文档库 最新最全的文档下载
当前位置:文档库 › 流体力学在液压管路设计中的应用

流体力学在液压管路设计中的应用

流体力学在液压管路设计中的应用
流体力学在液压管路设计中的应用

流体力学在液压管路设计中的应用

【摘要】在液压系统当中,评价一个系统的状态,除过主要指标满足设计要求,功能动作可靠稳定以外,系统的效率尤为 关键。 笔者从液压管道压力损失的种类开始 ,分析了液压油在液压系统中的2种流态及雷诺的判据;通过流体力学理论,分析了影响管道的沿程压力损失,局部的压力损失,管道内压力损失的叠加的几种因素。在液压系统的设计当中,合理的应用影响管道压力损失的各项参数 ,对确定最佳的、最优化的系统将会起到关键性的作用。

【关键词】流体力学 液压管路 压力损失 阻力系数 压力损失的叠加 前言

流体力学,是研究流体的力学运动规律及其应用的学科。其主要研究在各种力的作用下,流体本身的状态以及流体和固体壁面、流体和流体之间、流体与其他运动形态之间的相互作用的力学分支。在农业、工业、航天、军事及工程中具有重要的应用价值。本文主要介绍了某些流体力学在液压管路设计中的几点应用。在液压管道设计中,充分应用流体力学这门基础学科。

1、液压管道压力损失的种类

液压管道系统由若干管道与管接头、阀件等局部装置连接而成。管道系统主要有串联、并联和分支等几种结构形式,液体在流经管道系统时的能量损失工程上通常用压差形式表示,称为压力损失。压力损失由黏性摩擦阻力引起的沿程压力损失和由于流道形状变化(突然转弯,阀口)及流动方向变化因相互撞击和出现旋涡等所产生的局部压力损失组成。压力损失与液流的流态有关。

2、液体的两种种流态及雷诺判据

液体在管道中流动时有层流和紊流2种流动状态 (简称流态)。层流时,液体质点沿管轴呈线状或层状流动 ,而没有横向运动 ,互补掺混和干扰,紊流时,液体质点除了横向脉动还有相对于平均运动的反向运动,强烈搅混,质点之间相互碰撞,做混杂紊乱状态的流动,2种状态可用雷诺数来判别。

雷诺数Re 是由管内的平均流速v 、管道(或流道)的水力直径dH 液体的运动黏度μ这3个参数所组成的一个无因次数。 μρμ//Re vdH vdH ==式中 :

v -平均流速,m/s ; dH -水力直径,x A dH

/4=,m ;圆截面管道的水力直径 与其管径d相

同; A -液体通流截面面积,2m ;

x -通流截面的湿周长度,m ;

v -液体的运动黏度,2m /s ;

ρ-液体密度,kg/3m ;

μ-液体的动力粘度,Pa ·s 。如果液流的雷诺数相同,则流动状态也相同。水力直径的大小反映了管道或流道的通流能力,水力直径大,意味着液流和管壁的接触面积小,阻力小 ,通流能力大。在通流截面面积相同但形状各异的所有流道中 ,圆形截面管道的水力直径最大。

dH

液体由层流转变为紊流时的雷诺数和由紊流转变为层流时的雷诺数是不相同的,前者称为上临界雷诺数 Re 上,后者称为下临界雷诺数 Re 下,Re 上>Re 下,因此一般都采用后者作为判别液流状态的依据 ,称为临界雷诺Rec 。当液流的实际雷诺数 Re 小于临界雷诺数 Re 时,液体为层流;反之,为紊流。常见液流管道的水力直径及临界雷诺数可以通过 查相关的数据获得。在所有的液体流道中,光滑圆管的临界雷诺数最大为 Rec=2300。

3、沿程压力损失的计算

3.1计算公式

管道中沿程压力损失λp ?按照达西(Darcy)公式 计算 :

)(2//2pa v d l p ρλλ?=?

式中:λ-沿程阻力系数,是雷诺数Re和管道内壁粗糙度(?)的函数 ;

?-管内壁的绝对粗糙,mm ;?的数值与管壁材质有关 ;

L-管道长度,m 。

3.2 沿程阻力系数λ

圆管沿程阻力系数λ的数值可以根据Re 值及相对粗糙度d /?(?为管内壁的绝对粗糙度的数值?与管道材质有关,请参考表1;d 为管道直径)的值按相应的公式参考表2进行计算。对于非圆管的沿程阻力系数,可将λ公式中的d 和 Re 公式的d 换成水力直径dH ,代入计算。

4、局部压力损失计算

4.1计算公式

局部压力损失 ξp ?一般按下式进行计算 :

ξp ?=2/2v ξρ(pa )

式中:ζ-局部阻力系数,其具体数值与局部阻力装 置的类型和雷诺数有关;通常,当 Re >105时,ζ与Re 无关 ;

ρ-液体密度 ,kg /3m ;

v -液体的平均流速,s m /;

v 或为局部装置前,或为局部装置后管段的平均流速 ,它必须与局部阻力 系数 ζ 相对应 ,除特别声明 ,通常指两平均流速中较高。

4.2 局部阻力系数ζ

除断面扩大、缩小等个别局部阻力装置的局部阻力系数可用理论计算外,大部分局部阻力装置的阻力 损失系数多由实验测出或由经验公式算出,且大部分是针对紊流而言。

4.2.1 断面扩大管道

1)突然扩大管道。设管道断面积由1A 突然扩大成2A ,1-1断面和2-2断面的平均流速分别为1v 和2v ,则局部压力损失

为 :

当 ,则有11=ζ。 2)渐扩管道。渐扩管道的局部压力损失计算式用系数k 来修正 ,即 :

4.2.2

第一季度第三季度

式中 :v C -流速系数,为缩流断面上实际的平均流速c v 与理想的平均流速0v 之比 ;

c C -断面收缩系数,为缩流断面积1A 与管道 断面积2A 之比。

)

(222)(222211221pa v v v v p ρζρζρξ==-=?22122

211)1()1(-=-=A A A A ζζ12A A >>)()(2

21pa v v k p -=?ρξc c v C C C p 122=?ξξξp ?

断面突然缩小管道系数v C 、c C 及ξ通过选取而定。具体参数详见表3:

2)渐缩管道。 渐缩管道的压力损失也按渐扩管的公式进行计算 ,但其中ξ的计算公式为 :

式中 : -变径后的沿程阻力系数。

当θ角较小且过渡段圆滑时 ,ξ=0.05~0.005,渐缩管道的压力损失系数也可由图查出。 4.2.3弯管的局部压力损失

弯管的流动会产生双漩窝形式的二次流动,弯度较大时液体会从管壁剥离。其流动现象十分复杂,只能用实验方法求得其阻力系数ξ。液压系统常见的是圆滑弯管,其总压力损失ξp ?=2/2v ξρ中的损失系数ξ(包含弯管局部的磨擦损失)可按下列公式算出。 这些公式的适用范围为:弯管中心的曲率半径 R 和管半径 r 之比R/r >2,且

4102?

)/(a 00873.091)/Re(2r R R r c θλξ=<时,在 84.017.02)/(Re a 00873.091)/Re(r R R r -=>θξ时,在

式中 :θ-弯管方向变化角;c λ-无剥离现象的缓慢弯管的管摩擦系数 。 47.10)r/2.14145R (弯管,+=α

96.10)r/2.1795.090R (弯管,+=α

1000`])(1[)2(sin 890~30])(1[)2

(sin 830212002120θθλξθθλξθ+-==-=

4

1222])/[Re(304.0029.0{103)/Re(034.0-+=?<

R/r<19.7,1=α

R/r>19.7

52.40)r/1161180R (弯管,+=α

4.2.4 液体流经管道分支处的局部阻力损失

4.2.5 流体流经液压阀及辅件的局部压力损失

液压阀及辅件上的局部阻力系数可参照相关的对照表,其中各种阀口的阻力系数因开口量的不同而有 较大的变动幅度,开口量较大时取小值,开口量较小时取大值,也可根据通过阀的实际流量直接计算其局部压力损失v p ?。

式中 :q -阀的实际流量 ;

s q -阀的额定流量 ;

s p ?-阀在额定流量s q 下的压力损失 。 5、管路系统压力损失的叠加

一个液压系统总的压力损失应为所有沿程压力损失与所有局部压力损失之和 ,即 :

式 适用于两相邻局部阻力装置间的距离大于

管道内径10~20倍的场合,否则计算 出来的压力损失值比实际数值小。其原因是进口起始 段的影响,即局部障碍距离太小,通过第一个局部阻力装置后的液体尚未稳定就进入第二个局部阻力装置,从而造成更强烈的液流扰动,使阻力系数要高于正常值的2~3倍。

6、结语

流体力学作为一门基础学科,随着各个学科的交叉及边沿学科的出现,将来会越来越多地应用在各个工程设计当中,在液压传动中的应用只是其中一个范例。在液压传动当中,由于工作介质为液体 ,决定了流体力学的应用广泛。在液压传动系统的分析与设计中,只有通过合理的计算,选择适合某一个液压系统合适的管路系统,阀件系统,才能使该系统能够稳定、可靠地运行,才能实现较小的经济投资 ,较低的运行成本。所有这些都需要流体力学的基本理论知识,用流 体力学的方法来假设液压介质或液压油在液压系统中的某种流动状态,从而确定液压介质或液压油在系统 中的运行状态,工作状态。在某些特殊需要的状态下,要对液压介质的运行进行仿真,模拟流体在有载荷下的状态,从而对各种参数进行验证,对某些参数进行再次修正,使得系统能够在一个最佳的状态下运行。

2

)

/(s s v q q p p ?=?∑∑+?=?+?=?222

2i i i i i i V v v d l p p p ρξρλξ2)/(s s v q q p p ?=?

参考文献

【1】张克危,等.流体机械原理.北京:机械工业出版社,2000

【2】罗裼乾,等.流体力学.北京:机械工业出版社,2003

【3】张利平,等.液压传动系统与控制.北京:化学工业出版社,2005

流体力学工作页第二章

流体力学工作页第二章-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章 习 题 一、 选择题 1、 相对压强的起算基准是:( ) (A)绝对真空; (B )1个标准大气压; (C )当地大气压;(D )液面 压强 2、 压力表的读值是:( ) (A )绝对压强;(B )相对压强;(C )绝对压强加当地大气压;(D )相对压强加当地大气压 3、某点的真空度为65000Pa ,当地大气压为0.1MPa,该点的绝对压强为:( ) (A )65000Pa ; (B )55000Pa ; (C )35000Pa ; (D )165000Pa 4、 压强 abs p 与相对压强p 、真空度 V p 、当地大气压 a p 之间的关系是:( ) (A ) abs p =p + V p ;(B )p = abs p +a p ;(C )V p =a p -abs p ;(D )p =V p +V p 。 5、闭容器上装有U 形水银测压计,其中1、2、3点位于同一水平面上,其压强关系为:( ) (A) 1p >2p >3p ;(B )1p =2p =3p ;(C )1p <2p <3p ;(D )2p <1p <3p 。 6、形水银压差计测量水管内A 、B 两点的压强差,水银面高差h p =10cm,A p -B p 为:( )

(A)13.33kPa;(B)12.35kPa;(C)9.8kPa;(D)6.4kPa。 7、水池,水深5 m处的相对压强为:() (A)5kPa;(B)49kPa;(C)147kPa;(D)205kPa。 8、静水压强的特性,静止液体中同一点各方向的压强 () (A) 数值相等; (B) 数值不等;(C) 仅水平方向数值相等;(D) 铅直方向 数值最大。 9、中某点的绝对压强为100kN/m2,则该点的相对压强为 () (A)1 kN/m2(B)2 kN/m2(C)5 kN/m2(D)10 kN/m2 10、某点的绝对压强为108kN/m2,则该点的相对压强为() (A)1 kN/m2(B)2 kN/m2(C)8 kN/m2(D)10 kN/m2 11、器中有两种液体,密度ρ2 > ρ1,则 A、B 两测压管中的液面必为 ( ) (A) B 管高于A 管; (B) A 管高于B 管; (C) AB 两管同高。 11题图 12题图 13题 图 12、器a 和b 的测压管水面位置如图 (a)、(b) 所示,其底部压强分别为 p a和p b。若两容器内水深相等,则p a和p b的关系为 () ( A) p a > p b (B) p a < p b (C) p a = p b (4) 无法确定 13、如图所示,,下述静力学方程哪个正确? ( )

液压流体力学部分作业习题龙水根液压传动Word版

液压流体力学部分作业习题 2-1 某油管内径d =5cm ,管中流速分布方程为 u =0.5—800r 2(m/s),已知管壁黏性切应力0τ=44.4Pa 。试求该 油液的动力黏度μ。 2-2 图2-34所示为根据标准压力表来校正一般压力表 的仪器。仪器内充满体积弹性模量为K =1.2X103 MPa 的油液, 活塞直径d =l0mm ,单头螺杆的螺距t =2mm 。当压力为一个大气 压时仪器内油液体积为200mL 。试问要在机内形成21MPa 的压 力,手轮需摇多少转? 2-3 图2-35所示的油箱底部有锥阀,其尺寸为D =100mm ,d =50mm ,a =l00mm ,d 1=25mm ,箱内油位高于阀芯b =50mm 。油液 密度为ρ=830kg/m 3 ,略去阀芯的自重,且不计运动时的摩擦阻力。试确定: (1)当压力表读数为10kPa 时,提起阀芯所需的初始力F ; (2)使F =0时的箱中空气压力P M 。 2-4 图2-36所示的增压器d 1=210mm ,d 2=200nun ,d 3=110mm ,d 4=100mm ,可动部分质量为m =200kg ,摩擦 阻力等于工作柱塞全部传递力的10%。如果进口压力 p 1=5MPa ,求出口压力p 2。 2-5 一封闭容器用以连续混和两种液体A 和B 而 成C 。设密度ρ=930kg/m 3 的A 液由直径为15cm 的管道输入,流量为56L/s ,密度ρ=870kg/m 3的B 液由直径为10cm 的管道输入,流量为30L/s 。如果输出C 液 的管道直径为17.5cm ,试求输出C 液的质量流量、流 速和C 液的密度。 2-6 图2-37所示的管道输入密度为ρ=880kg/m 3的油液,已知h =15m ,如果测得压力有如下两种情况,求油液流动方向: (1)p 1=450kPa ,p 2=400kPa ; (2)p 1=450kPa ,p 2=250kPa 。 图2-36 图2-37 图2-34 图2-35

液压流体力学基础(习题)

第二章液压流体力学基础(习题) 一、填空题 1、油液在外力作用下,液层间作相对运动进的产生内摩擦力的性质,叫做 2、液体体积随压力变化而改变。在一定温度下,每增加一个单位压力,液体体积的相对变化值,称为 3、液压流动中,任意一点上的运动参数不随时间变化的流动状态称为定常流动,又称。 4、伯努利方程是以液体流动过程中的流动参数来表示的一种数学表达式,为即为能量方程。理想液体的伯努利方程的表达式是 ,实际流体的伯努利方程的表达式是: 5、液体在管道中存在两种流动状态,时粘性力起主导作用, 时惯性力起主导作用,液体的流动状态可用来判断。 6、在研究流动液体时,把假设既又的液体称为理想流体。 7、由于流体具有,液流在管道中流动需要损耗一部分能量,它由 损失和损失两部分组成。 8、液流流经薄壁小孔的流量与的一次方成正比,与 成正比。通过小孔的流量对不敏感,因此薄壁小孔常用作可调节流阀。 9、通过固定平行平板缝隙的流量与一次方成正比,与的三次方成正比,这说明液压元件内的的大小对其泄漏量的影响非常大。 10、我国油液牌号是以℃时油液的平均粘度的大小来表示的。如20号机械油,表示其平均粘度在℃时为。 11、油液粘度因温度升高而,因压力增大而(填升高或降低) 12、动力粘度的物理意义是。运动粘度的定义是。 二、单项选择题 1、粘度指数高的油,表示该油。 A) 粘度较大;B) 粘度因压力变化而改变较大; C) 粘度因温度变化而改变较小;D) 粘度因温度变化而改变较大; E) 能与不同粘度的油液混合的程度。 2、20℃时水的运动粘度为1×10-6㎡/S,密度ρ水=1000㎏/m3;20℃时空气的运动粘度为15×10-6㎡/S,密度ρ空气=1.2㎏/m3;试比较水和空气的粘度: A) 水的粘性比空气大B) 空气的粘性比水大C)一样大

第二章流体力学第一讲知识点汇总

第二章流体力学基础 第一讲 1.物质的三种状态: 固、液、气 2.流动性:在切向力的作用下,物质内部各部分之间就会产 生相对运动,物体的这一性质称为流动性。 3.流体:具有流动性的物体,具体指液体和气体。 4.流体力学: 将流体看作无数连续分布的流体粒子组成的 连续介质. 5.黏滞性:实际流体流动时内部存在阻碍相对运动的切向内摩擦力。 6.流体的分类:实际流体和理想流体 7.压缩性:实际流体的体积随压强的增大而减小,即压缩性。 8.实际流体:具有压缩性存在黏滞性流体。 9.理想流体:研究气体流动时,只要压强差不太大,气体的压缩性可以不考虑,黏滞性弱的流体(水和酒精)的黏滞性也可不考虑,故绝对不可压缩完全没有黏滞性的流体即为理想流体。 10.流体运动的描述:a.(拉格朗日法)追踪流体质点的运动, 即从个别流体质点着手来研究整个流体的运动. 这种研究方法最基本的参数是流体质点的位移. 由质点坐标代表不同的流体质点. 它们不是空间坐标, 而是流体质点的标

号.b.(欧拉法)是从分析流体流动空间中的每一点上的流体质点的运动着手来研究整个流体运动. 即研究流体质点在通过某一个空间点时流动参数随时间的化规律. 注:在流体运动的实际研究中, 对流体每个质点的来龙去脉并不关心, 所以常常采用欧拉法来描述流体的运动. 11.流场:流体流动的空间 12.流线:a.线上每一点的切线方向表示流体粒子流经该点时流速的方向。 b.通过垂直于流速方向上单位面积流线的条数等于流体粒子流经该点时流速的大小。 c.流线的疏密程度可以表示流速的大小。 d.流线不能相交,因为流体流速较小时,流体粒子流经各点时的流速唯一确定。 e.流体作稳定流动时, 流线形状保持不变, 且流线与流体粒子流动轨迹重合. 13.稳定流动:一般情况下, 流体流动时空间各点的流速随位置和时间的不同而不同, 若空间各点流速不随时间变化,流速只是空间坐标的函数v=v(x,y,z),而与时间无关,则称该流动为定常流动(稳定流动).所以,定常流动的流场是一种流速场,也只有在定常流动中,流线即为粒子运动轨迹。而且,速度不随时间变化,不一定是匀速,只是各点速度一定。 14.流管:如果在运动流体中取一横截面S1, 则通过其周边各

贾月梅主编《流体力学》第二章课后习题答案

第2章 流体静力学 2-1是非题(正确的划“√”,错误的划“?”) 1. 水深相同的静止水面一定是等压面。(√) 2. 在平衡条件下的流体不能承受拉力和剪切力,只能承受压力,其沿内法线方 向作用于作用面。(√) 3. 平衡流体中,某点上流体静压强的数值与作用面在空间的方位无关。(√) 4. 平衡流体中,某点上流体静压强的数值与作用面在空间的位置无关。(?) 5. 平衡流体上的表面力有法向压力与切向压力。(?) 6. 势流的流态分为层流和紊流。(?) 7. 直立平板静水总压力的作用点就是平板的形心。(?) 8. 静止液体中同一点各方向的静水压强数值相等。(√) 9. 只有在有势质量力的作用下流体才能平衡。(√) 10. 作用于平衡流体中任意一点的质量力矢量垂直于通过该点的等压面。(√) ------------------------------------------------------------------------------------------------- 2-4 如题图2-4所示的压强计。已知:25.4a cm =,61b cm =,45.5c cm =, 30.4d cm =,30α=?,31A g cm γ=,31.2B g cm γ=,32.4g g cm γ=。求压强 差?B A p p -= a b

题图2-4 解:因流体平衡。有 ()2 sin 30sin 3025.4161 2.445.5 1.20.530.4 2.40.51.06A A g B B g B A B A P a b P c d P P g P P N cm γγγγ+?+?=+???+??? ∴-=?+?-??-???-= 2-5 如图2-5所示,已知10a cm =,7.5b cm =,5c cm =,10d cm =,30e cm =, 60θ=?,2 13.6Hg H O ρρ=。求压强?A p = 解: ()()2cos60gage A Hg H O Hg P a c b e d γγγ=+?-?+?-()32 4 1513.67.51513.6102.6 2.610g N cm Pa -=?-?+???==? 答:42.610gage A P Pa =? 2-8 .如图2-8所示,船闸宽B =25m-,上游水位H 1=63m ,下游水位H 2=48m ,船闸用两扇矩形门开闭。求作用在每扇闸门上的水静压力及压力中心距基底的标高。 解:1)对于上游侧(深水区)两闸门受力题图2-8 1 11322 1 102563486698.6252 H F B H g kN γ= ???=????= 方向指向下游 1111 632133 D H H m ==?=(离基底高) 2)对于下游侧(浅水区)两闸门受力

第二章液压油与液压流体力学基础

第2章 液压流体力学基础 液压传动以液体作为工作介质来传递能量和运动。因此,了解液体的主要物理性质,掌握液体平衡和运动的规律等主要力学特性,对于正确理解液压传动原理、液压元件的工作原理,以及合理设计、调整、使用和维护液压系统都是十分重要的。 2.1液体的物理性质 液体是液压传动的工作介质,同时它还起到润滑、冷却和防锈作用。液压系统能否可靠、有效地进行工作,在很大程度上取决于系统中所用的液压油液的物理性质。 2.1.1液体的密度 液体的密度定义为 dV dm V m V =??=→?0lim ρ (2.1) 式中 ρ——液体的密度(kg/m 3); ΔV ——液体中所任取的微小体积(m 3); Δm ——体积ΔV 中的液体质量(kg ); 在数学上的ΔV 趋近于0的极限,在物理上是指趋近于空间中的一个点,应理解为体积为无穷小的液体质点,该点的体积同所研究的液体体积相比完全可以忽略不计,但它实际上包含足够多的液体分子。因此,密度的物理含义是,质量在空间点上的密集程度。 对于均质液体,其密度是指其单位体积内所含的液体质量。 V m =ρ (2.2) 式中 m ——液体的质量(kg ); V ——液体的体积(m 3)。 液压传动常用液压油的密度数值见表2.1。 表2.1 液压传动液压油液的密度 液压油的密度随温度的升高而略有减小,随工作压力的升高而略有增加,通常对这种变化忽略不计。一般计算中,石油基液压油的密度可取为ρ=900kg/m 3。

2.1.2液体的可压缩性 液体受压力作用时,其体积减小的性质称为液体的可压缩性。液体可压缩性的大小可以用体积压缩系数k 来表示,其定义为:受压液体在发生单位压力变化时的体积相对变化量,即 V V p k ??-=1 (2.3) 式中 V ——压力变化前,液体的体积; Δp ——压力变化值; ΔV ——在Δp 作用下,液体体积的变化值。 由于压力增大时液体的体积减小,因此上式右边必须冠一负号,以使k 成为正值。 液体体积压缩系数的倒数,称为体积弹性模量K ,简称体积模量。 V K p V =-?? (2.4) 体积弹性模量K 的物理意义是液体产生单位体积相对变化量所需要的压力。 表2.2表示几种常用液压油液的体积弹性模量。由表中可知,石油基液压油体积模量的数值是钢(K =2.06×1011Pa )的1/(100~170),即它的可压缩性是钢的100~170倍。 表2.2 各种液压油液的体积模量(20℃,大气压) 液压油的体积弹性模量与温度、压力有关。当温度增大时,K 值减小,在液压油液正常的工作范围内,K 值会有5%~25%的变化;压力增大时,K 值增大,但这种变化不呈线性关系,当p ≥3MPa 时,K 值基本上不再增大。 在常温下,纯液压油的平均体积弹性模量的值在(1.4~2) ×103MPa 范围内,数值很大,因此在液压传动中,一般认为液压油是不可压缩的。 当液压油中混入未溶解的气体后,K 值将会有明显的降低。在一定压力下,油液中混入1%的气体时,其体积弹性模量降低为纯油的50%左右,如果混有10%的气体,则其体积弹性模量仅为纯油的10%左右。由于油液在使用过程中很难避免混入气体,因此研究液压元件和系统动态特性时,必须考虑液压油可压缩性的影响,一般取K =700MPa 。 当考虑液体的可压缩性时,封闭在容器内的液体在外 力作用时的特征极象一个弹簧:外力增大,体积减小;外 力减小,体积增大。这种弹簧的刚度K h ,在液体承压面积 A 不变时,如图2.1所示,可以通过压力变化Δp =ΔF/A 、 体积变化ΔV=A Δl (Δl 为液柱长度变化)和式(2.4)求 出,即 V K A l F K h 2=??-= (2.5) 图2.1 油液弹簧的刚度计算简图

流体力学基本概念和基础知识

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

第二章 液压流体力学基础

第二章液压流体力学基础练习题 一、填空题 1、油液在外力作用下,液层间作相对运动而产生内摩擦力的性质,叫做 2、作用在液体内部所有质点上的力大小与受作用的液体质量成正比,这种力称 为 3、作用在所研究的液体外表面上并与液体表面积成正比的力称为 4、液体体积随压力变化而改变。在一定温度下,每增加一个单位压力,液体体 积的相对变化值,称为 5、液体流动中,任意一点上的运动参数不随时间变化的流动状态称为定常流动, 又称 6、伯努利方程是以液体流动过程中的流动参数来表示 达式,即为能量方程。 二、单项选择题 1、粘度指数高的油,表示该油()。 (A) 粘度较大; (B) 粘度因压力变化而改变较大; (C) 粘度因温度变化而改变较小; (D) 粘度因温度变化而改变较大; (E) 能与不同粘度的油液混合的程度。 2、20℃时水的运动粘度为1×10-6㎡/S,密度ρ水=1000㎏/m3;20℃时空气的运动粘度为15×10-6㎡/S,密度ρ空气=1.2㎏/m3;试比较水和空气的粘度: (A) 水的粘性比空气大

(B) 空气的粘性比水大 3、试讨论下述情况时,液压油的等效体积弹性模量K值会发生什么变化:某一液压系统中,在一个大气压时测定油中混入1%体积的空气,当系统压力增加至50×105Pa时,液压油的等效体积弹性模量将( ), (A)增大, (B)减小, (C)基本不变。 4、试讨论下述情况时,液压油的等效体积弹性模量K值会发生什么变化:某一液压系统中,在一个大气压时测定油中含有5×的溶解空气,如系统先采用放气和空载循环的方法来排除空气,然后再将压力上升至50×105Pa,液压油的等效体积弹性模量将( )。 (A)增大, (B)减小, (C)基本不变。 5、在大气压力下,体积为200L液压油,当处于107Pa压力下时,其体积减少量是多少?(假定液压油压缩率β=6×10-10Pa-1)。 (A)ΔV=1.8L (B)ΔV=1.2L (C)ΔV=1.6L 6、某油液的动力粘度为4.9×109N.s/m2,密度为850kG/m3,求该油液的运动粘度为多少? (A) V=5.765×10-5m2/S (B) V=5.981×10-5m2/S (C) V=8.765×10-5m2/S (D) V=14.55×10-5m2/S

流体力学第二章课后答案

流体力学第二章课后答案

————————————————————————————————作者:————————————————————————————————日期:

流体力学 _第二版 李玉柱 习题解答 第一章 绪论 1—1 解:5521.87510 1.6110/1.165m s μυρ--?===? 1—2 解 : 63992.20.661100.65610Pa s μρυ--==??=?g 1—3 解:设油层速度呈直线分布 1 0.1200.005 dV Pa dy τμ ==?= 1-4 解:木板沿斜面匀速下滑,作用在木板上的重力G 在斜面的分力与阻力平衡,即 0sin3059.810.524.53n T G N ==??= 由dV T A dy μ= 224.530.0010.114/0.40.60.9 T dy N s m A dV μ?= ==??g 1-5 解:上下盘中流速分布近似为直线分布,即 dV V dy δ = 在半径r 处且切向速度为r μω= 切应力为 432dV V r dy y d ωτμ μμδ πμωδ === 转动上盘所需力矩为M=1 d M dA τ=?? =2 0(2)d rdr r τπ? =2 20 2d r r dr ωμ πδ ? = 432d πμωδ 1-6解:由力的平衡条件 G A τ= 而dV dr τμ = 0.046/dV m s = ()0.150.1492/20.00025dr =-=

dV G A dr μ= 90.00025 0.6940.0460.150.1495 G dr Pa s dV A μπ?= ==???g 1-7解:油层与轴承接触处V=0, 与轴接触处速度等于轴的转速,即 44 0.36200 3.77/60 600.73 3.770.361 1.35310 2.310 dn V m s V T A dl N πππτμ πδ -??= = =????=== =?? 克服轴承摩擦所消耗的功率为 4 1.35310 3.7751.02N M TV kW ω===??= 1-8解:/dV dT V α= 3 0.00045500.0225 0.02250.0225100.225dV dT V dV V m α==?===?= 或,由 dV dT V α=积分得 () () 0000.000455030ln ln 1010.2310.5 1.05t t V V t t V V e e m d αα-?-=-==== 1-9解:法一: 5atm 9 0.53810β-=? 10atm 90.53610β-=? 9 0.53710β-=? d dp ρ ρ β= d d ρ βρρ ==0.537 x 10-9 x (10-5) x98.07 x 103 = 0.026% 法二: d d ρ βρρ = ,积分得

第二章 液压传动基础知识.

第2章液压流体力学基础 本章介绍有关液压传动的流体力学基础知识,包括液体静力学方程、连续性方程、伯努利方程、动量方程的应用,压力损失、小孔流量的计算以及压力冲击现象等。 2.1 液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性,不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规律以及液体对物体壁面的作用力。 2.1.1 液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 液体内某质点处的法向力ΔF对其微小面积ΔA的极限称为压力p,即: p=limΔF/ΔA (2-1) ΔA→0 若法向力均匀地作用在面积A上,则压力表示为: p=F/A (2-2) 式中:A为液体有效作用面积;F为液体有效作用面积A上所受的法向力。 静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 2.1.2 液体静力学方程 图2-1静压力的分布规律 静止液体内部受力情况可用图2-1来说明。设容器中装满液体,在任意一点A处取一微小面积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z0。为了

计算流体力学入门

计算流体力学入门 第一章基本原理和方程 1.计算流体力学的基本原理 1.1为什么会有计算流体力学 1.2计算流体力学是一种科研工具 1.3计算流体力学是一种设计工具 1.4计算流体力学的冲击-其它方面的应用 1.4.1汽车和发动机方面的应用 1.4.2工业制造领域的应用 1.4.3土木工程中的应用 1.4.4环境工程中的应用 1.4.5海军体形中的应用(如潜艇) 在第一部分,作为本书的出发点,首先介绍计算流体力学的一些基本原理和思想,同时也导出并讨论流体力学的基本控制方程组,这些方程组是计算流体力学的物理基础,在理解和应用计算流体力学的任何一方面之前,必须完全了解控制方程组的数学形式和各项的物理意义,所有这些就是第一部分的注意内容。 1.1 为什么有计算流体力学 时间:21世纪早期。 地点:世界上任何地方的一个主要机场。 事件:一架光滑美丽的飞机沿着跑道飞奔,起飞,很快就从视野中消失。几分钟之内,飞机加速到音速。仍然在大气层内,飞机的超音速燃烧式喷气发动机将飞机推 进到了26000ft/s-轨道速度-飞行器进入地球轨道的速度。 这是不是一个充满幻想的梦?这个梦还没有实现,这是一个星际运输工具的概念,从20世纪八十年代到九十年代,已经有几个国家已经开始这方面的研制工作。特别的,图1.1显示的是一个艺术家为NASD设计的飞行器的图纸。美国从八十年代中期开始就进行这项精深的研究。对航空知识了解的人都知道,象这种飞行器,这样的推进力使飞机飞的更快更高的设想总有一天会实现。但是,只有当CFD发展到了一定程度,能够高效准确可靠的计算通过飞行器和发动机周围的三维流场的时候,这个设想才能实现,不幸的是地球上的测量装置-风洞-还不存在这种超音速飞行的飞行体系。我们的风洞还不能同时模拟星际飞行器在飞行中所遇到的高Ma和高的流场温度。在21世纪,也不会出现这样的风洞,因此,CFD就是设计这种飞行器的主要手段。为了设计这种飞行器和其它方面的原因,出现了CFD-本书的主要内容。CFD在现代实际流体力学中非常重要。 CFD组成了流体力学理论研究和发展的“第三中方法”。17世纪在英国和法国,奠定了试验流体力学的基础,18世纪和19世纪,主要也是在在欧洲,逐渐出现了理论流体动力学(参考书3-5是有关流体动力学和航空动力学发展历史的)。结果,整个20世纪,流体动力学的研究和实践包括两个方面(所有物理科学和工程问题),一方面是纯理论方面,另一

液压流体力学作业题

液压流体力学作业题 一、流体的物理性能 1. 有密闭于d =15cm ,长L =40cm 的一段油缸中的液压油,其其热膨胀率α=6.5╳10-4[1/℃],此密闭容积一端的活塞可以移动,如活塞上的外负载力不变,油温从-20℃升到+25℃,试求活塞移动的距离。 dT dV V ?= 1α 即: dT V dL d dV ??=?=απ2 4 1 cm d dT V dL 17.140105.64544 2 =???=???=-πα 2. 有一压力机,机内充满油液,其压缩率为β=4.75╳10-10[1/Pa],机内的压力由手轮丝杆和活塞产生。活塞直径d=1cm ,螺距t=2mm ,当压力为1╳105Pa 时,机内油液体积V=200ml 。问为要在机内形成2╳10-7的压力,手轮需要摇多少转? dp dV V ? - =1β dp V dn d dL d dV ??=?=?=βππ2.04 1 4122 =dn 3. 有金属轴套在自重作用下沿垂直轴滑下,轴与轴套间充满比重δ=0.9,运动粘度ν=3.0╳10-5m 2/s 的润滑油,轴套内径d 1=102mm ,高h =250mm ,重G =100N 。轴的直径d 2=100mm 。试确定轴套等速滑下时的速度。 等速下滑时:轴套的重力与轴套在油液中的摩擦力平衡 轴与轴套之间的间隙很小,其速度分布可以看成是直线分布, G d d u h d dy du A T =-??==)2 /(212πδυμ =μ 4. 一圆锥体绕其铅垂中心轴以等角速度ω旋转,锥体与固体壁之间的缝隙宽度为δ,中间 充满某种液体,如图(第1-4题 图)所示,锥体底面半径为R ,高度为H ,现测得圆锥体等速旋转所需的总力矩为M ,试求证缝隙中液体的动力粘度为:2232R H R M +=π?δμ。 5. 如图(第1-5题图)转轴直径为d ,轴承长度为b ,轴与轴承间的缝隙宽为δ,中间充满动力粘度为μ的润滑油,若轴的转速为n (r/min),试求证克服油摩擦阻力所消耗的功率N 为:)W (3600233δ μπb n d N = 。 第1-4题图 第1-5题图

计算流体力学基本概念及算法(1)

内燃机工作过程数值模拟
(Numerical Simulation of ICE Working Process)
帅石金
清华大学 汽车工程系

开场白
内燃机涉及学科: 1)复杂的机械:属于“机械工程”学科
Department of Automotive Engineering
Tsinghua University
2 )复杂的工作过程(流动 / 多相流、传热传质和化学 反应):属于“动力工程与工程热物理”学科 内燃机性能研发途径: 1)台架试验 2)模拟试验(实验解析) 3)数值模拟(CAE/CAD/CFD)

内燃机CAE/CAD/CFD之间的关系
CAE Computer Aided Engineering 计算机辅助工程
Department of Automotive Engineering
Tsinghua University
CAx
CAPP
Computer Aided Process Planning
计算机辅助工艺
CAD Computer Aided Design 计算机辅助设计
CAM Computer Aided Manufacture 计算机辅助制造
CFD Computational Fluid Dynamics 计算流体力学 性能分析
FEA Finite Element Analysis 有限元分析
结构分析

内燃机CAE过程
许多企业已经用计算机绘图(2维和3 维CAD)取代了传统的铅笔、尺和图 板的画图,但在整个设计开发过程 ,利用计算机技术进行辅助分析的 手段和能力还不够,设计过程中经 验的东西还是占主导地位,CAE的 优势并没有完全发挥出来。
Department of Automotive Engineering
Tsinghua University
产品定型
CFD、FEA分析 概念设计 CAD造型

【免费下载】计算流体力学基础

一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。因此,采用CFD 方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD 软件本质上就是一些求解流动控制方程的计算机程序。二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S 方程)。 N-S 方程可以表示成许多不同形式,上面的N-S 方程是所谓的守恒形式,、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档
相关文档 最新文档