文档库 最新最全的文档下载
当前位置:文档库 › 概率上课例题集合

概率上课例题集合

概率上课例题集合
概率上课例题集合

条件概率、乘法公式、全概率公式贝叶斯公式

1、掷一骰子,观察出现的点数,设A=“出现偶数点”,B=“出现的点数小于5”,试求P(A);P(AB),P(A|B)?(条件概率公式)

2、一盒子装有5只产品,其中3只一等品,2只二等品。从中取产品两次,每次任取一只,作不放回抽样。设事件A为“第一次取到一等品”,事件B为“第二次取到一等品”,求条件概率P(B|A)。(条件概率公式)

3、盒中有10个晶体管,其中6个正品,4个次品,从盒中每次取出一只,不放回去两次,已知第一次取得正品,求第二次取得正品的概率?(条件概率公式)

4、设某一种电器设备能够使用10年以上的概率为0.8,能够使用到15年以上的概率为0.4,今有一台这样的设备,已经使用10年仍能够使用,问该电器能够使用到15年以上的概率是多少?(条件概率公式)

5、有三个孩子的的家庭中,已知有一个女孩,求此时至少有一个男孩的概率?(条件概率公式)

6、设一箱中有12个零件,其中9个正品,3个次品,从中每次取出一个,取后不放回,求第三次才取到正品的概率?(乘法公式)

7、设某透镜第一次落下打破的概率为1/2,若第一次未打破,第二次落下打破的概率为7/10,若前两次均未打破,第三次落下打破的概率为9/10,试求该透镜落下三次而未打破的概率?(条件概率公式)

8、据以往资料表明,某一3口之家患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病|孩子得病}=0.5,P{父亲得病|母亲及孩子得病}=0.4.求“母亲及孩子得病但父亲未得病”的概率。(条件概率公式)

9、随意投掷两颗骰子,观察出现的点数每种结果一(,)

m n记之(,1,2, (6)

m n=,其中m表

示第一颗骰子的点数,n表示第二课骰子的点数,设A,B分别表示下列的事件:{(,)|10}

A m n m n

=+=,{(,)|}

B m n m n

=>试求P(A|B),P(B|A). (条件概率公式)10、设某工厂为检验一种透镜的强度,任取一片透镜,让它落在地上,透镜第一次落下打破的概率为0.2,若第一次未打破,第二次落下打破的概率为0.3,若前两次均未打破,第三次落下打破的概率为0.4,设透镜至多落下三次,求打破的概率?(条件概率公式)

11、一批零件有100个,其中10个不合格,每一次从中任取一个,取出后不放回,求第三次才取到合格品的概率? (乘法公式)

12、一批小麦混有2% 的二等种子,1.5%的三等种子和4% 的四等种子,其余的是一等种子,已知一二三四等种子能够长成优等小麦的概率分别是50%,15%,10%,5%,求这一批小麦能够长成油灯小麦的概率?(全概率公式)

13、盒中有12个乒乓球,9个事未用过的,第一次比赛从盒中任取3个用完后放回盒子,第二次比赛时又从盒中任取3个,求第二次取出的全是未用过的乒乓球的概率?(全概率公式)

14、设一个仓库中有10箱同样规格的产品,其中有5箱,3箱,2箱分别是甲、乙、丙车间生产的而产品中的次品率分别是5%,2%,4%,今从10箱中任取一箱,在从所取的这箱中任取一件,求所取的一件是次品的概率?(全概率公式)

15、在上一问题中,如果抽到的是一件次品,试问这件产品是甲乙丙车间生产的概率各是多少?又这件次品是哪一个车间生产的可能性最大?(贝叶斯公式)

16、将两条信息分别编为A和B传递出去,接收站接受时,A被误收为B的概率是0.02,而B被误收为A的概率是0.01,信息A和B的传递频率为2:1,试问(1)接收站收到信息

A的概率是多少?(全概率公式)(2)如果接收站收到信息A,那么原发信息是A的概率为多少?(贝叶斯公式)

17、一箱产品是三家工厂生产的,其中1/2是第一家工厂生产的,其余二厂各生产1/4,已知第一二三家工厂的不合格产品率分别是0.02,0.03,0.04,现从该箱中任取一件产品,问取到不合格品的概率是多少?(全概率公式)

18、在上一问题中,如果已知去取出的是不合格产品,问这一不合格产品是第一二三家工厂生产的概率各是多少?(贝叶斯公式)

19、根据以往的临床记录,诊断某一种疾病的实验具有如下效应:以A表示事件“实验结

果为阳性”,B表示事件“被测试者患有该疾病”,则

(|)0.95

P A B=,(|)0.96

P A B=,

现在某一地区进行普查,并已知被普查的所有人中患有该疾病的人占3/1000,试求

(|). P B A

20、设在12只乒乓球中有9只新球和3只旧球,第一次比赛取出3只,用后放回去;第二次比赛又取出3只,求第二次取到的3只球中有2只为新球的概率?(全概率公式)

21、A地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A地的甲种疾病的发病率.

22、甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.(贝叶斯公式)

23、某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率. (贝叶斯公式)

事件的独立性

1、三人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4.问三人中至少有一人能将此密码译出的概率是多少?(事件的独立性)

2、加工某一种零件需要三道工序,设第一、二、三道工序出现不合格产品的概率分别为2%,3%,5%,设各道工序的工作是相互独立的,且一个零件经过了这三道工序,求该零件是不合格产品的概率?(事件的独立性)

3、有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子各随机地抽取一粒,求

(1)两粒种子都能发芽的概率;

(2)恰好有一粒子能发芽的概率;

(3)至少有一粒种子能发芽的概率. (事件的独立性)

4、A系与B系举行篮球、排球、足球比赛,篮球赛A胜B的概率为0.8,排球赛A胜B的概率为0.4,足球赛A胜B的概率为0.4,若在三项比赛中至少胜两项才算获胜,试计算哪个系获胜的概率较大?(事件的独立性)

5、假设每个人的血清中含有肝炎病毒的概率为0.4%, 将100人的血清混合在一起,求此中含有肝炎病毒的概率?

6、借用一个由两个或多个开关并联[如图]来改善报警电路的可靠性,这样当危险发生时,这些开关中至少有一个闭合,发出警报。假设每个开关的可靠性均为0.90,且各开关闭合与否相互独立。

(1)两开关并联时电路的可靠性为多少?

(2)至少需要多少只开关并联,才能保证电路的可靠性至少为0.9999?

7、袋中装有a 个红球b 个黑球,进行有回放的取球,求(1)在第一次取到黑球的情况下,第二次也取代黑球的概率?(2)第二次取到黑球的概率?(事件的独立性)

8、抛掷两个骰子,令=A {第一次出现“2”},=B {第二次出现“4”},;论证,A B 事件按时独立的?(事件的独立性)

9、某车间中,一个工人操作甲乙两台没有联系的自动机床,有积累的数据表明,这两台机床在某一段时间内停止的概率分别是0.15,0.20,求这一段时间内至少有一台机床不停止的概率?(事件的独立性)

10、甲乙两个人独立的向一个目标射击,已知甲乙各自射中目标的概率分别是0.5和0.6,求目标被射中的概率?

11、设某仪器由n 个部分组成,在使用一年内第i 个部件发生故障的概率是i r (=1,2,...i n )各个部件是否发生故障是相互独立的,只要有一个部件发生故障,该仪器就要停修,求在使用一年内,该仪器需要停修的概率?

12、加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.?

13、某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数)?

14、甲乙两个人向同一目标射击一次,各自射中目标的概率分别为0.5、0.6,求目标被射中的概率?

15、150个人,参加一个活动,每个人迟到概率1%,互不影响,请问该活动没有人迟到的概率是多少?

16、设某电厂甲乙两台机组并联向一城市供电,当一台机组发生故障时,另外一台机组在这一段时间内满足该城市全部用电需求的概率为90%,每一台机组发生故障的概率为0.01,且它们发生故障以否相互独立,试求:

(1)保障城市供电的概率?(全概率公式、独立性应用)

(2)已知电厂发生故障时,供电满足需求的概率?(贝叶斯公式)

第二张 随机变量及其分布

随机变量举例

1、设随机试验E :抛一枚硬币,观察正面H 与反面T 的出现情况。

2、设随机试验E :测试灯泡寿命(小时).

离散型随机变量的分布列:(分布律举例)

3、设一汽车在开往目的地的道路上需经过四盏信号灯,每盏信号灯均以p 的概率允许汽车通过,各信号灯的工作是相互独立的。设X 表示“汽车首次停下时已通过的信号灯的盏数”,求X 的分布律

4、一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球的最大号码,写出随机变量X 的分布律和分布函数。

5、一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.

6、盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个,直到取得新球为止,求下列随机变量的概率分布.

(1)抽取次数X ;

(2)取到的旧球个数Y .

7、一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。

(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。

(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y 的分布律。

(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率。

8、一大楼装有5个同类型的供水设备.调查表明在任一时刻t 每个设备被使用的概率为0.1,问在同一时刻

(1) 恰有2个设备被使用的概率是多少?

(2) 至少有3个设备被使用的概率是多少?

(3) 至多有3个设备被使用的概率是多少?

(4) 至少有一个设备被使用的概率是多少?(二项分布概率公式)

9、随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布. (分布律举例) 解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,

因此|d |<3

1

, X 的概率分布为

其中d 应满足条件:0<|d |<31

10、盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布.

(1)抽取次数X ;

(2)取到的旧球个数Y .(分布律举例)

解 (1)X 可以取1, 2, 3, 4各值. {}{}4491191232431=?====X P X P {}22091091121233=??=

=X P {}220

1991011121234=???==X P (2) Y 可以取0, 1, 2, 3各值 . {}{}4310=

===X P Y P 12、随机变量X 的分布函数F ( x ) 为:

?????≤-=.2,02,1)(2x x x A x F ,>确定常数A 的值,计算{}40≤≤X P .

解 由F ( 2+0 )=F ( 2 ),可得

4,041==-A A

{}{})0()4(4X 040F F P X P -=≤=≤≤<(分布函数举例)

13、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。(此时称X 服从以p 为参数的几何分布。)

(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。(此时称Y 服从以r, p 为参数的巴斯卡分布。)

(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。(分布律举例)

解:(1)P (X=k )=q k -1p k=1,2,……

(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功}

,,2,1,0,

)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C r k r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…

P (X 取偶数)=31

1145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 14、为保证设备正常工作,需要配备一些维修工.若设备是否发生故障是相互独立的,且每台设备发生故障的概率都是0.01(每台设备发生故障可由1人排除).试求:

(1) 若一名维修工负责维修20台设备,求设备发生故障而不能及时维修的概率是多少?

(2) 若3人负责80台设备,求设备发生故障而不能及时维修的概率是多少?

解 (1) 设X 表示20台设备中同时发生故障的台数,则)01.0,20(~B X ,根据泊松定理,X 可近似地看作服从泊松分布,其中参数2.001.020=?==np λ.

20台设备中只配备一个维修人员,则只要有两台或两台以上设备同时发生故障,就不能得到及时维修,故所求概率为:

∑=---=--=-=<-=≥1

02.02.02.00175.02.01!2.01}2{1}2{k k

e e e k X P X P .

(2) 80台设备中同时发生故障的台数)01.0,80(~B X ,类似的,可用8.001.080=?=λ的泊松分布来近似,于是所求概率为:

∑=-=-=<-=≥3

08.0!8.01}4{1}4{k k

e k X P X P ∑=-=-308.0009.0!8.01k k

e k .(poisson 分布举例) 15、在独立重复试验中事件A 发生的概率为p ,设X 表示直到事件A 发生时为止所进行的独立试验的次数X 所服从的分布叫做集合分布。(几何分布概念)

16、保险公司在一天内承保了5 000张相同年龄,为期一年的寿险保单,每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元.设在一年内,该年龄段的死亡率为0.0015,且各投保人是否死亡相互独立.求该公司对于这批投保人的赔付总额不超过30万元的概率(利用泊松定理计算). 17、某商店根据以往的资料表明,某一种商品每月的销售量X (单位:件)服从参数为5的poisson 分布,为了保证该商品有99% 以上的把握不脱销,问商店在每月底至少要进该商品多少件?(假定上月没有存货).

18、有一繁忙的汽车站,每夭有大量汽车通过,设一辆汽车在一天的某段时间内出事故的概率为0.000 1.在某天的该时间段内有1 000辆汽车通过,问出事故的车辆数不小于2的概率是多少?(利用泊松定理计算)

19、以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X 的分布函数是

0.410()0,x e x F x x -?-, >=? ≤0?

求下述概率:

(1)P{至多3分钟}.

(2)P{至少4分钟}.

(3)P{3分钟至4分钟之间}.

(4)P{至多3分钟或至少4分钟}.

(5)P{恰好2,5分钟}.

正态分布:

1、如果文理学院的学生的身高X~N(170,100),请问身高为160-170之间的人所占的比例为多少?身高不足150的人所占的比例是多少?身高超过190的人所占的比例是多少?

2、假定文理学院的学生的智商X ~N (105,100),请问文理学院有多少个弱智?有多少个天才?(文理学院总人数为20000人)

3、某地区18岁的女青年的血压(收缩区,以mm-Hg 计)服从)12,110(2N 在该地区任选一18岁女青年,测量她的血压X 。求

(1)P (X ≤105),P (100

(2)确定最小的X 使P (X>x ) ≤ 0.05.

4、由某机器生产的螺栓长度(cm )服从参数为μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少?

5、一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X ≤200==0.80,允许σ最大为多少?

6、某班数学考试的成绩呈正态分布N (70,100),老师将最高成绩的5%定为优秀,那么成绩为优秀的最低成绩为多少?老师将最低成绩的5%定为差,那么成绩为低的最高成绩为多少?

7、某单位招聘2500人,按考试成绩从高分到低分依次录用,共有10000人报名,假设报名者的成绩),(~2σμN X ,已知90分以上有359人,60分以下有1151人,问被录用者中最低分为多少?

分析:已知成绩),(~2σμN X ,但不知σμ、的值,所以,本题的关键是求σμ、,再进一步根据正态分布标准化方法进行求解. 解:根据题意:0359.010000

359}90{==>X P ,故9641.0}90{1}90{=>-=≤X P X P ,而

9641.0)90(}90{

}90{=-Φ=-≤-=≤σμσμσμX P X P ,反查标准正态分布表,得:

8.190=-σμ (1) 同样,1151.010000

1151}60{==

μσμσμX P X P X P ,通过反查标准正态分布表,得:2.160=-σμ

(2)

由(1)、(2)两式解得:10,72==σμ,所以)10,72(~2N X ;

已知录用率为25.010000

2500=,设被录用者中最低分为0x ,则 75.0}{1}{00=≥-=≤x X P x X P ,而

75.0)10

72(}10721072{}{000=-Φ=-≤-=≤x x X P x X P ,反查标准正态分布表,得:675.010

720≈-x ,解得:75.780≈x 故:被录用者中最低分为79分.

二项分布概率公式的近似计算问题:

随机变量:与样本空间对应的实数X ,整体看待它,它会取各种各样的值,而且取每一个值的机会不一样,“随机会而定的变量”。常见的有离散型的和连续型的随机变量,而离散型的又有两点分布、二项分布、poisson 分布、几何分布等;连续型的有均匀分布、正态分布、指数分布等。

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率经典例题及解析、近年高考题50道带答案【精选】

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ????0≤x≤4, 0≤y≤4,满足条件的关系式 为-2≤x-y≤2.

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

概率经典例题与解析、近年高考题50道带答案

【经典例题】 【例1】(2012)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2 即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 1 2 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为 扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选 A . 【例2】(2013)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012)节日前夕,小在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的 4秒任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ??0≤x ≤4, 0≤y ≤4,满足条件的关系 式为-2≤x -y ≤2. 根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

概率论一二章习题详解

习题一 (A ) 1. 用三个事件,,A B C 的运算表示下列事件: (1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB (4) AB BC CA (5) A B C (6) AB BC C A 2. 在区间[0,2]上任取一数x , 记 1 {| 1},2 A x x =<≤ 13 {| }42 B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) A B . 解:(1){|1412132}x x x ≤≤<≤或 (2)? (3){|014121x x x ≤<<≤或 3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P A B C .

解:0.2()()P A P AB =-, 0.1()(())()()()()()() P C AB P C A B P C P CA CB P C P CA P CB P ABC -=-=-=--+ ()()()()()()()()P A B C P A P B P C P AB P BC P CA P ABC =++---+ =0.40.20.10.7++= 4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与 ()P AB . 解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150 P B A P B P AB -=-=-=, ()()1()() ()P A B P A B P A P B P A B ==--+ 10.40.250.150.5=--+= 5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率. 解:2322248 13!13! p ????= = 6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率. 解:12 5453 5099 392 C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率. 解: 12 12312 p =: 8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率. 解:设i A 表示第i 次取到次品,1,2,3i =,

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

概率论练习题与解析

概率论练习题与解析

十、概率论与数理统计 一、填空题 1、设在一次试验中,事件A 发生的概率为 p 。现进行n 次独立试验,则A 至少发生一 次的概率为n p )1(1--;而事件A 至多发生一 次的概率为1)1()1(--+-n n p np p 。 2、 三个箱子,第一个箱子中有4个黑球1 个白球,第二个箱子中有3个黑球3个白球, 第三个箱子有3个黑球5个白球。现随机地 取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。已知取出 的球是白球,此球属于第二个箱子的概率为 。 解:用i A 代表“取第i 只箱子”,i =1,2,3,用 B 代表“取出的球是白球”。由全概率公式 ?=?+?+?=++=120 53853163315131) |()()|()()|()()(332211A B P A P A B P A P A B P A P B P 由贝叶斯公式

?=?==5320120 536331)()|()()|(222B P A B P A P B A P 3、 设三次独立试验中,事件A 出现的概率 相等。若已知A 至少出现一次的概率等于 19/27,则事件A 在一次试验中出现的概率为 。 解:设事件A 在一次试验中出现的概率为 )10(<

高中数学概率知识点及例题自己整理

1.事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +); ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥; ⑹对立事件:B A ?为不可能事件,B A ?为必然事件,则A 与B 互为对立事件。 2.概率公式: ⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B); ⑵古典概型:基本事件的总数 包含的基本事件的个数A A P =)(; ⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P = )( ; 3. 随机变量的分布列 ⑴随机变量的分布列: ①随机变量分布列的性质:p i ≥0,i=1,2,...; p 1+p 2+ (1) 1 1 2 2 n n 方差:DX =???+-+???+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2 )(;)(=++=+; ③两点分布: X 0 1 期望:EX =p ;方差:DX =p(1-p). P 1-p p ① 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 },,min{,,1,0,)(n M m m k C C C k X P n N k n M N k M ====-- 其中,N M N n ≤≤,。 称分布列 X 0 1 … m P n N n M N M C C C 00-- n N n M N M C C C 11-- … n N m n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。 ⑤二项分布(独立重复试验): 若X ~B (n,p ),则EX =np, DX =np (1- p );注:k n k k n p p C k X P --==)1()( 。

2011年七年级概率初步经典练习题

必然事件 1、有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有() A.1个 B.2个 C.3个 D.4个 2、纸箱里装有2个篮球、8个白球,从中任意摸出3个球时,至少有一个是 3、一个不透明的口袋中有10个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于() A、10 B、11 C、12 D、13 4、下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身 C.某两个数的和小于0 D.某两个负数的积大于0 可能事件 1、下列事件:(1)明天是晴天;(2)小明的弟弟比他小:(3)巴西与土耳其进行足球比赛,巴西队会赢;(4)太阳绕着地球转。属于不确定事件的有: 2、下列事件中,属于随机事件的是() A. 掷一枚普通正六面体骰子,所得点数不超过6 B.买一张彩票中奖 C. 太阳从西边落下 D.口袋中装有10个红球,从中摸出一个是白球 3、下列事件: ①打开电视机,它正在播广告; ②从只装有红球的口袋中,任意摸出一个球,恰好是白球; ③两次抛掷正方体骰子,掷得的数字之和小于13; ④抛掷硬币1000次,第1000次正面向上 其中是可能事件的为() A.①③ B.①④ C.②③ D.②④ 4、下列事件中,属于不确定事件的有() ①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下; ④小明长大后成为一名宇航员. A.①②③ B.①③④ C.②③④ D.①②④ 5、在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,?请你写出这个实验中的一个可能事件: _________. 6、篮球投篮时,正好命中,这是事件。在正常情况下,水由底处自然流向高处,这是事件。

高考概率知识点例题

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件

4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=.

全概率公式及其应用

1绪论 1.1问题的提出 概率论是统计学在实际生活中应用的理论基础,在实际生活、生产、工作中经常会遇到各种各样有关于概率计算问题的模型或者事件,而往往有些实际事件的解决是十分复杂的,如果只是使用一般的概率计算方法是无法快捷甚至根本无法解决这些问题,而全概率公式是概率论中的一个重要公式,它提供了计算复杂事件概率的一条有效途径,使一个复杂事件的概率计算问题化繁为简,使用全概率公式解决问题可以借助引入各种小前提,将事件分解为两个或是若干个互不相容的简单事件的并集并且在每个小部分中可以比较容易的求得所需要的概率,从而进一步应用加法公式求出复杂事件的概率,所以针对某些复杂事件的处理一般可以使用全概率公式进行简化计算。 大家不禁思量,在解决概率问题时,使用全概率公式与使用一般方法相比有何不同?其优势体现在哪?全概率公式主要应用于哪些领域?本文主要探究的即是全概率公式在解决一些实际生活中遇到的问题中的应用以及其优势。 1.2使用全概率公式解决问题的意义 通过调查和统计我发现全概率公式的应用范畴十分广泛,同时其涉及领域也非常宽广。 我们可以看到,在现实的各种领域,比如生活、生产、经济、保险、投资、医疗等领域中,常常会涉及各种类型的概率计算,但是由于这些实际事件都会有着各种各样的限制条件或者其样本空间极为

复杂,因此在计算中也会遇到各种复杂问题。全概率公式的存在即有效地解决了一些复杂繁琐类的问题。在遇到使用一般方法进行处理分析十分麻烦乃至容易出错的复杂事件时,如果可以把这个事件分割成为互不相容的两个或者若干个简单事件,那么就可以运用全概率公式将样本空间按照某种方式进行分割,使原本复杂的事件转变为两个或者若干个简单事件,再使用条件概率对每个简单是件进行运算,最后运用加法公式将所有结果进行相加即可以准确便捷的得出结果,这也就是全概率公式的意义所在。灵活使用全概率公式有助于把握随机事件间的相互影响关系,为生产实践提供更有价值的决策信息。 1.3研究背景及预期结果 目前很多文献与论文都提及到了全概率公式的应用,但是一般都是对全概率公式进行证明、解释或者深度推广,其中很多文章都对全概率公式在某一部分领域的应用做出了阐释,并未能总结出全概率公式在各种领域中的实际问题上的应用。本文就是为了探求全概率公式在各种实际问题上的应用,归纳总结全概率公式的理解方法、求解问题时的分析方法、解决实际应用时的具体步骤以及应用此公式时应该注意的事项等几点研究体会,旨在更加完备的总结出全概率公式在解决各种复杂问题时的作用。 2全概率公式的概述 2.1全概率公式 全概率公式是概率论中的一个重要公式,它主要展示了“化整为零”的数学思想,将复杂的问题分割为两个或者若干个简单问题进行

统计与概率经典例题(含答案和解析)

○…………外…………○…………装…………○…………订…………○…………线…………○ ………… 学校: ___ ___ _ _ __ _姓名:___ _ __ ___ _ _班级:__ __ _ _ ___ _ _考号:_ _____ __ ___ ○ … … … … 内 … … … … ○ … … … … 装 … … … …○ … … … … 订… … … … ○ … ………线…………○………… 统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a 和b 所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有 家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

相关文档
相关文档 最新文档