文档库 最新最全的文档下载
当前位置:文档库 › 扫描电子显微分析在材料研究中的应用

扫描电子显微分析在材料研究中的应用

扫描电子显微分析在材料研究中的应用
扫描电子显微分析在材料研究中的应用

国家重点实验室

123456K ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

显微组织分析方面:

1.宏观晶态粉体的晶体结构

2. 纳米级微区的形貌及结构同位分析

3.显微形貌的观察

K ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室我校的QUANTA 400环境扫描电子显微镜ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources 聚焦得很细的电子束以光栅状扫

描试样表面的同时,收集激发出

的信号,进行调制成像电子显微

→1. 放大倍数20-20万倍之间连续

立体感,可直接观察各种试样凹

应用:冶金矿产、生物医学、

材料科学、物理、化学、机械、半导体制造和微电子检查等领域等领域。

ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

图像显示记录系统

信号收集处理系统

ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

度(明暗对比度);

SEM成像原理≈十字绣

ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

SEM成像的信号:二次电子+背散射电子

当入射电子能量大于样品中原子核和外层价电子间入射电子K ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

二次电子像

背散射电子像

SEM中两种信号成像的实例

ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

,产额与原子序数没有明K ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

探测器位置对成像效果的影响

4.二次电子像成像成像原理及其应用

K ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

国家重点实验室

——原理:背散射电子产额受样品表面形貌影响不大,但与原ey Lab of Integrated Exploitation of Bayan Obo Multi-Metal Resources

处理:打磨后抛光,不腐

晶粒及晶

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

电子显微分析考试复习中南

电子显微分析考试复习中南

材料结构分析 一、名词解释: 1、球差:球差是由于电子透镜的中心区域和边 沿区域对电子的会聚能力不同而造成的。电子通过透镜时的折射近轴电子要厉害的多,以致两者不交在一点上,结果在象平面成了一个满散圆斑。 色差:是电子能量不同,从而波长不一造成的2、景深:保持象清晰的条件下,试样在物平面 上下沿镜轴可移动的距离或试样超越物平面元件的距离。 焦深:在保持像清晰的前提下,象平面沿镜轴可移动的距离或者说观察屏或照相底板沿镜轴所允许的移动距离 3、分辨率:所能分辨开来的物平面上两点间的最小距离,称为分辨距离 4、明场像:采用物镜光阑将衍射束挡掉,只让透射束通过获得图像衬度得到的图像。 5、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑所的图像。中心暗场像:入射电子束相对衍射晶面倾斜角,此时衍射斑将移到透镜的中心位置,该衍 射束通过物镜光栏形成的衍衬像称为中心暗场

成像。 衬度:试样不同部位由于对入射电子作用不同,经成像放大系统后,在显示装置上显示的 强度差异。 6、消光距离:衍射束的强度从0逐渐增加到最大,接着又变为0时在晶体中经过的距离。 7、菊池花样:由入射电子经非弹性不相干散射, 失去很少能量,随即入射到一定晶面时,满足布拉格定律,产生布拉格衍射,衍射圆锥与厄瓦尔德球相交,其交线放大后在底片投影出的由亮暗平行线对组成的花样。 8、衍射衬度:由于晶体试样满足布拉格反射条 件程度差异以及结构振幅不同而形成的电子图像反差,它仅属于晶体结构物质。 9、双光束条件:假设电子束穿过样品后,除了 透射束以外,只存在一束较强的衍射束精确地符合布拉格条件,其它的衍射束都大大偏离布拉格条件。作为结果,衍射花样中除了透射斑以外,只有一个衍射斑的强度较大,其它的衍射斑强度基本上可以忽略,这种情况就是所谓的双光束条件。

扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS 分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS 发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型

冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X 射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-600型分别配有4块和6块不同的衍射晶体,能检测到5B(4Be)以上的各种元素。该谱仪可以倾斜方式装在扫描电镜试样室上,以便对水平放置的试样进行分析,而不必如垂直谱仪那样需用

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

电子显微分析试题级答案(中南大学)

材料结构分析 一、名词解释: 1、球差:球差是由于电子透镜的中心区域和边沿区域对电子的会聚能力不同而造成的。电 子通过透镜时的折射近轴电子要厉害的多,以致两者不交在一点上,结果在象平面成了一个满散圆斑。 色差:是电子能量不同,从而波长不一造成的 2、景深:保持象清晰的条件下,试样在物平面上下沿镜轴可移动的距离或试样超越物平面 元件的距离。 焦深:在保持像清晰的前提下,象平面沿镜轴可移动的距离或者说观察屏或照相底板沿镜轴所允许的移动距离 3、分辨率:所能分辨开来的物平面上两点间的最小距离,称为分辨距离 4、明场像:采用物镜光阑将衍射束挡掉,只让透射束通过获得图像衬度得到的图像。 5、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑所的图像。中心暗场像:入射电子束相对衍射晶面倾斜角,此时衍射斑将移到透镜的中心位置,该 衍射束通过物镜光栏形成的衍衬像称为中心暗场成像。 衬度:试样不同部位由于对入射电子作用不同,经成像放大系统后,在显示装置上显示的强度差异。 6、消光距离:衍射束的强度从0逐渐增加到最大,接着又变为0时在晶体中经过的距离。 7、菊池花样:由入射电子经非弹性不相干散射,失去很少能量,随即入射到一定晶面时, 满足布拉格定律,产生布拉格衍射,衍射圆锥与厄瓦尔德球相交,其交线放大后在底片投影出的由亮暗平行线对组成的花样。 8、衍射衬度:由于晶体试样满足布拉格反射条件程度差异以及结构振幅不同而形成的电子 图像反差,它仅属于晶体结构物质。 9、双光束条件:假设电子束穿过样品后,除了透射束以外,只存在一束较强的衍射束精确 地符合布拉格条件,其它的衍射束都大大偏离布拉格条件。作为结果,衍射花样中除了透射斑以外,只有一个衍射斑的强度较大,其它的衍射斑强度基本上可以忽略,这种情况就是所谓的双光束条件。 10、电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发 射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 11、二次电子:在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。 12、背散射电子:被固体样品中原子反射回来的一部分入射电子,又分弹性背散射电 子和非弹性背散射电子。 二、简答 1.透射电镜主要由几大系统构成?各系统之间关系如何? 答:电镜一般是由电子光学系统、真空系统和供电系统三大部分组成。 其中电子光学系统是其核心,其他系统为辅助系统。 2.照明系统的作用是什么?它应满足什么要求? 答:照明系统包括电子枪和聚光镜2个主要部件,它的功用主要在于向样品及成像系统提供亮度足够的光源。电子束流,对它的要求是输出的电子束波长单一稳定,亮度均匀一致,调整方便,像散小。它应满足明场和暗场成像需求。(刘:产生发射会聚出一定能量的电子束,发射的电流稳定性要好,电流组打狗,电子束能量集中,电子束相干性好,单色性好。)

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

《材料现代测试技术》(下篇)电子显微分析技术062011

《材料现代测试技术》(下篇) 电子显微分析技术 主要内容和思考题 本课程的主要内容 1.透射和扫描电子显微镜的结构和工作原理 2.电子衍射图和TEM显微图像的形成和特征 3.显微图像的形成和特征和X射线能谱分析 4.试样制备方法 第一节引言Introduction 一.主要内容 1.Importance of learning English 2.Characterization of materials 3.Microscopes and their development 4.Objectives and requirements 二. 思考题 1.物质的结构有哪些层次? 2.表征物质结构的方法主要有哪些? 3.什么是显微镜? 4.光学显微镜,电子显微镜以及原子探针显微镜的主要区别是什么? 5.什么是分辩率?显微镜的分辨率主要取决于什么? 6.光学显微镜的分辩率极限是多少?为什么? 7.为什么透射电镜的放大倍数可以远远超过光学显微镜? 8.在显微镜的发明和应用过程, 哪些人在哪些方面做出重要的贡献? 第二节电子与固体的相互作用Interaction of the electron with matter 一.主要内容 1.电子的性质 2.电子散射概念 3.电子散射截面与电子散射能力 4.电子弹性相干散射和电子衍射; 5.电子非弹性散射及其效应 二.掌握以下基本概念和基本关系 1.电子波长与加速电压的关系 2.弹性散射和非弹性散射 3.相干散射和非相干散射 4.电子散射截面和电子散射振幅 5.清楚布拉格定律的三种表达方式 6.明确三种电子散射振幅的定义和区别 7.晶胞类型对电子衍射的影响规律 8.晶体形状对电子衍射的影响规律

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

电子显微分析总结

《电子显微分析》知识点总结 第一讲电子光学基础 1、电子显微分析特点 2、Airy斑概念 3、Rayleigh准则 4、光学显微镜极限分辨率大小:半波长,200nm 5、电子波的速度、波长推导公式 6、光学显微镜和电子显微镜的不同之处:光源不同、透镜不同、环境不同 7、电磁透镜的像差产生原因,如何消除和减少像差。 8、影响光学显微镜和电磁透镜分辨率的关键因素,如何提高电磁透镜的分辨率 9、电子波的特征,与可见光的异同 第二讲 TEM 1、TEM的基本构造 2、TEM中实现电子显微成像模式与电子衍射模式操作 第三讲电子衍射 1、电子衍射的基本公式推导过程 2、衍射花样的分类:斑点花样、菊池线花样、会聚束花样 3、透射电子显微镜图像衬度,各自的成像原理。 第四讲 TEM制样 1、粉末样品制备步骤 2、块状样品制备减薄的方法 3、块状脆性样品制备减薄——离子减薄 4、塑料样品制备——离子减薄 5、复型的概念、分类 第五讲 SEM 1、电子束入射固体样品表面会激发的信号、特点和用途 2、SEM工作原理 3、SEM的组成 4、SEM的成像衬度:二次电子表面形貌衬度、背散射电子原子序数衬度、吸收电子像的衬 度、X射线图像的衬度 第六讲 EDS和WDS 1、EDS探测系统——锂漂移硅固体探测器 2、EDS与WDS的优缺点 第七讲 EBSD 1、EBSD的应用 第八讲其它电子显微分析方法 1、各种设备的缩写形式

历年考题 透射电镜的图像衬度有非晶样品质厚衬度, 薄晶体样品的衍射衬度, 相位衬度。 一、我校材料分析中心现有的两台场发射电子显微镜有哪些主要的功能附件可以进行哪方面的分析工作 答:1、场发射扫描电子显微镜仪器型号: SUPRA 55 生产厂家:德国ZEISS 功能附件: (1)配备Oxford INCA EDS设备,可以对5B-92U的元素进行微区成分定性、定量分析,包括点、线、面成分的分析; (2)配备HKL EBSD设备,可以对材料进行取向、织构及物相鉴定,晶体学结构分析,相位及相位差分析,应变分析; (3)配备拉伸弯曲台,可以在扫描电镜内对试样做拉伸、压缩和弯曲试验,同时原位观察组织变化。 用途:可用于金属、非金属、半导体、地质、矿物、冶金、考古、生物等材料的显微形态,断口形貌的分析研究;也可进行各种样品的高分辨成像以及配合能谱仪进行微区元素分析,配备电子背散射衍射(EBSD)附件,可对晶体材料进行晶体取向、织构、以及物相鉴定等分析研究。 2、场发射透射电子显微镜仪器型号:TECNAI F30 G2生产厂家:美国FEI公司 功能附件: (1)配备EDS设备,可以进行微区成分定性定量分析,包括点、线、面成分的分析; (2)配备EELS,进行电子-能量损失谱分析; (3)配备原位拉伸仪,可以进行原位拉伸观察和三维图像重构分析。 用途:可以对透射电镜样品进行形貌、相应选区电子衍射、微衍射及相干电子衍射和高分辨电子显微像观察;配合STEM-HAADF探针进行原子序数衬度像分析;配合特征X射线能谱仪(EDS)进行纳米尺度成分分析;配合电子能量损失谱系统(EELS)进行电子能量损失谱分析;进行样品原位拉伸观察和三维图像重构分析。 二、电子束入射固体样品表面会激发哪些信号它们有哪些特点和用途 答:电子束入射固体样品表面会激发出背散射电子、二次电子、吸收电子、透射电子、特征X射线、俄歇电子、电子束感生电效应、阴极荧光。 (1)背散射电子:入射电子与原子核发生弹性散射,能量损失小,一般大于50eV都称为背散射电子。平均原子序数越大,产生背散射电子越多,不仅能用于形貌分析,还可以用于显示原子序数衬度,定性进行成分分析; (2)二次电子:入射电子与外层电子发生非弹性散射,一部分核外电子获得能量逸出试样表面,成为二次电子。二次电子能量小,一般小于50eV,适于表面形貌观察; (3)吸收电子:入射电子发生非弹性散射次数增多,以致电子无法逸出试样表面,在样品与地之间接电流放大器,获得电流信号,吸收电子像衬度与二次电子和背散射电子的总像衬度相反,适用于显示试样元素分布和表面形貌,尤其是试样裂纹内部的微观形貌; (4)透射电子:如果被分析的样品很薄,就会有一部分入射电子穿过薄样品而成为透射电子。可进行形貌和成分分析。 (5)特征X射线:入射电子与样品原子内层电子作用,释放出具有特征能量的电磁辐射波,

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

电子显微镜发展史

电子显微镜的发展史

电子显微镜的发展史 杨柏栋 大庆师范学院物理与电气信息工程学院 摘要:电子显微镜自从被发明出来就为人类做着巨大的贡献,随着现代社会的发展,电子显微镜的作用将会越来越大,我们应该知道电子显微镜的由来,本文将着重介绍电子显微镜的定义、分类、作用及其发展史。 关键字:电子显微镜、电子 引言 随着电子显微镜应用的广泛,人们对于电子显微镜的了解需求大大的增加了,本文介绍了电子显微镜的定义与组成、电子显微镜的种类与用途、电子显微镜的发展史以及电子显微镜的优缺点,以此让人们更加的了解电子显微镜。 一、电子显微镜的定义与组成 电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]。 电子显微镜由镜筒、真空装置和电源柜三部分组成。 镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。 电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦 电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 样品架样品可以稳定地放在样品架上。此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。 探测器用来收集电子的信号或次级信号。 二、电子显微镜的种类与用途 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构[2];扫描式电子显微镜主要用于观察固体表

第二十五章 透射电子显微镜讲解

—1— 第25章 透射电子显微镜 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段。电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辨能力从大约0.2 mm 拓展至亚原子量级(<0.1nm),大大增强了人们观察世界的能力。尤其是近20多年来,随着科学技术发展进入纳米科技时代,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究;没有电子显微镜,开展现代科学技术研究是不可想象的。目前,它的发展已与其他学科的发展息息相关,密切联系在一起。 25.1 基本原理 透射电子显微镜在成像原理上与光学显微镜是类似的(图25-1),所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 理论上,光学显微镜所能达到的最大分辨率d ,受到照射在样品上的光子波长λ以及光学系统的数值孔径N A 的限制: 2sin 2A d n N λ λ α=≈ (25-1) 在20世纪初,科学家就已发现理论上使用电子可以突破可见光的光波波长限制(波长范围400~700nm )。由于电子具有波粒二象性,而电子的波动特性则意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能推导出。由于在TEM 中,电子的速度接近光速,需要对其进行相对论修正: e λ≈ (25-2) 式中,h 表示普朗克常数;m 0表示电子的静质量;E 是加速电子的能量;c 为光速。电子显微镜中的电子通常通过电子热发射过程或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚衬度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,衬度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg )方程,产生衍射现象,在衍射衬度模式中,像平面上图像的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm 左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,

扫描电子显微镜的发展及展望教案资料

扫描电子显微镜的发 展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON 系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了 Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X射线波谱仪WDS。Microspec公司的全聚焦WDX-400,

电子显微分析技术及其应用

电子显微分析技术及其应用 恶魔 (恶魔大学恶魔学院,湖北武汉) [内容提要]:本文阐述的电子显微技术及其在纳米材料中的应用。同时本文介绍了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,并论述的电子显微技术在实际中的应用。 [关键词]:电子显微技术;TEM;SEM;STM 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。特别是基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分,以光谱分析、电子能谱分析、衍射分析与电子显微分析等4大类方法,以及基于其他物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法也是材料现代分析的重要方法。 材料及产品性能和质量的检测是检验和评价制造装备以及产品能否合格有效的重要关口。 在材料纳米材料分析当中,最长用到的电子显微分析技术包括了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,通过这些技术来对物质的显微形貌、成分和结构进行分析。 一透射电镜技术 透射电子显微镜,是以波长极短的电子束作为照明源,用电磁透射聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统(包括电子枪高压电源、透镜电源、控制线路电源等)、真空系统3部分组成。分辨本领和放大倍数是透射电子显微镜的两项主要性能指标,它体现了仪器显示样品显微组织和结构细节的能力。 透射电镜一般分为分析型透射电镜和高分辨透射电镜。TEM的分辨率较高,可用于研究纳米材料的结晶情况,观察纳米粒子的形貌、分散情况及测量和评估纳米粒子的粒径,是研究材料微观结构的重要仪器。 利用透射电镜的电子衍射能够较准确地分析纳米材料的晶体结构,配合XRD, SAXS,特别是EX-AFS等技能更有效地表征纳米材料。可结合电子显微镜和能谱两种方法共同对某一微区的情况进行分析。此外,微区分析还能够用于研究材料夹杂物、析出相、晶界偏析等微观现象。利用透射电镜法测试纳米材料的粒度大小及其分布,是最直观的测试方法之一,可靠性较高,但该法的准确性很大程度上取决于取样的代表性和扫描区域的选择。利用TEM进行微观结构分析时,配以能谱可以研究元素在试样内部的存在状态或分布情况。近年来,高分辨率透射电镜(HRTEM)的应用越来越广泛,利用HRTEM可获取有关晶体结构的更可靠的信息。 二扫描电镜技术 扫描电子显微镜, 成像原理与透射电镜不同,不用透镜法放大成像, 而是以类似电视摄像显像的方式, 用细聚焦电子束在样品表面扫描是激发产生的某些物理信号来调制成像。扫描电子显微镜由于其具有制样简单、使用方便、可直接观察大样品(如100mm@100mm)、并具有景深大、分辨率较高、放大倍数范围宽、可连续调节、可进行化学成分和晶体取向测定等一系列优点, 在失效分析中得到了广泛的应用。 SEM在纳米材料的分析中应用很广,它可用于纳米材料的粒度分析、形貌分析以及微观结构的分析等。SEM一般只能提供微米或亚微米的形貌信息,与TEM相比,其分辨率较低,因而表征结果不如透射电镜准

相关文档
相关文档 最新文档