文档库 最新最全的文档下载
当前位置:文档库 › 09级高三数学总复习讲义——三角函数性质与图像

09级高三数学总复习讲义——三角函数性质与图像

09级高三数学总复习讲义——三角函数性质与图像
09级高三数学总复习讲义——三角函数性质与图像

09级高三数学总复习讲义——三角函数性质与图像 知识清单:

反三角函数符号的运用:

arcsin ,

22

a ππ

?∈-??、

[]

arccos 0,a π∈、

arc tan (,

22

a ππ

∈-

注意:反三角数符号只表示...这个范围的角,其他范围的角需要用诱导公式变到这个范围.

备注:

以上性质的理解记忆关键是能想象或画出函数图象..........

. 函数s i n ()y A

x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x

=????→图例变化为

②sin()y A x ω?=+(A >0,ω>0)相应地,

①的单调增区间2,222k k ππππ??-++????

???→变为

222

2

k x k π

π

πω?π-

+++≤≤

的解集是②的增区间.

注:

⑴)sin(

?ω+=x y 或cos()y x ω?=+(0≠ω)的周期ω

π

2=T ;

⑵sin()y x ω?=+的对称轴方程是2

x k π

π=+

(Z k ∈),对称中心(,0)k π;

cos()y x ω?=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2

k ππ+;

sin y x = cos y x = ()?ω+=x A y sin (A 、ω>0)

定义域 R

R

R

值域 [1,1]- [1,1]-

[]A A ,-

周期性

π2

π2

ω

奇偶性 奇函数

偶函数

当,0≠?非奇非偶, 当,0=?奇函数

单调性

[2,

2]22

k k π

π

ππ-

++上为增函数;

3[2,2]22

k k ππππ++上为减函数. (Z k ∈)

()[21,2]

k k ππ-上为增函数;

()[2,21]k k ππ+

上为减函数. (Z k ∈)

12222,k k ππ?ππ?ωω??--+-????????

上增函数;

32222,k k ππ?ππ?ωω??+-+-????????

上减函数

(Z k ∈)

tan y x =

cot y x =

定义域 1|,2x x R x k k Z ππ??∈≠+∈??

??

{}|,x x R x k k Z π∈≠∈且

值域 R

R

周期性 π

π

奇偶性 奇函数

奇函数

单调性

??

?

??++-ππππ

k k 2,2上为增函数(Z k ∈)

()()ππ1,+k k 上为减函数(Z k ∈)

)tan(?ω+=x y 的对称中心(

0,2

π

k ). 课前预习

1.函数sin cos y x x =-的最小正周期是 . 2. 函数1π2sin()23

y x =+的最小正周期T = . 3.函数sin

2

x

y =的最小正周期是( ) (A)

2

π

(B)π (C) 2π (D) 4π 4.函数]),0[)(26

sin(2ππ

∈-=x x y 为增函数的区间是( )

(A)]3,0[π (B)]127,12[ππ (C) ]65,3[ππ (D)],6

5[ππ 5.函数2

2cos()()363

y x x πππ=-≤≤的最小值是( )

()2A - ()3B - ()1C - ()1D

6.为了得到函数)6

2sin(π

-=x y 的图象,可以将函数x y 2cos =的图象( )

(A)向右平移

6π个单位长度 (B)向右平移3π

个单位长度 (C)向左平移6π个单位长度 (D)向左平移3

π

个单位长度

7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平

3

π

个单位,所得图象的解析式是__________________. 8. 函数sin 3cos y x x =+在区间[0,2

π

]的最小值为______.

9.适合1

3sin ,,32

x x ππ?

?=-∈????

的角x 是( )

1()arcsin()3A - 1()arcsin 3B - 1()2arcsin()3C π+- 1

()arcsin()3

D π--

10.已知f (x )=5sin x cos x -35cos 2x +

32

5

(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;

⑶求f (x )图象的对称轴,对称中心。 11.求函数f (x )=12

1log cos()3

4

x π

+

的单调递增区间

12.求3arctan 2arctan 1arctan ++的值.

典型例题

EG1、三角函数图像变换 将函数1

2cos(

)32

y x π

=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4

y x π

=-的图像?

变式2:将函数1

2cos()2

6

y x π

=-的图像作怎样的变换可以得到函数cos y x =的图像?

变式3:将函数1sin(2)33

y x π

=

+的图像作怎样的变换可以得到函数sin y x =的图像? EG2、三角函数图像

函数sin()(0,0,02)y A x A ω?ω?π=+>><<一个周期的图像如图所示,试确定A ,,ω?的值.

变式1:已知简谐运动ππ()2sin 32f x x ?????

?=+<

???????

的图象经过点(01),

,则该简谐运动的最 小正周期T 和初相?分别为( ) A.6T =,π6?=

B.6T =,π3?= C.6πT =,π6?= D.6πT =,π

3

?= 变式2:函数πsin 23y x ??=-

??

?在区间ππ2??-????

,的简图是( )

变式3:如图,函数π

2cos()(0)2

y x x ωθθ=+∈R ,≤

≤ 的图象与y 轴交于点(03),,且在该点处切线的斜率为2-. 求θ和ω的值. EG3、三角函数性质

求下列函数的最大、最小值以及达到最大(小)值时x 的值的集合.

y

x

3

O

(1) 34sin(2)23

y x ππ=

+; (2) 6sin(2.52)2y x =-++ 变式1:已知函数()2sin (0)f x x ωω=>在区间,34ππ??

-

????

上的最小值是2-,则ω的最小值等 于 ( )

(A )

23 (B )3

2

(C )2 (D )3 变式2:函数y =2sin x 的单调增区间是( )

A .[2k π-

2

π

,2k π+

2

π](k ∈Z )B .[2k π+

2

π,2k π+

2

](k ∈Z ) C .[2k π-π,2k π](k ∈Z )D .[2k π,2k π+π](k ∈Z ) 变式3:关于x 的函数f (x )=sin (x +?)有以下命题:

①对任意的?,f (x )都是非奇非偶函数; ②不存在?,使f (x )既是奇函数,又是偶函数; ③存在?,使f (x )是奇函数; ④对任意的?,f (x )都不是偶函数。

其中一个假命题的序号是_____.因为当?=_____时,该命题的结论不成立。 变式4、函数()12sin 4f x x π??= ???

+的最小正周期是 . 变式5、下列函数中,既是(0,

2

π

)上的增函数,又是以π为周期的偶函数是( ) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2

变式6、已知???

???∈2,0πx ,求函数)125cos()12cos(x x y +--=ππ的值域

变式7、已知函数12

()log (sin cos )f x x x =-

⑴求它的定义域和值域;

⑵求它的单调区间;

⑶判断它的奇偶性; ⑷判断它的周期性.

EG4、三角函数的简单应用

电流I 随时间t 变化的关系式sin I A t ω=,[)0,t ∈+∞,设10ωπ=

/rad s ,5A =.

(1) 求电流I 变化的周期; (2) 当11310,,,,20010020050

t =(单位s )时,求电流I .

变式1:已知电流I 与时间t 的关系式为sin()I A t ω?=+.

300

-300

1180

-

1900

o

I

t

(1)右图是sin()I A t ω?=+(ω>0,||2

π?<

) 在一个周期内的图象,根据图中数据求sin()I A t ω?=+的解析式; (2)如果t 在任意一段

1

150

秒的时间内,电流sin()I A t ω?=+都能取得最大值和最小值,那么ω的最小正整数值是多少?

变式2:如图,某地一天从6时至14时的温度变化曲线近似

满足函数y =A sin (ωx +?)+b . (Ⅰ)求这段时间的最大温差; (Ⅱ)写出这段曲线的函数解析式.

变式3:如图,单摆从某点给一个作用力后开始来回摆动,离开平 衡位置O 的距离s 厘米和时间t 秒的函数关系为6sin(2)6

s t π

π=+.

(1)单摆摆动5秒时,离开平衡位置多少厘米?

(2)单摆摆动时,从最右边到最左边的距离为多少厘米? (3)单摆来回摆动10次所需的时间为多少秒? EG5、三角恒等变换

化简:

(1sin cos )(sin

cos )2222cos θ

θ

θθθ

++-+.

变式1:函数y =

x

x cos sin 21

++的最大值是( ).

A.

22

-1 B.

2

2

+1 C.1-

2

2

D.-1-

2

2 变式2:已知

cos 22

π2sin 4αα=-

?

?- ?

?

?,求cos sin αα+的值. 变式3:已知函数2

π()2sin 3cos 24f x x x ??=+- ???,ππ42x ??

∈????

,.求()f x 的最大值和最小值.

实战训练

1.方程sin x ax =(a 为常数,0a ≠)的所有根的和为 .

2.函数x x f 2

sin 21)(-=的最小正周期为

3.若函数)sin()(?ω+=x x f 的图象(部分)如图所示,则?ω和的取值是( ) (A)3

,1π

?ω=

= (B)3

,1π

?ω-

== (C)6,21π?ω==

(D)6

,21π

?ω-==

4. 函数f x x x x ()cos sin cos =-223的最小正周期是_____ 5.函数)(2cos 2

1

cos )(R x x x x f ∈-

=的最大值等于 6.(07年浙江卷理2)若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2

<)的最小正周期是π,且(0)3f =,则( ) A .126ω?π=

=, B .123ω?π==, C .26ω?π==, D .23

ω?π==, 7.(2007年辽宁卷7).若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( )

A .(12)-,

B .(1

2),

C .(12)-,

D .(1

2)-, 8.(2007年江西卷文2).函数5tan(21)y x =+的最小正周期为( ) A.

π4

B.

π2

C.π

D.2π

9.(2007年江西卷文8).若π

02x <<,则下列命题正确的是( ) A.2sin π

x x <

B.2sin πx x > C.3sin πx x < D.3

sin π

x x >

10.(2007年湖北卷理2).将π2cos 36x y ??=+ ???的图象按向量π24??

=-- ???

a 平移,则平移后所得图象的解析式为( )

A.π2cos 234x y ??=+- ??? B.π2cos 234x y ??=-+ ???C.π2cos 2312x y ??=-- ???D.π2cos 2312x y ??

=++ ???

11.(2007年海南宁夏卷理3).函数πsin 23y x ??=- ??

?在区间ππ2??-????

,的简图是( )

y

x

1

1-

2

π

- 3

π-

O 6

π

π y

x

1

1-

2

π

- 3π- O 6

π

π y

x

1

1-

2

π

- 3

π

O

6π- π

y

x

π 2

π-

6

π- 1 O 1-

3

π

A.

B.

12.(2007年广东卷理3).若函数21

()sin ()2

f x x x R =-∈,则f(x)是

(A )最小正周期为

2

π

的奇函数; (B )最小正周期为π的奇函数; (C )最小正周期为2π的偶函数; (D )最小正周期为π的偶函数; 13.(2007年福建卷理5).已知函数()sin (0)f x x ωωπ?

?

=+> ?3??

的最小正周期为π,则该函数的图象( )

A .关于点0π?? ?3??

,对称

B .关于直线x π

=

4对称 C .关于点0π

?? ?4??

,对称

D .关于直线x π

=

3

对称 14.(2007年福建卷文5).函数πsin 23y x ??

=+

??

?的图象( ) A.关于点π

03?? ???,对称

B.关于直线π

4x =

对称 C.关于点π04

?? ???

,对称

D.关于直线π

3

x =

对称 15.(2007年江苏卷1).下列函数中,周期为

2

π

的是( ) A .sin

2x y = B .sin 2y x = C .cos 4

x

y = D .cos 4y x = 16.(2007年江苏卷5).函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是( ) A .5[,]6ππ--

B .5[,]66ππ--

C .[,0]3π-

D .[,0]6

π- 17.(2007年天津卷文9)设函数()sin ()3f x x x π?

?

=+

∈ ???

R ,则()f x ( ) A .在区间2736ππ??

?

???

,上是增函数

B .在区间2π??

-π-

???

?

,上是减函数 C .在区间84

ππ??????

,上是增函数

D .在区间536

ππ??????

,上是减函数

18.(07年山东卷文4).要得到函数sin y x =的图象,只需将函数cos y x π??

=-

?3??

的图象( ) A .向右平移

π

6个单位 B .向右平移

π

3个单位 C .向左平移π

3

个单位

D .向左平移π

6

个单位

19.(07年全国卷二理2).函数sin y x =的一个单调增区间是( ) A .ππ??- ?44??

B .3ππ?? ?44??

C .3π??π ?2??

D .32π??

π

?2??

, 20.(2007年全国卷一理12)函数2

2

()cos 2cos 2

x

f x x =-的一个单调增区间是( ) A .233ππ?? ???

B .62ππ?? ???

C .03π?? ???

D .66ππ??- ???

21.(2007年安徽卷理6)函数π()3sin(2)3

f x x =-的图象为

①图象C 关于直线π1211

=

x 对称; ②函灶)(x f 在区间)12

π

5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3

π

个单位长度可以得到图象C .

其中正确的个数有( )个

(A )0 (B )1

(C )2

(D )3

22.(2007年北京卷文3).函数()sin 2cos 2f x x x =-的最小正周期是( ) A.

π2

B.π

C.2π

D.4π

23.(2007年四川)下面有五个命题: ①函数4

4

sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是{|,}2

k a a k Z π

=

∈ ③在同一坐标系中,函数sin y x =的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36

)32sin(3的图象得到的图象向右平移x y x y =π

π+= ⑤函数sin()0.2

y x π

π=-

在[,]上是减函数

其中真命题的序号是 (写出所有真命题的编号) 24.(07年重庆卷理)设f (x) = x x 2sin 3cos 62

- (1)求f(x)的最大值及最小正周期;

(2)若锐角α满足323)(-=αf ,求tan α5

4的值。

24.(2007年重庆卷文)(18)已知函数

)

2

sin(42cos 2π

π+

?

?? ?

?

-x x 。

(Ⅰ)求f (x )的定义域; (Ⅱ)若角a 在第一象限且)。(求a f a ,5

3

cos =

25.(2007年辽宁卷19).(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω????=+

+--∈ ? ??

??

?R ,(其中0ω>) (I )求函数()f x 的值域;

(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π

2

,求函数()y f x =的单调增区间.

26.已知函数x x x f cos sin )(-=,R x ∈.

(1)求函数)(x f 在]2,0[π内的单调递增区间;

(2)若函数)(x f 在0x x =处取到最大值,求)3()2()(000x f x f x f ++的值; (3)若x e x g =)((R x ∈),求证:方程)()(x g x f =在[)+∞,0内没有实数解. (参考数据:69.02ln =,14.3≈π)

实战训练B

1.(全国一8)为得到函数πcos 23y x ??

=+

??

?

的图像,只需将函数sin 2y x =的图像( ) A .向左平移

12个长度单位

B .向右平移

12个长度单位 C .向左平移5π

6

个长度单位

D .向右平移5π

6

个长度单位

2.(全国二8)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1

B .2

C .3

D .2

4.(四川卷5)若02,sin 3cos απαα≤≤>,则α的取值范围是:( ) A ,32ππ??

??? B ,3ππ?? ??? C 4,33ππ

?? ??? D 3,32

ππ

??

???

5.(天津卷6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3

π

个单位长度,再把所得图象上所有点的横坐标缩短到原来的

1

2

倍(纵坐标不变),得到的图象所表示的函数是 A sin(2)3y x π=-,x R ∈ B sin()26x y π

=+,x R ∈

C sin(2)3y x π=+,x R ∈

D sin(2)3

2y x π

=+

,x R ∈ 6.(天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7

c π

=,则

A c b a <<

B a c b <<

C a c b <<

D b a c <<

7.(安徽卷5)将函数sin(2)3

y x π

=+

的图象按向量α平移后所得的图象关于点(,0)12

π

-

心对称,则向量α的坐标可能为( ) A .(,0)12

π

-

B .(,0)6

π

-

C .(

,0)12

π

D .(

,0)6

π

8.(湖北卷5)将函数3sin()y x θ=-的图象F 按向量(

,3)3

π

平移得到图象F ',若F '的一条对称轴是直线

4

x π

=

,则θ的一个可能取值是

A.

π125 B. π125- C. π12

11 D. 1112π-

9.(湖南卷6)函数2()sin 3sin cos f x x x x =+在区间,42ππ??

?

???

上的最大值是( ) A.1 B.

13

2

+ C.

3

2

D.1+3

10.(重庆卷10)函数f(x)=

sin 1

32cos 2sin x x x

---(02x π≤≤) 的值域是

A[-

2

,02

]

B[-1,0] C[-2,0]

D[-3,0]

11.(福建卷9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为

A.

2

π

B.π

C.-π

D.-

2π 12.(浙江卷5)在同一平面直角坐标系中,函数])20[)(2

32cos(ππ

,∈+

=x x y 的图象和直线21=y 的交点个数是

(A )0 (B )1 (C )2 (D )4

13.(海南卷1)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( )

A. 1

B. 2

C. 1/2

D. 1/3

14.(上海卷6)函数f (x )=3sin x +sin(π

2+x )的最大值是

15.(江苏卷1)()cos 6f x x πω??

=-

??

?

的最小正周期为

5

π

,其中0ω>,则ω= . 16.(广东卷12)已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .

17.(辽宁卷16)已知()sin (0)363f x x f f ωωπππ??

????

=+

>= ? ? ?

??????

,,且()f x 在区间63ππ?? ???,有最小值,无最大值,则ω=__________.

18.(北京卷15).(本小题共13分) 已知函数2π()sin 3sin sin 2f x x x x ωωω??

=++ ??

?

(0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03??????

,上的取值范围.

19.(四川卷17).(本小题满分12分)

求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。 20.(天津卷17)(本小题满分12分)

已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2

π

. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. 21.(安徽卷17).已知函数()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122

ππ

-

上的值域

22.(山东卷17)已知函数f (x )=)0,0)(cos()sin(3><<+-+ω??ω?ωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2

π (Ⅰ)f (

8

π

)的值; (Ⅱ)将函数y =f (x )的图象向右平移

6

π

个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 23.(湖北卷16).已知函数117(),()cos (sin )sin (cos ),(,).112

t f t g x x f x x f x x t π

π-=

=?+?∈+

(Ⅰ)将函数()g x 化简成sin()A x B ω?++(0A >,0ω>,[0,2)?π∈)的形式; (Ⅱ)求函数()g x 的值域.

24.(陕西卷17).(本小题满分12分) 已知函数2()2sin

cos 23sin 3444

x x x

f x =-+. (Ⅰ)求函数()f x 的最小正周期及最值;

(Ⅱ)令π()3g x f x ??

=+

??

?

,判断函数()g x 的奇偶性,并说明理由. 25.(广东卷16).已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最大值是1,其图像经过点

π132M ?? ???

,. (1)求()f x 的解析式;

(2)已知π02αβ??∈ ??

?

,,,且3()5f α=,12()13

f β=,求()f αβ-的值.

三角函数图像与性质知识点总结和经典题型

三角函数图像与性质经典题型 题型1:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所 以排除A 、C ,当x ∈(0, 2 π )时,y =-xc os x <0。 题型2:三角函数图象的变换 例2.试述如何由y =31sin (2x +3 π )的图象得到y =sin x 的图象。 解析:y =31sin (2x +3π))(纵坐标不变倍 横坐标扩大为原来的3 πsin 312+=?????????→?x y x y sin 313 π =????????→?纵坐标不变个单位图象向右平移 x y sin 3=?????????→?横坐标不变 倍 纵坐标扩大到原来的 例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移 2 π 个单位,再沿y 轴向下平移1个单位,得到的曲 线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y = x cos 21+,因为要将原曲线向右、向下分别移动2π 个单位和1个单位,因此可得 y = ) 2 cos(21π -+x -1为所求方程.整理得(y +1)sin x +2y +1=0. 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线 y =3与函数f (x )图象的所有交点的坐标。 解析:根据图象得A =2,T = 27π-(-2π)=4π,∴ω=21,∴y =2sin (2 x +?),又由图象可得相位移为-2π,∴-2 1? = - 2 π,∴?= 4π.即y =2sin (21x +4π)。根据条件3=2sin (4 21π+x ),∴421π+x =2k π+ 3π(k ∈Z )或 4 21π+x =2k π+32 π(k ∈Z ),∴x =4k π+ 6 π (k ∈Z )或x =4k π+ 65π(k ∈Z )。∴所有交点坐标为(4k π+3,6 π)或(4k π+3,65π )(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。 解析:(1)0≤c os x <1?2k π- 2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )∴所求函数的定义域为{x |x ∈[2k π-2 π ,2 k

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

高中数学三角函数练习题

高一数学第一次月考试题 一. 选择题(每题5分,共60分) 1.函数)6 2sin(2π +=x y 的最小正周期是( ) A .π4 B .π2 C .π D .2 π 2.0sin300=( ) A .1 2 B . 32 C .-12 D .-32 3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠ AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 4.如果sin α-2cos α 3sin α+5cos α =-5,那么tan α的值为( ) A .-2 B .2 D .-2316

5.函数)2 52sin(π+=x y 的图象的一条对称轴方程是( ) A .2 π-=x B .4 π-=x C .8 π = x D .4 5π= x 6.将函数y =sin(x -π 3)的图象上所有点的横坐标伸长到原来的2 倍(纵坐标不变),再将所得的图象向右平移π 3个单位,得到的图象 对应的解析式是( ) A .y =sin 1 2x B .y =sin(12x -π 2) C .y =sin(12x -π 6 ) D .y =sin(2x -π 6 ) 7.已知α是第二象限角,且4tan =-3 α,则( ) A .4sin =-5α B .4sin =5α C .3cos =5α D .4cos =-5 α 8.已知3 cos +=25πθ?? ???,且3,22 ππθ? ? ∈ ??? ,则tan θ=( ) A .43 B .-43 C .34 D .-34 9.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|< π 2 )的部分图象如

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

(完整版)高中数学必修一三角函数图像性质总结(精华版)

x ?正弦、余弦、正切函数图象和性质 正弦函数、余弦函数、正切函数的图像 -5 3 7 ~2~ ” - 丁1 T V x 2*伽 -4 -7 -3 ' 、一 -2 -3 - -1 o '2 5 3 J. ‘ 4 2 2 2

y=ta nx J J J 1 Jr jr y y ; 1 1 / / / I ? r / / / y\ y=cotx 1 1 1 \ i 1 ! i I 1 3f-2 1 f J 1 J f f o 2 f I \ I i 1 I L o I I X2 1 三角函数的性质 1定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y= tanx ;偶函数:y= cosx. ⑺八黒 ' -型三角函数的奇偶性 (i)g(x 丄^ 丁(x€ R) (x)为偶函数- U 山呂in(曲+ 训+ e二匕T +—〔七W E) 由此得- 同理或劝=丿血(阪+呦〔肚丘)为奇函数u 如卩二0吕貯=匕吋上亡£)丘)Q..I —「二一L> : C 2. ■■■ □ 为偶函数;.匚」一⑺一".S 为奇函数 O 炉=Rr+ —(h e 7) 3、周期性 1)基本公式 (i)基本三角函数的周期y= sinx , y= cosx 的周期为; y = tanx , y = cotx 的周期为;T? (ii)—",:'型三角函数的周期 尹=」幻n(购+ 朝 +匕尸=+炉)+上的周期为同 y=cosx

P =」tan (处: + &) +匕尸二(处卄洞+& 的周期为91 . (2)认知 (i ) ?卜巳-,?| 型函数的周期 y = pisin (伽+ 剑| j = A cos(d&r+ 4?)| 的周期为 7T y = |j4tan(dft + 训,y=血 ot 〔伽 + 训 的周期为 ? = |了(曲+卩)+円往无0)的周期 》=|£血(血工+朝胡』=|1(:0£(处+?+上| y = |^tan(&r + ^) +円 j =凶诃(你+昉+刈 的周期为’; 7T 的周期为'? 均同它们不加绝对值时的周期相同,即对 数 的周期不变?注意这一点与(i )的区别? (ii ) 若函数为-’二 型两位函数之和,则探求周期适于“最小公倍数法”. (iii ) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明 ? (3)特殊情形研究 y 二门」 彳J 的解析式施加绝对值后,该函 JT (i) y = tanx — cotx 的最小正周期为 ; y = sin z|+|co5z| 7T 的最小正周期为二; 7T (iii ) y = sin 4X + cos 4x 的最小正周期为 二. 由此领悟“最小公倍数法”的适用类型,以防施错对象 . 4、单调性 (1) 基本三角函数的单调区间(族) 依从三角函数图象识证“三部曲”: ① 选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期; ② 写特解:在所选周期内写出函数的增区间(或减区间); ③ 获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族) 循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 . 揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域 (2) 』— 丁 型三角函数的单调区间

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

(完整版)高一数学三角函数的图像和性质练习题

高一数学 三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos ( 52x -6π)的最小正周期是( ) A .5 π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( )

A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6 ); (2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6 ,0)对称; (4)y=f(x)的图象关于直线x=-π6 对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4 π). (1)用“五点法”作函数的图象; (2)说出此图象是由y=sinx 的图象经过怎样的变化得到的; (3)求此函数的最小正周期; (4)求此函数的对称轴、对称中心、单调递增区间. 13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初 相。

高三文科数学三角函数专题测试题

A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 在△ABC 中,AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2=2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

高中数学必修4 三角函数的图像与性质

三角函数的图像和性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0),)1,2 (π ,(π,0),) 1,23( -π,(2π,0). (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),)0,2(π,(π,-1),)0,23(π ,(2π,1). 2.三角函数的图象和性质

(1)周期性 函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最小正周 期为π |ω|. (2)奇偶性 三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式. 三种方法 求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; (2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域; (3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.

双基自测 1.函数)3cos(π +=x y ,x ∈R ( ). A .是奇函数 B .是偶函数 C .既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 2.函数) 4 tan( x y -=π 的定义域为( ). A . } ,4 |{Z k k x x ∈- ≠π π B .},4 2|{Z k k x x ∈-≠π π C .},4 |{Z k k x x ∈+ ≠π π D .},4 2|{Z k k x x ∈+ ≠π π 3.)4sin(π -=x y 的图象的一个对称中心是( ). A .(-π,0) B .)0,4 3(π- C .)0,2 3( π D .)0,2 (π 4.函数f (x )=cos )6 2(π + x 的最小正周期为________. 考向一 三角函数的周期 【例1】?求下列函数的周期: (1)) 2 3 sin( x y π π - =;(2))6 3tan(π -=x y 考向二 三角函数的定义域与值域 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:

相关文档 最新文档