abcd,线框每边长80cm,每边的电阻为0.01Ω。把线框放在磁感强度B=0.05T的匀强磁场中,并使它绕轴OO′以ω=100rad/s的角速度匀角速度旋转,旋转方向如图

(1)每条边产生的感应山动势大小;

(2)线框内感应电流的大小;

(3)e,f分别是ab和cd的中点,ef两点间的电势差。

【错解】

线圈在转动时,只有ab边和cd边作切割磁感线运动,产生感应电动势。

(2)由右手定则可知,线框在图示位置时,ab中感应电动势方向向上,而cd中感应电势的方向向下。

(3)观察fcbe电路

【错解原因】

本题解共有4处错误。第一,由于审题不清没有将每一条边的感应电动势求出,即缺少εad和εbc。即使它们为零,也应表达出来。第二,边长中两部分的的倍数关系与每一部分占总长的几分之几表述不正确。第三,ab边和cd边的感应电动势的方向分别向上、向下。但是它们的关系是电源的串联,都使电路中产生顺时针方向的电流,闭合回路的总电动势应

为。ε

cd +ε

ab

,而不是相减。第四,求U

ef

时,研究电路fcbe,应用闭合电路欧姆定律,内

电路中产生电动势的边长只剩下一半,感应电动势也只能是ε

cd

/2。

【分析解答】

(1)线框转动时,ab边和cd边没有切割磁感线,所以ε

ad =0,ε

bc

=0。

(3)观察fcbe电路

【评析】

没有规矩不能成方圆。解决电磁感应的问题其基本解题步骤是:(1)通过多角度的视图,把磁场的空间分布弄清楚。(2)在求感应电动势时,弄清是求平均电动势还是瞬时电

动势,选择合适的公式解题。(3)进行电路计算时要画出等效电路图作电路分析,然后求解。

例5 如图11-18所示,A,B是两个完全相同的灯泡,L是自感系数较大的线圈,其直流电阻忽略不计。当电键K闭合时,下列说法正确的是 [ ]

A.A比B先亮,然后A熄灭

B.B比A先亮,然后B逐渐变暗,A逐渐变亮

C.AB一齐亮,然后A熄灭

D.A、人一齐亮.然后八逐渐变亮.D的亮度不变

【错解】

当电键闭合时.A灯与线圈L串联,B灯与R串联后分别并联于电源两端。虽然K闭合瞬间线圈会产生自感,即阻碍通过线圈支路电流的的增加。但A灯与L串联后并联接在电源上。电源两端有电压,就会有电流,所以AB都应该同时亮起来。只是闭合K的瞬间A灯不能达到应有的电流而亮度发暗。K闭合一段时间后两灯达到同样的亮度。所以A灯逐渐变亮,B灯亮度不发生变化,选D。

【错解原因】

选择D选项时对自感现象理解不够。在K闭合的瞬间,通过每盏灯的电流到底怎样变化不清楚。

【分析解答】

电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源。这样对整个回路而言相当于两个电源共同作用在同一个回路中。两个电源各自独立产生电流,实际上等于两个电流的叠加。根据上述原理可在电路中标出两个电源各自独立产生的电流的方向。

图11-19a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图。由图可知、在A灯处原电流与感应电流反向,故A灯不能立刻亮起来。在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流。故B灯比正常发光亮(因正常发光时电流就是原电流)。随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A 变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光。应选B。

例6如图 11-20所示光滑平行金属轨道abcd,轨道的水平部分bcd处于竖直向上的匀强磁场中,bc部分平行导轨宽度是cd部分的2倍,轨道足够长。将质量相同的金属棒P和Q分别置于轨道的ab段和cd段。P棒位于距水平轨道高为h的地方,放开P棒,使其自由下滑,求P棒和Q棒的最终速度。

【错解】

设P,Q棒的质量为m,长度分别为2l和l,磁感强度为B,P棒进入水平轨道的速度为,对于P棒,运用机械能守恒定律得

v

当P棒进入水平轨道后,切割磁感线产生感应电流。P棒受到安培力作用而减速,Q棒受到安培力而加速,Q棒运动后也将产生感应电动势,与P棒感应电动势反向,因此回路中的电流将减小。最终达到匀速运动时,回路的电流为零,所以

εP=εQ

即2Blv

P =Blv

Q

2v

p =v

Q

对于P,Q棒,运用动量守恒定律得到

mv

0=mv

p

+mv

Q

【错解原因】

错解中对P,Q的运动过程分析是正确的,但在最后求速度时运用动量守恒定律出现错

误。因为当P,Q在水平轨道上运动时,它们所受到的合力并不为零。F

P =2Bll F

Q

=Bll(设I

为回路中的电流),因此P,Q组成的系统动量不守恒。

【分析解答】

设P棒从进入水平轨道开始到速度稳定所用的时间为△t,P,Q

对PQ分别应用动量定理得

【评析】

运用动量守恒定律和机械能守恒定律之前,要判断题目所给的过程是否满足守恒的条件。动量守恒的条件是:系统所受的合外力为零,或者是在某一方向上所受的合外力为零,则系统在该方向上动量的分量守恒。

例7 在如图11-21所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁

场,磁感强度B,导轨左端的间距为L

1=4l

,右端间距为l

2

=l

。今在导轨上放置ACDE两根

导体棒,质量分别为m

1=2m

,m

2

=m

,电阻R

1

=4R0,R

2

=R

。若AC棒以初速度V

向右运动,求

AC棒运动的过程中产生的总焦耳热Q

AC

,以及通过它们的总电量q。

【常见错解】

AC棒在磁场力的作用下,做变速运动。运动过程复杂,应从功能关系的角度来分析。

由于没有摩擦,最后稳定的状态应为两棒做匀速运动。根据动量守恒定律m

1v

=(m

1

+m

2

)v′

整个回路产生的焦耳热

因为R

1=4R

,R

2

=R

。所以AC棒在运动过程中产生的焦耳热

对AC棒应用动量定理-Bll·△t=m

1v′

1

-m

1

v

【错解原因】

AC棒在磁场力的作用下做变速运动,最后达到运动稳定,两棒都做匀速运动的分析是正确的。但是以此类推认为两棒的运动速度相同是错误的。如果两棒的速度相同则回路中还有磁通量的变化,还会存在感应电动势,感应电流还会受到安培力的作用,AC,DE不可能做匀速运动。

【分析解答】

由于棒l

1向右运动,回路中产生电流,l

l

受安培力的作用后减速,l

2

受安培力加速使回

路中的电流逐渐减小。只需v

1,v

2

满足一定关系,

两棒做匀速运动。

两棒匀速运动时,I=0,即回路的总电动势为零。所以有

Bl

l v

1

=Bl

2

v

2

再对DE棒应用动量定理B l

2·△t=m

2

v

2

【评析】

以前我们做过类似的题。那道题中的平行轨道间距都是一样的。有一些同学不假思索,把那道题的结论照搬到本题中来,犯了生搬硬套的错误。差异就是矛盾。两道题的差别就在平行导轨的宽度不一样上。如何分析它们之间的差别呢?还是要从基本原理出发。平行轨道间距一样的情况两根导体棒的速度相等,才能使回路中的磁通量的变化为零。本题中如果两根导轨的速度一样,由于平行导轨的宽度不同导致磁通量的变化不为零,仍然会有感应电流产生,两根导体棒还会受到安培力的作用,其中的一根继续减速,另一根继续加速,直到回路中的磁通量的变化为零,才使得两根导体棒做匀速运动。抓住了两道题的差异之所在,问题就会迎刃而解。

例8如图11-22所示,一个U形导体框架,其宽度l=1m,框架所在平面与水平面的夹用α=30°。其电阻可忽略不计。设匀强磁场与U形框架的平面垂直。匀强磁场的磁感强度 B=0.2T。今有一条形导体ab,其质量为m=0.5kg,有效电阻R=0.1Ω,跨接在U形框架上,并且能无摩擦地滑动,求

(1)由静止释放导体,导体ab下滑的最大速度v

m

(2)在最大速度v

时,在ab上释放的电功率。(g=10m/s2)。

m

【常见错解】

错解一:

(1)ab导体下滑过程中受到重力G和框架的支持力N,如图 11-23。

根据牛顿第二定律ΣF=ma

mgsinα=ma

a=gslnα

=0,导体做匀加速直线运动,由运动学公式

导体的初速度为V

v=v

c+at=5t

随着t的增大,导体的速度v增大vm→∞

由ε=Blv可知

当v

→∞,电功率P→∞

m

错解二:

当导体所受合力为零时,导体速度达到最大值。

(1)导体ab受G和框架的支持力 N,而做加速运动

由牛顿第二定律

mgsin30°=ma

a=gsin30°

但是导体从静止开始运动后,就会产生感应电动势,回路中就会有感应电流,感应电流

使得导体受到磁场的安培力的作用。设安培力为F

A

随着速度v的增加,加速度a逐渐减小。当a=0时,速度v有最大值

【错解原因】

分析导体ab下滑过程中物理量变化的因果关系是求ab导体下滑最大速度的关键。

错解一:正是由于对电磁现象规律和力与运动的关系理解不够,错误地分析出ab导体在下滑过程中做匀加速运动。实际上,导体ab只要有速度,就会产生感应电动势,感应电流在磁场中受到安培力的作用。安培力随速度的增加而增大,且安培力的方向与速度方向相反,导体做加速度逐渐减小的变加速直线运动。

错解二:的分析过程是正确的,但是把导体下滑时产生的电动势写错了公式,ε

=Blvsin30°中30°是错误的。ε=Blvsinθ中的θ角应为磁感强度B与速度v的夹角。本题中θ=90°。

【分析解答】

(1)导体ab受G和框架的支持力N,而做加速运动由牛顿第二定律

mgsin30°=ma

a=gsin30°=5(m/s2)

但是导体从静止开始运动后,就会产生感应电动势,回路中就会有感应电流,感应电流使得导体受到磁场的安培力的作用。设安培力为F

A

随着速度v的增加,加速度a逐渐减小。当a=0时,速度v有最大值

(2)在导体ab的速度达到最大值时,电阻上释放的电功率

【评析】:物理解题训练同学们的思维能力。本题要求同学从多角度来看问题。从加速度产生的角度看问题。由于导体运动切割磁感线发生电磁感应产生感应电流,感应电流的受力使得导体所受的合力发生改变,进而使导体的加速度发生变化,直到加速度为零。从能量转化和守恒的角度看:当重力做功使导体的动能增加的同时,导体又要切割磁感线发生电磁感应将动能转化为内能。直至重力做功全部转化为回路的内能。

例9共有100匝的矩形线圈,在磁感强度为0.1T的匀强磁场中以角速度ω=10rad/s 绕线圈的中心轴旋转。已知线圈的长边a=20cm,短边b=ocm,线圈总电阻为2Ω。求(1)

线圈平面转到什么位置时,线圈受到的电磁力矩最大?最大力矩有多大?(2)线圈平面转到与磁场方向夹角60°时,线圈受到的电磁力矩。

【错解】

(l)当线圈平面与磁场方向平行时电磁力矩最大。如图ll-24所示。

磁场对线圈一条边的作用力

F=BIb=0.01N

线圈受到的电磁力矩

(2)若θ=60°时,如图11-25

ε′=NBabωsin60°=1.73V

磁场对线圈一条边的作用力

F′=BI′=0.00866N

此时线圈受到的电磁力矩

高中物理电磁感应交变电流经典习题30道带答案

一.选择题(共30小题) 1.(2015?嘉定区一模)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()A.均匀增大B.先增大,后减小 C.逐渐增大,趋于不变D.先增大,再减小,最后不变 2.(2014?广东)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块() A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 3.(2013?虹口区一模)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i随时间变化,使线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.图中箭头表示电流i的正方向,则i 随时间t变化的图线可能是() A.B.C.D. 4.(2012?福建)如图,一圆形闭合铜环由高处从静止开始加速下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是() A.B.C.D. 5.(2011?上海)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A.顺时针加速旋转B.顺时针减速旋转 C.逆时针加速旋转D.逆时针减速旋转 6.(2010?上海)如图,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图() A.B.C.D. 7.(2015春?青阳县校级月考)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是() A.B.C.D. 8.(2014?四川)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(﹣)T,图示磁场方向为正方向,框、挡板和杆不计形变.则() A.t=1s时,金属杆中感应电流方向从C到D B.t=3s时,金属杆中感应电流方向从D到C C.t=1s时,金属杆对挡板P的压力大小为

(BD)磁场、电磁感应、交流电、电磁场和电磁波要点

【本讲教育信息】 一. 教学内容: 磁场、电磁感应、交流电、电磁场和电磁波 (一)磁场 1. 磁场 (1)磁体或电流周围存在的一种物质——____________。 (2)性质:对在它里面的磁极或电流有____________的作用。磁场的方向是小磁针____________极受力方向,亦即小磁针静止时____________极所指方向。 2. 磁感应强度 (1)定义式:____________(I垂直B)。 B的大小由磁场本身决定,与F、I、L无关,可用B=F/IL计算(2)方向:B的方向就是该点____________方向。 (3)单位:____________、____________。 3. 感磁线 (1)人为在磁场中描绘出来的一些有方向的曲线,曲线上每一点的切线方向和该点的磁场方向____________。 (2)磁感线是描述磁场的____________和____________,磁感线上某点的切线方向就是该点的____________,磁感线越密表示该处磁感应强度____________。 (3)磁感线是闭合曲线,永不相交。

(4)几种常见磁场的磁感线分布情况,在下图中画出来。 4. 安培力(磁场对电流的作用力) (1)大小:当B与I垂直时____________,当B与I平行时,____________。 (2)方向:用左手定则判定,四指指向____________方向,让磁感线____________穿过掌心,拇指指向____________的方向。 5. 洛伦兹力(磁场对运动电荷的作用力) (1)大小:当v方向与B垂直时____________,当v方向与B平行时____________。 (2)方向:用左手定则判定,其中四指指向与正电荷运动方向____________,与负电荷运动方向____________。 6. 分子电流假说 (1)内容:____________________________________。 (2)磁现象的电本质:一切磁现象的本质都可以归结为____________的运动。 (二)电磁感应 1. 磁通量: (1)定义:____________________________________;

电磁感应动力学问题归纳.doc

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1.动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零, 导体达到稳定运动状态。此时 a=0,而速度 v 通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动 . 2.两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析 . 3.常见的力学模型分析: 类型“电—动—电”型 示 意 图 棒 ab 长为 L,质量 m,电阻 R,导轨光 滑,电阻不计 BLE F S 闭合,棒 ab 受安培力R ,此时 BLE “动—电—动”型 棒 ab 长 L ,质量 m,电阻 R;导轨光滑,电阻不计 棒 ab 释放后下滑,此时 a g sin ,棒ab 速度 v↑→感应电动势E=BLv ↑→电 分 a mR ,棒ab速度v↑→感应电动势I E 析 BLv ↑→电流 I ↓→安培力 F=BIL ↓→ 加速度 a↓,当安培力F=0 时, a=0, v 最大。 运动 变加速运动 形式 最终 v m E 状态BL 匀速运动流 R ↑→安培力F=BIL↑→加速度a↓,当安培力 F mg sin 时, a=0, v 最大。 变加速运动 mgR sin v m 2 L2 匀速运动 B 4.解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. ( 3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). ( 4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

电磁感应并交流电(含答案)

“逼近高考—选择题总结性训练” 电磁感应并交变电流 一、考点及说明 二、类型、情景、知识与方法 一、单项选择题 1.如图所示,闭合开关S ,将条形磁铁插入闭合线圈,第一次用时0.2s ,第二次用时0.4s ,并且两次磁铁的起始和终止位置相同,则(A ) A .第一次线圈中的磁通量变化较快 B .第一次电流表○G 的最大偏转角较小 C .第二次电流表○G 的最大偏转角较大 D .若断开S ,电流表○G 均不偏转,故两次线圈两端均无感应电动势 2.如图,两个圆形线圈P 和Q ,悬挂在光滑绝缘杆上.通以方向相同的电流,若I 1>I 2,P 、 Q 受到安培力大小分别为为F 1和F 2,则P 和Q (D) A .相互吸引,F 1>F 2 B .相互排斥,F 1>F 2 C .相互排斥,F 1=F 2 D .相互吸引,F 1=F 2 3.用绝缘丝线悬吊一个轻质闭合铝环P .用磁铁的N 极靠近P 环时,可观察到P 环远离磁铁,现改用磁铁的S 极用同样方式靠近P 环(如图),则P 环(D ) A .静止不动 B .靠近磁铁 C .没有感应电流 D .产生顺时针方向电流 4.铺设海底金属油气管道时,焊接管道需要先用感应加热的方法对焊口两侧进行预热.将被加热管道置于感应线圈中,当感应线圈中通以电流时管道发热.下列说法中正确的是(D ) A .管道发热是由于线圈中的电流直接流经管道引起的 B .感应加热是利用线圈电阻产生的焦耳热加热管道的 C .感应线圈中通以恒定电流时也能在管道中产生电流 D .感应线圈中通以正弦交流电在管道中产生的涡流也是交流电 5.如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的小球用丝线悬挂在 两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,小球的运动情况是(A ) A .向左摆动 B .向右摆动 C .保持静止 D .无法判定 P Q

电磁感应高考复习

电磁感应 电磁感应的应用:电路 力和运动 能量 图像 ①源的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; ②路的分析——分析电路结构,弄清串并联结构,求出相关部分的电流强度,以求安培力; ③力的分析——分析力学研究对象的受力情况,尤其注意其所受的磁场力; ④运动分析——根据力和运动的关系,抽象出运动模型要素,建立运动模型; ⑤能量分析——寻找电磁感应过程和力学对象的运动过程中其能量转化和守恒的关系 热能求解方法: (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2 Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能. 图像问题: B -t 图象还是Φ-t 图象,或者E -t 图象、I -t 图象等 自感:断电自感 通电自感 F=BIL 临界状态态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力 运动导体所受的安培力 感应电流 确定电源(E ,r ) r R E I +=

L + + L 1 L 2 S E R 1. (2013). 如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属 导轨上以速度V 向右匀速滑动, MN 中产生的感应电动势为E l ;若磁感应强度增为2B, 其他条件不变,MN 中产生的感应电动势变为E 2。则通过电阻R 的电流方向及E 1与 E 2之比E l : E 2分别为 A. C →a ,2:1 B. a →c ,2:1 C. a →c ,1:2 D. c →a ,1:2 【2012】19.物理课上,老师做了一个奇妙的“跳环实验”。如图,她把一个带铁芯的线圈I 、开关S 和电源用导终连接起来后.将一金属套环置于线圈L 上,且使铁芯穿过套环。闭合开关S 的瞬间,套环立刻跳起。某司学另找来器材再探究此实验。他连接好电路,经重复试验,线圈上的套环均末动。对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是 A.线圈接在了直流电源上. B.电源电压过高. C.所选线圈的匝数过多, D.所用套环的材料与老师的不同 【2011】19某同学为了研究断电自感现象,自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电源E ,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S ,小灯泡发光。再断开开关S ,小灯泡仅有不明显的延时发光现象。虽经多次重复仍未见老师演示时灯泡闪亮现象,他冥思苦想找不到原因。你认为最有可能照成小灯泡未闪亮的原因是: A 电源内阻偏大 B 小灯泡电阻偏大 C 线圈电阻偏大 D 线圈自感系数偏大 (2010)19.在如图所示的电路中,两个相同的小灯泡1L 和2L 分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使1L 和2L 发 光的亮度一样,此时流过两个灯泡的电流均为I ,然后,断开S ,若't 时刻再闭合S ,则在't 前后的一小段时间内,正确反映流过1L 的电流1i ,流过2L 的电流2i ,随时间t 变化的图像是 2:如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭

电磁感应定律——单杆+导轨模型(含思路分析)

“单杆+导轨”模型 1. 单杆水平式(导轨光滑) 注:加速度a的推导,a=F 合/m(牛顿第二定律),F 合 =F-F 安 ,F 安 =BIL,I=E/R 整合一下即可得到答案。 v变大之后,根据上面得到的a的表达式,就能推出a变小 这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1,2s末是5,3s末是6,4s末是6.1 ,每秒钟速度的增加量都是在变小的) 2.单杆倾斜式(导轨光滑) mg 最大

【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L =1.0 m ,导轨上放有垂直导轨的金属杆P ,金属杆质量为m =0.1 kg ,空间存在磁感应强度B =0.5 T 、竖直向下的匀强磁场。连接在导轨左端的电阻R =3.0 Ω,金属杆的电阻r =1.0 Ω,其余部分电阻不计。某时刻给金属杆一个水平向右的恒力F ,金属杆P 由静止开始运动,图乙是金属杆P 运动过程的v -t 图象,导轨与金属杆间的动摩擦因数μ=0.5。在金属杆P 运动的过程中,第一个2 s 内通过金属杆P 的电荷量与第二个2 s 内通过P 的电荷量之比为3∶5。g 取10 m/s 2。求: (1)水平恒力F 的大小; (2)前4 s 内电阻R 上产生的热量。 【答案】 (1)0.75 N (2)1.8 J 【解析】 (1)由图乙可知金属杆P 先做加速度减小的加速运动,2 s 后做匀速直线运动 当t =2 s 时,v =4 m/s ,此时感应电动势E =BLv 感应电流I = E R +r 安培力F ′=BIL =B 2L 2v R +r 根据牛顿运动定律有F -F ′-μmg =0 解得F =0.75 N 。

电磁感应 交流电 (8)

例5 如图11-18所示,A,B是两个完全相同的灯泡,L是自感系数较大的线圈,其直流电阻忽略不计。当电键K闭合时,下列说法正确的是 [ ] A.A比B先亮,然后A熄灭 B.B比A先亮,然后B逐渐变暗,A逐渐变亮 C.AB一齐亮,然后A熄灭 D.A、人一齐亮.然后八逐渐变亮.D的亮度不变 【错解】 当电键闭合时.A灯与线圈L串联,B灯与R串联后分别并联于电源两端。虽然K闭合瞬间线圈会产生自感,即阻碍通过线圈支路电流的的增加。但A灯与L串联后并联接在电源上。电源两端有电压,就会有电流,所以AB都应该同时亮起来。只是闭合K的瞬间A灯不能达到应有的电流而亮度发暗。K闭合一段时间后两灯达到同样的亮度。所以A灯逐渐变亮,B灯亮度不发生变化,选D。 【错解原因】 选择D选项时对自感现象理解不够。在K闭合的瞬间,通过每盏灯的电流到底怎样变化不清楚。 【分析解答】 电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源。这样对整个回路而言相当于两个电源共同作用在同一个回路中。两个电源各自独立产生电流,实际上等于两个电流的叠加。根据上述原理可在电路中标出两个电源各自独立产生的电流的方向。

图11-19a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图。由图可知、在A灯处原电流与感应电流反向,故A灯不能立刻亮起来。在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流。故B灯比正常发光亮(因正常发光时电流就是原电流)。随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光。应选B。

电磁感应与交流电

1.如图所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈B中通以如图乙所示的交变电流,设t=0时电流沿逆时针方向,(图中箭头所示)。对于线圈A,在t1 ~t2时间内,下列说法中正确的是() A. 有顺时针方向的电流,且有扩张的趋势 B. 有顺时针方向的电流,且有收缩的趋势 C. 有逆时针方向的电流,且有扩张的趋势 D. 有逆时针方向的电流,且有收缩的趋势 2. 穿过一个单匝线圈的磁通量始终保持每 秒钟均匀地减少了2Wb,则 A.线圈中感应电动势每秒增加2V B.线圈中感应电动势每秒减少2V C.线圈中无感应电动势 D.线圈中感应电动势大小不变 3.在竖直向下的匀强磁场中,将一水平放置的金属棒AB,以初速度v水平抛出。空气阻力不计,如图5所示,运动过程中棒保持水平,那么下列说法中正确的是()(A)AB棒两端的电势U A < U B(B)AB棒中的感应电动势越来越大 (C)AB棒中的感应电动势越来越小(D)AB棒中的感应电动势保持不变 4.如图所示,一闭合的小金属环用一根绝缘细杆挂在固定点O处,使金 属圆环在竖直线OO′的两侧来回摆动的过程中穿过水平方向的匀强磁 场区域,磁感线的方向和水平面垂直。若悬点摩擦和空气阻力均不计, 则AD A.金属环进入和离开磁场区域都有感应电流,而且感应电流的方向相反 B.金属环进入磁场区域后越靠近OO′线时速度越大,而且产生的感应 电流越大 C.金属环开始摆动后,摆角会越来越小,摆角小到某一值后不再减小 D.金属环在摆动过程中,机械能将完全转化为环中的电能 5.如题图3所示,先后两次将一个矩形线圈由匀强磁场中拉出, 两次拉动的速度相同。第一次线圈长边与磁场边界平行,将线 圈全部拉出磁场区,拉力做功W1,第二次线圈短边与磁场边界 平行,将线圈全部拉出磁场区,拉力做功W2,则: A.W1> W2B.W1= W2C.W1< W2D.条 件不足,无法比较 6.如图所示,上下不等宽的平行金属导轨的EF和GH两部分导轨

高考复习——《电磁感应》典型例题复习

十五、电磁感应 1、磁通量 设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B ,平面的面积为S ,如图所示。 一、知识网络 二、画龙点睛 概念

(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量,简称磁通。 (2)公式:Φ=BS 当平面与磁场方向不垂直时,如图所示。 Φ=BS⊥=BScosθ (3)物理意义 物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。 (4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。 1Wb=1T·1m2=1V·s。 (5) 磁通密度:B=Φ S⊥ 磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通密度。 2、电磁感应现象 (1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。 (2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。 (3)产生电磁感应现象的条件 ①产生感应电流条件的两种不同表述 a.闭合电路中的一部分导体与磁场发生相对运动 b.穿过闭合电路的磁场发生变化 ②两种表述的比较和统一 a.两种情况产生感应电流的根本原因不同 闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。 穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。 b.两种表述的统一 两种表述可统一为穿过闭合电路的磁通量发生变化。 ③产生电磁感应现象的条件 不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。 条件:a.闭合电路;b.磁通量变化 3、电磁感应现象中能量的转化 能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

第三讲 电磁感应与交流电

A 1S 1234 2 S 1 R R 3 S 第三讲 电磁感应与交流电 1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( ) A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D .绕在同一铁环上的两个线圈,分别接电和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 2.如图所示,若套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看) 是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .先逆时针后顺时针方向的感应电流 D .无感应电流 3.如图所示有界匀强磁场区域的半径为r ,磁场方向与导线环所在平面垂直,导线环半径也为r, 沿两圆的圆心连线方向从左侧开始匀速穿过磁场区域。此过程中关于导线环中的感应电流i 随时间t 的变化关系图象(规定逆时针方向的电流为正)最符合实际的是( ) 4.图中A 、B 为两个相同的环形线圈,共轴并靠近放置.A 线圈中通有如图(a)所示的交变电流i ,则 ( ) A .在t 1到t 2时间内A 、 B 两线圈相吸; B .在t 2到t 3时间内A 、B 两线圈相斥; C .t 1时刻两线圈间作用力为零; D .t 2时刻两线圈间吸力最大 5.如图所示,在磁感应强度B=1.0 T 的匀强磁场中,金属杆PQ 在外力F 作用下在粗糙U 型导轨上以速度向右匀速滑动,两导轨间距离L=1.0 m ,电阻R=3.0 ,金 属杆的电阻r=1.0 ,导轨电阻忽略不计,则下列说法正确的是( ) A 、通过R 的感应电流的方向为由d 到a B .金属杆PQ 切割磁感线产生的感应电动势的大小为2.0 V C. 金属杆PQ 受到的安培力大小为0.5 N D .外力F 做功大小等予电路产生的焦耳热 6. 如图所示,平行金属导轨和水平面成θ角,导轨与固定电阻R 1、R 2相连,匀强磁场垂直 穿过导轨平面。有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值 均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上匀速滑动,当上滑的速度为v 时,受到的安培力为F ,则此时( ) A.电阻R 1的电功率为Fv/3 B. 电阻R 1的电功率为Fv/6 C.整个装置因摩擦而产生的热功率为μmgv cos θ D.整个装置消耗的机械功率为(F+μmg cos θ)v 7.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L

高考综合复习——电磁感应专题复习二电磁感应的综合应用

高考综合复习一一电磁感应专题复习二 电磁感应的综合应用 编稿:郁章富审稿:李井军 ▲知识梳理 1求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2 ?几个概念 (1)电源电动势三=汀「'或?。 T] - (2)电源内电路电压降?’,r是发生电磁感应现象导体上的电阻。( r是内电路的 电阻) (3)电源的路端电压u, 一』「「二亠’(R是外电路的电阻)。 3 ?解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。 (2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或 等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势。 ▲疑难导析 电磁感应与电路知识的综合 1解题思路 (1)明确电源的电动势 F二刃兰二曲E竺二2S&岀卫二Rg E = =科却YL邙直 (交流电)。 (2)明确电源的正、负极:根据电源内部电流的方向是从负极流向正极,即可确定“电源”的正、负极。 (3)明确电源的内阻:相当于电源的那部分电路的电阻。 (4)明确电路关系:即构成回路的各部分电路的串、并联关系。 (5)结合闭合电路的欧姆定律:结合电功、电功率等能量关系列方程求解。

电磁感应、交流电

1. 如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。当条形磁铁如 图向下移动时(不到达导轨平面),a 、b 将如何移动? 2. 如图所示,闭合导体环固定。条形磁铁S 极向下以初速度v 0沿过导体环圆心的竖直线下落的过程中,导体环中的感应电流方向如何? 3.如图所示,有两个同心导体圆环。内环中通有顺时针方向的电流,外环中原来无电流。当内环中电流逐渐增大时,外环中有无感应电流?方向如何? 4.如图所示装置中,cd 杆原来静止。当ab 杆做如下那些运动时,cd 杆将 向右移动? A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动 5.如图所示,闭合金属铜环从高为h 的曲面滚下,沿曲面的另一侧上升,设闭合环初速度为零,不计摩擦,则( ) A .若是匀强磁场,环上升的高度小于h B .若是匀强磁场,环上升的高度大于h C .若是非匀强磁场,环上升的高度等于h D .若是非匀强磁场,环上升的高度小于h 6.如图(a ),圆形线圈P 静止在水平桌面上,其正上方悬挂一相同的线圈Q , P 和Q 共轴.Q 中通有变化电流,电流随时间变化的规律如图(b )所示.P 所受的重 力为G ,桌面对P 的支持力为N ,则 A.t 1时刻N >G B.t 2时刻N >G C.t 3时刻N <G D.t 4时刻N =G 7.如图所示,长L 1宽L 2的矩形线圈电阻为R , 处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。 8.如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的 电阻都忽略不计)。磁感应强度为B 的匀强磁场方向垂直于纸面向外。金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。从静止释放后ab 保持水平而下滑。试求ab 下滑的最大速度v m 9.如图所示的电路中,A 1和A 2 是完全相同的灯泡,线圈L 的电阻可以忽略不计,下列说法中正确的是( ) A .合上开关S 接通电路时,A 2先亮A 1后亮,最后一样亮 B .合上开关S 接通电路时,A 1和A 2始终一样亮 C .断开开关S 切断电路时,A 2立即熄灭,A 1过一会熄灭 D .断开开关S 切断电路时,A 1和A 2都要过一会才熄灭 10. 如图所示,平行金属导轨间距为d ,一端跨接电 阻为R ,匀强磁场磁感强度为B ,方向垂直平行导轨平面,一根长金属棒与 导轨成θ角放置,棒与导轨的电阻不计,当棒沿垂直棒的方向以恒定速度v 在导轨上滑行时,通过电阻的电流是 ( ) A .Bdv /(R sin θ) B .Bdv/R C .Bdv sin θ/R D .Bdv cos θ/R 11. 如图所示,圆环a 和b 的半径之比R 1∶R 2=2∶1,且是粗细相 同,用同样材料的导线构成,连接两环导线的电阻不计,匀强磁场的 磁感应强度始终以恒定的变化率变化,那么,当只有a 环置于磁场中 a b

高三电磁感应专题复习(附答案)

图3 2015年高考电磁感应专题复习(附答案) 一、选择题 1、(2014上海)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。则磁场:( ) A .逐渐增强,方向向外 B .逐渐增强,方向向里 C .逐渐减弱,方向向外 D .逐渐减弱,方向向里 2、(2014·新课标全国卷Ⅰ) 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是:( ) A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 3、如图3所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿 管的轴线迅速插入螺线管内,小灯泡的亮度如何变化:( ) A .不变 B .变亮 C .变暗 D .不能确定 4、(2014·江苏卷)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为:( ) A.Ba 22Δt B.nBa 22Δt C.nBa 2Δt D.2nBa 2 Δt 5、(2014·山东卷)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是:( ) A .F M 向右 B .F N 向左 C .F M 逐渐增大 D .F N 逐渐减小 6、(2014·四川卷) 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则:( ) A .t =1 s 时,金属杆中感应电流方向从C 到D B .t =3 s 时,金属杆中感应电流方向从D 到C C .t =1 s 时,金属杆对挡板P 的压力大小为0.1 N D .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能 如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能 如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

专题八 电磁感应 交流电和能量变化

专题八电磁感应交流电和能量变化 高考要求: 1、电磁感应现象,磁通量,法拉第电磁感应定律,楞次定律Ⅱ 2、导体切割磁感线时的感应电动势,右手定则Ⅱ 3、自感现象Ⅰ 4、日光灯Ⅰ 5、交流发电机及其产生正弦式电流的原理,正弦式电流的图象和三角函数表达,最大值与 有效值,周期与频率Ⅱ 6、电阻、电感和电容对交变电流的作用,感抗和容抗Ⅰ 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。因此,本专题涉及的内容是历年高考考查的重点,年年都有考题,且多为计算题,分值高,难度大,对考生具有较高的区分度。因此,本专题是复习中应强化训练的重要内容。 知识整合: 1.受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感 应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化

→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a =0时,速度v达最大值的特点。 2.功能分析,电磁感应过程往往涉及多种能量形势的转化。例如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径. 互动课堂 棒的最大速度。已知ab与导轨 ,导轨和金属棒的电阻都不计。

完整word版,高考物理电磁感应中的图像问题

2015届高考复习云课堂第2讲 电磁感应中的图象问题 1.图象类型 电磁感应中主要涉及的图象有B-t图象、Φ-t图象、E-t图象和I-t图象。还常涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象。 2.常见题型 图象的选择、图象的描绘、图象的转换、图象的应用。 3.所用规律 一般包括:左手定则、安培定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律等。 4.分析步骤 (1)明确图象的种类; (2)分析电磁感应的具体过程; (3)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数方程; (4)根据函数方程进行数学分析,例如分析斜率的变化、截距等; (5)画图象或判断图象 问题类型由给定的电磁感应过程选出正确的图象 解题关键根据题意分析相关物理量的函数关系、分析物理过程中的转折点、明确“+、-”号的含义,结合数学知识做正确的判断 匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好 接触.下列关于回路中电流i与时间t的关系图线,可 能正确的是() 解析设∠bac=2θ,MN以速度v匀速运动,导体棒单位长度的电阻为R0.经过时间t,导体棒的有效切割长度L=2v t tan θ,感应电动势E=BL v=2B v2t tan θ,回路 的总电阻R=(2v t tan θ+2v t )R,回路中电流i= E = B v 故i与t无

【例2】边长为a的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面的匀强磁场中,现把框架匀速拉出磁场,如图所示,则选项图中电动势、外力、外力功率与位移图象规律与这一过程相符合的是() 解析:感应电动势E=BLv=B×2xtan30°v=,则E与x成正比.故A错误,B正 确.线框匀速运动F外=F安=BIL,I=,E=BLv,得到F外=,L=则F外=, B、R、v一定,则F外∝x2.外力的功率P外=F外v=,P外∝x2,故选B

相关文档
相关文档 最新文档