文档库 最新最全的文档下载
当前位置:文档库 › 基于数字图像分析的沥青混合料有限元建模

基于数字图像分析的沥青混合料有限元建模

基于数字图像分析的沥青混合料有限元建模
基于数字图像分析的沥青混合料有限元建模

基于数字图像分析的沥青混合料有限元建模1

黄碧霞,陆阳,张华

西南交通大学土木工程学院,成都 (610031)

E-mail:chalkz@https://www.wendangku.net/doc/364940904.html,

摘 要:综合数字图像分析技术、几何形状矢量化原理和有限元网格自动生成理论,得到能够应用于力学计算的有限元模型。先采用数字图像识别程序获得二维混合料的真实细观结构。然后,通过几何形状矢量化原理将二维图像的细观结构转换为矢量化的细观结构。最后利用有限元网格自动生成技术得到沥青混合料细观结构的有限元网格模型。以马歇尔试件为例,说明该方法可真实地实现沥青混合料的非均质研究。

关键词:数字图像处理;几何形状矢量化;有限元建模;沥青混合料;细观结构

1概述

沥青混合料的力学模型是基于均质材料或者分段均质材料的假设,难以将材料的组成结构与其力学性质相联系,鉴于此,一些学者试图结合计算机仿真技术[1-4],从细观角度研究混合料的力学性质,因此有必要探讨在混合料非均质性前提下对其细观结构适当描述。

从图象特征看,沥青混合料中的集料接近于白色,沥青胶浆为深灰色,空隙趋于黑色。因此混合料各组分具有良好的色彩对比度,故将沥青混合料转换成图像时,能够很好地反映混合料的细观结构,保留了混合料的非均质性。数字图像处理是沥青混合料细观结构分析的基础,可用于分析粗集料级配组成,确定骨料的方位、分布和形状、量测针片状颗粒含量等[5-10],具有广泛的应用。

本文采用VB开发了沥青混合料数字图像处理和识别程序,该程序能较详细地描述沥青混合料的不均匀性和细观结构,以为数值模拟提取相关信息。程序的研发综合了数字图像处理技术、几何矢量转换技术以及有限元网格自动生成方法,实现了沥青混合料二维有限元的几何建模。

2数字图像分析

数字图像(Digital Image) 技术是将一幅连续的图像信息利用电荷耦合器件(CDD)或扫描仪离散为数字信息。数字图像分析技术主要包括图像获取、图像处理及图象识别等过程。图1是数字图像分析流程图。

图1 数字图像分析流程图

Fig. 1 Flow chart of digital image analysis

图象获取的实质是图象的数字化过程,常用的数字化仪有:胶片扫描仪,CCD数码相机或摄像机等。本文采用CCD相机获取混合料数字图像,与此同时,获得一个刻度尺的图

1本课题得到国家教育部博士点基金项目 (20040613018)的资助。

像,以便进行象素与实际尺寸间的比例换算,由下式计算:

转换比例横向象素点数目

的实际尺寸横向刻度尺a l )(= (1) 图像处理包括了图像转化、图像增强及图像分割等过程。图像转化中,新获取的原始沥青混合料数字图像一般是真彩色(24位),而根据混合料组成特点及降低运算量的要求,选择灰度图像作为分析对象更为理想。由于灰度图仅能显示256色灰度级,因此对真彩色DIB 进行灰度化处理时,必须首先将它转化为256色彩色位图,常见的转化算法有三种,即流行色方法、中位切分法、和八叉树颜色量化算法。针对沥青混合料的特点,本文选用八叉树颜色量化算法。

经过上面的转化后,即可将256色位图转化为256色灰度图。实际上灰度图像就是各个象素点的亮度的反应。因此只需要把彩色的256色调色板改变为256色的灰度调色板,用亮度值Y 代替其中的R, G , B 分量,即把256色的灰度调色板的分量R=G=B=Y ,这样彩色的256色调色板就变为了256色的灰度调色板,通过返回一个调色板句柄,就可以替换调色板实现彩色图像的灰度化。其中亮度值Y 与R 、G 、B 的转换公式如下:

Y = 0. 30R+0. 59G+0. 11 B (2)

这个亮度值Y 和R, G , B 的转换公式主要考虑了人眼对各种颜色的敏感程度不同,由于人眼对绿色的敏感程度最高,对红色的敏感程度次之,对蓝色的敏感程度最低,因此R, G , B 分量前面的加权系数不同,这样就得到了比较合理的灰度图。

获得的沥青混合料图像存在三个问题:一是由于数码相机分辨率的限制,获得的图像仍存在模糊性;二是沥青混合料中含有的颗粒数量多且密集,小颗粒的集料在图像中很不明显;三是图像拍摄过程中的人为噪声以及在传输、处理中引入的噪声,这些噪声需要特殊处理进行减弱或消除。针对这些问题,需要采取图像增强的处理。图像增强的主要目的一是消噪;二是突出图像中有用信息的特征。为此首先选用直方图均衡化方法增强图像整体对比度。其基本思想是将原始图像的直方图变换成均匀分布的形式,以增大象素灰度值的动态范围。由于沥青混合料中的集料颗粒是非均质材料, 其灰度可能会分布在很宽的灰阶(灰度等级)区域内,以至于进人沥清胶浆的灰阶域内, 应用图像滤波技术增加对比度,加强细节,锐化颗粒边界。常用的方法有频域滤波和空间滤波,而本文采用空间滤波来增强混合料图像,其基本思想是使用卷积核与图像进行运算。

图像的增强有时需要强调细节,即对图像进行锐化(去模糊)。滤波是保留图像的主要的低频成分,滤除高频噪声。而图像去模糊实质上是一种保留高频成分,突出细节,使图像清晰化的方法,其实施应在去除噪声的基础上进行。图像去模糊的方法一般有梯度锐化和拉普拉斯锐化两种方法。图像增强效果如图3(b)。

图像处理的最后一步是图象分割(Thresholding ),即将数字图像划分成互不相交(不重叠)区域,把物体从背景中检测、分离出来。图像分割处理可以采用四种不同的途径,即①阈值法:以阈值(特定的数值)为界划分物体与背景,图像中所有低于这一阈值的像素值将被重新赋值为黑色(0),而高于这一阈值的像素值赋值为白色(1)。其数学描述为: ???≤>=T

j i f if T j i f if j i g ),(0),(1),( (3) ②区域法:把各个像素划归到各个物体或区域中。③边界法:主要是确定存在于区域间的边界。④边缘法:先确定边缘像素并把它们连接在一起以构成所需的边界。

目前,图像分割大多是针对某一类型图像、某一具体应用的分割,通用方法和策略仍面

临着巨大的困难,不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。本文针对沥青混合料数字图像具有非常明显的双峰特性,采用阈值法对图像进行分割。

由于部分集料存在局部表面凹陷,以及光照不均匀等因素,使得集料内部部分地方色彩与沥青色彩非常接近,或沥青局部高光泛白,虽然经过以上图像处理后,图像可能仍然存在部分噪音,本文编制交互式绘图程序对这些噪音进行手工去除。此时得到的图像数字矩阵为二值,所有后续的分析和描述都是基于这样处理后的二值图像。去噪后的效果图如图3(c)。 图象处理后应进行图像识别。为了了解集料在沥青混合料中的实际分布情况,首先要将集料的边缘从整个二值图像中检测出来。常用的边缘检测算子有Sobel 算法、Roberts 算法、Prewitt 算法、laplace 算法、Canny 算子,前四种得出的边缘线条较粗,Canny 算子能够得到较细的线条,但是容易出现断链。本文通过比较选用Roberts 算法找出图像的基本边缘,然后再对图像进行细化。

Roberts 算子是一种利用局部差分算子寻找边缘的算法。计算表达式为:

{}2/122])1,(),1(())1,1(),([),(+?++++?=y x f y x f y x f y x f y x g (4) 式中,f(x,y)是具有整数像素坐标的输入图像。该运算相当于运用2×2的模块作为核与图像中的每个像素点做卷积和运算。也可以表示成2×2模板。

???????1001 ??

?????0110 细化是把二值图像区域收缩成单像素宽线条,以逼近区域的中心线(称之为骨架或核线) 。细化是为了减少图像成分, 直到只留下图像的最基本信息, 以便利用骨架线来拟合出一系列的折线段, 并进一步识别出图像中各要素的几何形状。本文针对沥青混合料集料特征编制了针对性的细化程序。细化图像如图3(d)。

图像经细化后, 采用边缘跟踪(Edge detection )识别出各个颗粒边缘位置(坐标),为几何建模提供基本信息。此时获得图像数据为点阵数据。

3 几何矢量化

如果将此时获得图像点阵数据直接输入,根据有限元网格的生成原理,每个象素点将被作为有限单元的节点,这样网格自动生成将会非常麻烦。因此,要建立可用于力学分析的几何模型,必须先将点阵数据转换几何矢量信息。本文采用文献[11] 中使用的算法构造几何矢量转换,方法如下:

(1) 设定一个阈值t;

(2) 找到边界中相距最远的2个象素点,如图2(a )A 、B 点,连接A 、B ,所得直

线将封闭曲线面分成两部分,先选择其中一部分加以分析;

(3) 求出该部分所有边缘象素点到分割线的距离,记录下最大距离d 及相应的象素

点C ;

(4) 比较距离d 与阈值t ,如果d

图2(a), 若F 到线AE 的距离小于t, 则认为直线AE 可近似代表弧线AE ;

(5) 如果d ≥t, 则将记录下来的象素点C 与前一分割线的两端点A 、B 连线,将这

部分区间再分为2个小区间,重复(3)(4)过程。

(6) 不断循环,直到计算出每个区间内的D 都小于t 为止,那么此时形成的闭合分

割线便代表了离散象素表示的颗粒边缘的矢量化边缘,如图2(b)。

该方法实际上是采用弦长代替弧长,逐渐逼近,将边缘散点图转换为矢量图,得到的矢量化数据就是各分割线的端点坐标信息,其重合端点只记一次,然后有序化所得端点(如按顺时针方向形成闭合曲线)。如果采用N条分割线逼近,则只需记录N个点的坐标信息。如图2,在相同分辨率下,原始图要记录814个边缘点,而矢量化后只需记录20个点左右(视t值而变),图2(b)是采用16条分割线逼近的效果图。显然,矢量化后,输入有限元的节点数大大减少了。最后将矢量化后的图像通过转换比例l转换为实际试件尺寸。

(a) 矢量化过程 (b) 矢量化图

图2 几何矢量化

Fig.2 geometry vectorization

4建立有限元模型

将几何矢量化后的图像数据直接输入到有限元软件中,采用有限元软件内嵌编程语言将各颗粒边缘点(矢量化后的)连线形成闭合曲线,再由闭合曲线生成面,进而得到有限元几何模型,对集料和沥青分别赋以材料参数,然后对集料和沥青分别进行有限元网格的自动生成。在集料和沥青的交界面上设置接触单元,并对几何模型添加边界条件与外部荷载,即可进行后续的沥青混合料有限元分析。

5建模实例

取电锯切割、有平整横截面的马歇尔试件,调整数码相机高度及光源以获得有效图片并消除阴影,得图像图3 (a),其中试件图像直径为271个象素,其实际尺寸为101mm。

将图像输入VB编制的数字图像处理程序,经过图像转化、增强、二值化、交互式处理,得前处理图像图3(b、c);再经边缘检测、细化,得集料颗粒边缘最基本图像信息(图3d);然后由图像识别子模块将所有颗粒总的边缘信息分组到每个颗粒,即识别出每个颗粒独立的边缘信息。在图像识别基础上,矢量化处理颗粒边缘点阵数据,得有限元建模的基本数据,将其导入ANSYS有限元计算软件,得有限元分析的几何模型(图3e)。最后应用网格自动生成技术,得有限元模型(图3f),为进一步的数值模拟计算提供相关数据。

(a) 原始断面图(b)图像增强(c) 二值化图

(d)细化图像(e)有限元几何模型图(f)有限元网格模型图

图3 马歇尔试件数字图像

Fig.3 Digital images of Marshall Specimen

6结束语

本文在VB平台上开发出沥青混合料特性的数字图像处理和识别程序,用以提取沥青混合料细观结构组成信息。配合数码技术,在图像识别和处理的基础上,几何矢量化获取的图形,并结合有限元网格自动技术,实现了沥青混合料二维有限元的几何建模,为进一步的数值模拟计算提供相关数据。

参考文献

[1] 陆阳, 周永江, 张蓉. SMA粗集料结构的数值模拟[J]. 中国公路学报. 2006, 19(1): 38-46

[2] Latham J. P., Lu Y., Munjiza A. A simulation method for simulating loose packs of angular particles using

tetrahedral [J]. Geotechnique, 2001, 51(10): 871~879

[3] 黄晚清, 陆阳. 散粒体重力堆积的三维离散元模拟[J]. 岩土工程学报.

[4] 李炼,李启光,徐钺等. 一种用于岩石材料微裂纹观察的复型技术[J]. 岩石力学与工程学报,2002,

21(6):797~802

[5] 张肖宁,郭祖辛,吴矿怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,(2):28-36.

[6] C.F. Mora, A.K.H. Kwan1, and H.C. Chan. Particle Size Distribution Analysis of Coarse Aggregate Using

Digital Image Processing[J] . Cement and Concrete Research, 1998,28(6):921-932

[7] Yue Z Q, Bekking W, Morin 1. Application of digital image processing to quantitative study of asphalt concrete

microstructure[R]. Transportation Research Record 1492,Washington,D.C.: Transportation Research Board, National Research Council, 1995, 53-60

[8] Yue Z Q, Morin 1. Digital image processing for aggregate orientation in asphalt concrete

mixtures[J]Canadian Journal of Civil Engineering, 1996, 23: 479-489

[9] 徐 科, 张肖宁, 王端宜. 利用数字图像处理技术量测针片状颗粒含量[J]. 交通与计算机 2005, 23(5):

46-48

[10] 张肖宁,李智,虞将苗. 沥青混合料的体积组成及其数字图像处理技术[J]. 华南理工大学学报(自

然科学版)2002 30(11): 113-118

[11] 岳中琦, 陈沙, 郑宏等岩土工程材料的数字图像有限元分析[J]. 岩石力学与工程学报 2004

23(6):889-897

Finite Element Modeling Based on Digital Image Analysis

for Asphalt Mixture

Huang Bixia,Lu Yang,Zhang Hua

School of Civil Engineering,Southwest Jiaotong University,Chengdu (610031)

Abstract

By incorporating techniques of digital image analysis, geometry vectorization and automatic finite element mesh generation techniques, a finite element model for mechanical computation can be obtained. Real microstructure of 2-D mixture, which is obtained by image recogenition program, can be transformed to vectorgraph by geometry vectorization algorithm. Then finite element mesh model for microstructure of asphalt mixture can be built by automatic mesh generation techniques. This method is validated for inhomogeneous analysis of asphalt mixture with Marshall Specimen. Keywords:digital image processing;geometry vectorization;finite element modeling;asphalt mixture;microstructure

作者简介:黄碧霞(1981-)女,湖北天门人,西南交通大学硕士研究生,主要研究方向

为道路工程。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

MSC Patran与LR ShipRight有限元建模技术的分析与比较

MSC.Patran与LR.ShipRight有限元建模技术的分析与比较 作者:江南造船集团朱彦 摘要:本文基于散货船CSR 探讨使用MSC.Patran 与LR.ShipRight 两款软件在进行有限元分析中的建模技术,并比较两款软件的特点以及相互联系。 关键字:Patran、ShipRight、散货船、CSR、有限元建模 1. 前言 在船舶详细设计阶段,对船体结构进行应力集中以及疲劳强度评估的一个有效的手段就是采用有限元分析。有限元分析的一般方法为选择有限元分析软件、确定单元形式、建立几何模型、网格划分、确定边界条件、判断载荷工况等,具体又可归纳为四个步骤: 1) 建立有限元模型; 2) 确定载荷及边界条件; 3) 进行详细应力应变评估(例如细化网格以评估高应力区域); 4) 对关键部位的结构进行疲劳强度评估。 在以上步骤中能否建立合理有效的有限元模型是前提条件,模型质量的好坏,特别是网格的类型与划分方法,直接影响后续的分析结果。目前常用的有限元分析软件主要有 MSC.Patran\Nastran、LR.ShipRight、基于Patran 的CCS.TOOLS、DNV.Sesam 等,本文以散货船CSR 有限元建模为例,探讨Patran 与ShipRight 两种软件的建模技术和异同点。 2. Patran 与ShipRight 的简介 MSC.Patran 作为一个优秀的前后置处理器,具有高度的集成能力和良好的适用性,模型处理智能化、自动有限元建模、分析的集成、用户自主开发新功能、分析结果的可视化处理等等是其典型的特征,它提供了功能全面、方便灵活的可满足各种精度要求的复杂有限元的建模功能,其综合全面先进的网格划分技术,为用户根据不同的几何模型提供了多种不同的生成和定义的有限元模型工具。 ShipRight 是LR 自主开发的一款基于CSR 的有限元分析应用软件,具有很强的针对性,

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

ANSYS有限元分析与实体建模

第五章实体建模 5.1实体建模操作概述 用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过 程。 自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。这就是所谓的自下向上的建模方法。一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内 定义的。 图5-1自下向上构造模型 自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。用户可以根据需要自由地组合自下向上和自上向下的建模技术。注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标 系跟随工作平面变化。 图5-2自上向下构造模型(几何体素) 注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。

运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。通过布尔运算用户可直接用较高级的图元生成复杂的形体。布尔运算对于通过自下向上或自上向下方法生成的图元均有效。 图5-3使用布尔运算生成复杂形体。 拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。 图5-4拖拉一个面生成一个体〔VDRAG〕 移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。之后可以移动、旋转或拷贝到所需的地方。用户会发现在方便之处生成几何体素再将其移动到所需之处,这样 往往比直接改变工作平面生成所需体素更方便。 图5-5拷贝一个面 网格划分:实体建模的最终目的是为了划分网格以生成节点和单元。在完成了实体建模和建立了单元属性,网格划分控制之后,ANSYS程序可以轻松地生成有限元网格。考虑到要满足特定的要求,用户可以请求映射网格划分生成全部都是四边形、三角形或块单元。

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

工程数值方法与有限元分析

工程数值方法与有限元分析 (机械工程学院机械类专业) 课程号: 周学时:4 学分:3 课程类别: 预修课程:高等数学,线性代数,力学基础课 面向对象:机械类专业学生 教学方式:多媒体教学 教学目的和教学要求: 在科学研究与工程技术中,经常遇到数学模型的求解问题。然而在许多情况下,要获得模型问题的准确解往往是十分困难的,甚至是不可能的。因此,研究各种数学问题的近似解法非常必要。计算方法是一门与计算机应用密切结合的实用性很强的课程,它专门研究各种数学问题的一类近似解法,从一组原始数据出发,按照确定的运算规则进行有限步运算,最终获得问题的数值形式且满足精度要求的近似解。 通过对《计算方法》的学习,掌握数值计算的基本概念和基本理论,深入理解方法的设计原理与处理问题的技巧,重视误差分析与收敛性、数值稳定性,注重利用计算机进行科学计算能力的培养,并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 在此基础上进一步学习数值计算的集大成者-有限元方法, 了解有限元方法的基础知识及其在机械、机械电子领域中的应用,掌握有限元方法的基本原理与分析过程,包括静力学、动力学、非线性力学、热场、电磁场等的建模及分析。学生可使用有限元软件进行机械零件及系统的实例分析,并对分析结果进行评价,指导和优化机械零件及系统的设计。本课程面向机械电子专业及机械类相关专业的高年级本科生 课程简介: 内容主要包括:计算机上常用的数值计算方法以及有关的基本概念与理论,主要有误差、非线性方程求根、线性代数方程组的解法、插值与拟合、数值微分与数值积分、常微分方程初值问题的数值解法。并且算法面向计算机,注重培养学生运用计算机进行科学计算解决工程问题的能力。并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 有限元的分析与建模是一个机械工程师必须掌握的方法和技能。本课程为机械类专业的高年级学生核心课,使学生了解有限元方法的基本概念和基本理论,掌握有限元分析的基本处理方法,熟悉常用有限元分析软件在实际工程中的应用,最终培养学生在机械设计、机电系统设计中能有效的应用有限元方法。 主要内容及学时分配: 每周4学时,共16周 主要内容: ( O ) 绪论1学时 (一)误差2学时

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

各大CAE软件特点比较

有限元分析软件比较 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次

(完整)各种有限元分析软件比较

(完整)各种有限元分析软件比较 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)各种有限元分析软件比较)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)各种有限元分析软件比较的全部内容。

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统. 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1。模流分析;2.结构强度分析;3。电磁场分析;4。谐响应分析(比如查找共振频率);5。铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下.ABAQUS 专注结构分析目前没有流体模块.MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。

有限元分析过程

有限元分析过程可以分为以下三个阶段: 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。 原始数据的计算模型,模型中一般包括以下三类数据: 1.节点数据: 包括每个节点的编号、坐标值等; 2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据 3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据. 建立有限元模型的一般过程: 1.分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点: a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律 2.几何模型建立 几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。 3.单元类型选择 划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。

薄壁组合结构的有限元快速建模技术

薄壁组合结构的有限元快速建模技术 作者:北京航空制造工程研究所岳中第高光波 摘要:在并行设计过程中,面向数字化、无纸化的技术要求,如何实现复杂薄壁组合结构的有限元快速建模,是工程设计人员最为关心的重要技术问题之一。本文基于MSC的开放平台,综述了薄壁组合结构三维实体设计中FEA建模的特点与复杂性,探索了实现CAD/CAE集成与二次开发、FEA结构模型简化及快速建模的技术途径与方法。应用测试表明,它能有效地缩短薄壁组合结构的有限元建模周期,使有限元模型在简化上更能精确于CAD 数字化模型。 1 薄壁组合结构FEA建模的特点与复杂性 飞机与舰船都是复杂的薄壁组合结构,是MSC/NASTRAN系统的传统工程应用领域。如何快速有效地为MSC/NASTRAN系统建立有限元分析(FEA)模型,往往成为这些行业工程技术人员的日常工作。今天通过电子商务,我们能够容易地采购到现代化的数字化技术的基础平台,例如CAD/CAE/CAM/PDM等商用软件,包括IBM/CATIA、MSC/NASTRAN 等产品。在这方面,我们与国外同类公司相比,相差无几;但是,在应用这些基础平台解决复杂薄壁组合结构的分析方面,我们与国外同行确有不小的差距。例如,某些军民机要建立整机的有限元分析模型,需要集中近20多人,准备一年以上,而国外同行解决同样的问题所用的人力与时间却要少得多;在方案设计阶段要实现整机有限元分析模型,国外需要几个星期,而我们加班加点却还需要几个月。同样的软硬件技术环境,却有如此不同的结果,其原因在于我们缺乏在通用数字化平台基础上的实用开发技术与个性化的技术支持。 CAD软件商向我们推荐的整体解决方案,即三维CAD实体模型自动转换为三维有限元分析模型,在零件实体一级也许可以使用(例如,CATIA的FEA功能),但在复杂薄壁组合结构的部件级或整机级,这种方案往往导致几十万至几百万节点的FEA模型,而最终所得到的结果却无法让专家们相信它的正确性。在这种解决方案里,薄壁组合结构视为三维连续实体结构,CAD/3D模型直接转换为FEA/3D模型,“组合”变成“熔合”,“薄壁”变成“体元”,使结构的传力与力学特性受到扭曲。 正因为如此,复杂薄壁组合结构的FEA建模应该有它固有的力学方法和途径。我国工程技术人员利用薄壁组合结构(板杆梁)理论简化飞行器结构模型的基本实践,已经在航空航天领域极大地普及。自“九五”以来,我们按照传统的薄壁组合结构的模型简化方法,探索

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

有限元建模基本原则

?确保精度 ?控制规模 ?确保精 度: 表格1:误差分析及处理 即使采用较少的单元和较低的差值函数阶次,也能获得较满意的离散精度。例如,假设场函数在整个结构内的分布是二次函数,则用一个二次单元离散就能得到场函数的精确解。如果场函数是线性或接近于线性分布,则用线性单元离散也能得到很好的离散精度。但实际问题的场函数往往很复杂(如存在应力集中),在整个结构内很难遵循某一种函数规律,某些部位可能按高阶函数规律分布,某些部位又可能接近低阶函数的性质。故,在划网格时,结构内的不同部位可能采用不同密度和阶次的网格形式。 综上所述:提高精度的措施: 1?提高单元阶次(单元插值函数完全多项式的最高次数) 阶次越高,插值函数越能逼近复杂的真实场函数,物理离散精度越高。 其次,高阶单元的边界可以是曲线或曲面,因此在离散具有曲线或曲面边界 的结构时,几何离散误差也较线性单元小。所以当结构的场函数和形状较复杂时,可以采用这种方法来提高精度。 单元的阶次越高,收敛速度越快。 2?增加单元数量 等同于减小单元尺寸,尺寸减小时,单元的插值函数和边界能够逼近结构的 实际的场函数和实际边界,物理和几何离散误差都将减小。当模型规模不太大时, 可以采用这种方法提高精度。 但是值得注意的是:精度随着单元数量增加是有限的,当数量增加到一定程

度后,继续增加单元数量,精度却提高甚微,再采用这种方法就不经济了。实际操作时可以比较两种单元数量的计算结果,如果两次计算的差别较大,可以继续增加单元数量,否则停止增加。 3.划分规则的单元形状 单元形状的好坏将影响模型的局部精度,如果模型中存在较多的形状较差的单元,则会影响整个模型的精度。 直观上看,单元各条棱边或各个内角相差不大的形状是较好的形状。 4.建立与实际相符的边界条件 如果模型边界条件与实际工况相差较大,计算结果就会出现较大的误差,这 种误差有时甚至会超过有限元法本身带来的原理性误差。 可采用组合结构模型法,这种方法可以较好地考虑影响较大的结构间的相互作用,避免人为设置边界条件带来的误差。或采用一些测试结果,将计算值与测试值进行比较,以逐步将边界条件调整合理。 5.减少模型规模 计算误差与运算次数有关,运算次数越多,误差累计就可能越大,所以采取适当的措施降低模型规模,减少运算次数,也可能提高计算精度。 模型规模直观上可以用节点数和单元数来衡量,一般讲,节点数和单元数越多,模型规模越大,反之则越小。 在估计模型规模时,除考虑节点的多少外,还应考虑节点的自由度数,总刚度矩阵的阶次等于节点数与其自由度数的乘积,即结构的总自由度数。 减小模型规模的方法: (1)对模型进行处理:建立几何模型时,并不总是照搬结构的原有形状和尺寸,有时要做适当的简化和变换处理。合理的近似和变换可以降低模型规模,而仍然保持一定的工程精度要求。几何模型的处理方法有:降维处理、细节简化、等效变化、对称性利用和划分局部结构等。 此处很重要,参考《有限元法-原理、建模及应用》第二版.杜平安编著154 页.左下角 (2)采用子结构法:将一个复杂的结构从几何上分割为一定数量的相对简单的子结构,首先对每个子结构进行分析,然后将每个子结构的计算结果组集成整体结构的有限元模型。这种模型比直接离散结构所得到的模型要相对简单的多,从而使模型规模得到控制。这种方法适用于静力分析和动力分析。还有三种方法,不适合初级学者,待续… 看abaqus视频时了解到,对于三角形单元,一般要用二阶单元来提高精度,二阶单元会增加自由度数;但对于四边形或六面体单元,一般一阶单元已有很好的精度,不必使用二阶单元。

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

有限元分析步骤

有限元建模与分析 有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。 有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵:{F}=[K]、{d} 尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。 有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。 一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。 对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。 一般来讲,如模型细分更小的单元,则求解将更准确。了解你在最终的求解结果上有充分收敛的唯一确信的方法是用更细网格的单元来建立更多的模型,以检查求解结果的收敛性。 新的有限元用户经常产生想象上的错误,即建立一个有限元模型的目的是建立一个看起来象这种结构的模型。有限元建模的目的是建立一个从数学意义是“相似”的模型,而不是一个外观相似的模型。一个有经验的使用者学会了怎样选择单元的正确类型,和在模型的不同区域中怎样来细分网格。 一个经常忽略的错误根源是在一个模型中的负载和边界条件上进行了错误的假设。同时也很轻易地相信一个有限元模型的每个十进位的结果。以及忘掉了在负载和边界条件上粗糙的假设。如果有一个关于怎样建立边界条件模型的问题的话,宁可用你的模型以不同的方法去测试其灵敏度,而不是仅遵循一种方法,得出一种答案,

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

主流CAE有限元分析软件的比较

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件 LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist 主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。此软件受到美国能源部的大力资助以及世界十余家著名数值模拟软件公司(如ANSYS、MSC.software、ETA等)的加盟,极大地加强了其的前后处理能力和通用性,在全世界范围内得到了广泛的使用。在软件的广告中声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题。即使是这样一个被人们所称道的数值模拟软件,实际上仍在诸多不足,特别是在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。虽然提供了十余种岩土介质模型,但每种模型都有不足,缺少基本材料数据和依据,让用户难于选择和使用。2. MSC.software公司的DYTRAN软件 当前另一个可以计算侵彻与爆炸的商业通用软件是MSC.Software Corporation ( MSC公司) 的MSC.DYTR AN程序。该程序在是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES INTERNATIONAL公司开发的PICSES的高级流体动力学和流体——结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法。在同类软件中,其高度非线性、流—固耦合方面有独特之处。MSC.DYTR AN的算法基本上可以概况为:MSC.DYTRAN采用基于Lagrange格式的有限单元方法(FEM)模拟结构的变形和应力,用基于纯Euler格式的有限体积方法(FVM)描述材料(包括气体和液体)流动,对通过流体与固体界面传递相互作用的流体—结构耦合分析,采用基于混合的Lagrange格式和纯Euler 格式的有限单元与有限体积技术,完成全耦合的流体-结构相互作用模拟。MSC.DYTRAN用有限体积法跟踪

相关文档