文档库 最新最全的文档下载
当前位置:文档库 › 扭转减震器设计

扭转减震器设计

扭转减震器设计
扭转减震器设计

1绪论

1.1 引言

由发动机传到汽车传动系统中的转矩是周期性地不断变化的,因此使传动系统产生扭转振动。如果这一振动频率和传动系统固有频率相重合,就将发生共振,从而对传动系统中零件的寿命有很大影响。因此,在不分离离合器的情况下进行紧急制动或者进行猛烈结合离合器时,在瞬间内将对传动系统的零件产生极大地冲击载荷,从而缩短零件的使用寿命。为此,为了避免共振和缓和传动系统所受的冲击载荷,在汽车离合器中设置了扭转减振器。

扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。

1.2扭转减振器的发展

随着社会经济的发展,汽车走进了千家万户,人们在享受着汽车带来的便利的同时也对汽车的性能提出了更高的要求。离合器作为汽车上一个必不可少的部件,除了能通断动力传动以外,还有减振调频的功能,越来越受人们的重视。

汽车传动系中的扭转振动将加大传动系零部件如轴、轴承、齿轮、壳体等的载荷,提高车厢内的噪声水平,降低汽车的行驶舒适性,汽车传动系的振动也是导致整车振动的主要原因。据统计,我国因运输车辆的振动使包装不妥的产品受损,所造成的经济损失一年达数亿元。同时由于轿车、客运车市场的发展,对汽车平顺性的要求也越来越高,振动使乘客产生不舒适的感觉,使驾驶者易疲劳降低了安全性,也使汽车零部件因振动而减少寿命,甚至使汽车的燃油经济性变差【1】。因此,需要分析研究汽离合器在汽车传动系统中的作用,建立传动系的振动模型,找出离合器最优工作状态和最优参数,为改善传动系的扭转振动状况找到一些新思路,为厂家研究开发新型离合器提供理论依据。

现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿

车上使用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向与首选单片干式摩擦离合器,因为它具有从动部件转动惯量小、散热性好、结构简单、调整方便、尺寸紧凑、分离彻底等优点,而且在结构上采取一定措施,已能做到接合平顺,因此现在广泛用于大、中、小各类车型中。如今单片干式摩擦离合器在结构设计方面相当完善。采用具有轴向弹性的从动盘,提高了离合器接合时的平顺性。离合器从动盘总成中装有扭转减振器,防止了传动系统的扭转共振,减小了传动系噪声和动载荷,随着人们对汽车舒适性要求的提高,离合器已在原有基础上得到不断改进,汽车上愈来愈多地采用具有双质量飞轮的扭转减振器,能更有效地降低传动系统的噪声

1.3目前通用的从动盘减振器在特性上存在如下局限性:

1)它不能使发动机、变速器振动系统的固有频率降低到怠速转速以下,因此不能避免怠速转速时的共振。研究表明,发动机、变速器振动系统固有频率一般为40~70Hz,相当于四缸发动机转速1200~2100r/min,或六缸发动机转速800~1400r/min,一般均高于怠速转速。

2)它在发动机实用转速1000~2000r/min范围内,难以通过降低减振弹簧刚度得到更大的减振效果。因为在从动盘结构中,减振弹簧位置半径较小,其转角又受到限制,如降低减振弹簧刚度,就会增大转角并难于确保允许传递转矩的能力。

2 扭转减振器的结构类型及功用

2.1扭转减振器的结构类型

扭转减振器结构大体相近,主要差异在于采用不同的弹性元件和阻尼装置。扭转减振器具有线性和非线性特性两种。

采用圆柱螺旋弹簧和摩擦元件的扭转减振器得到了最广泛应用。在这种结构中,从动片和从动盘毂上都开有六个窗口,在每个窗口中装有一个减振弹簧,因而发动机转矩由从动片传给从动盘榖时必须通过沿从动片圆周切向布置的弹簧,这样即将从动片和从动盘毂弹性的连接在一起,从而改变了传动系统的刚度。但六个弹簧属统一规格并同时其作用时,扭转减振器的弹性特性为线性的。这种具有线性特性的扭转减振器,结构较为简单,单级线性减振器的扭转特性,其弹性元件一般采用圆柱螺旋弹簧,广泛应用于汽油机汽车中。当六个弹簧属于两种或三种规格且刚度由小变大并按先后次序进入工作时,则称为两级或三级非线性扭转减振器。这种非线性减振器,广泛为现代汽车尤其是柴油发动机汽车所采用。

当发动机为柴油机时,由于怠速时发动机旋转不均匀度较大,常引起变速器常啮合齿轮齿间的敲击,从而产生令人厌烦的变速器怠速噪声。在扭转减振器中另设

置一组刚度较小的弹簧,使其在发动机怠速工况下起作用,以消除变速器怠速噪声,此时可得到两级非线性特性,第一级的刚度很小,称为怠速级,第二级的刚度较大。

图 1-1 单级线性减速器的扭转特性

2.2 扭转减振器的功用

扭转减振器主要由弹性元件(减振弹簧或模胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有挮型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。所以,扭转减振器具有如下功能:

(1)降低发动机曲轴与传,动系接合部分瘄扭转刚度,调谐传动系扭振固有频率。

(2)增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的眬态扭振。

(3)控制动力传动系总成怠速旴离合器与变速器轴系的扭振,消减变速器怠速噪声和主减速器与变速器的扭振与噪声。

(4)缓和非稳定工况下传动系的扭转冲击载荷和改善离合器的接合平顺性。

3 扭转减振器机构原理

在现代汽车上一般都采用带扭转减振器的离合器,用以避免汽车传动系统的共振,缓和冲击,减少噪声,提高传动系统零件的寿命,改善汽车行使的舒适性,并使汽车平稳起步。扭转减振器主要由从动片,从动盘毂,摩擦片,减振盘,减振弹簧等

组成,由下图4.1可以看出,摩擦片1,13分别用铆钉14,15铆在波形弹簧片上,而后者又和从动片铆在一起。从动片5用限位销7和减振12铆在一起。这样,摩擦片,从动片和减振盘三者就被连在一起了。在从动片5和减振盘12上圆周切线方向开有6个均布的长方形窗孔,在在从动片 和减振盘之间的从动盘毂8法兰上也开有同样数目的从动片窗孔,在这些窗孔中装有减振弹簧11,以便三者弹性的连接起来。在从动片和减振盘的窗孔上都制有翻边,这样可以防止弹簧滑脱出来。在从动片和从动盘毂之间还装有减振摩擦片6,9。当系统发生扭转振动时,从动片及减振盘相对从动盘毂发生来回转动,系统的扭转能量会很快被减振摩擦片的摩擦所吸收。

图 3-1 扭转减振器结构图

1,13—摩擦片;2,14,15—铆钉;3—波形弹簧片;4—平衡块;5—从动片;6,9—减振摩擦;7—限位销;8—从动盘毂;10—调整垫片;11—减振弹簧;12—减

4 摩擦片的设计

4 .1 摩擦片外径D 、内径d 和厚度h 的确定

摩擦片外径是离合器的主要参数,它对离合器的轮廓尺寸、质量和使用寿命有决定性的影响。

当离合器结构形式及摩擦片材料已选定,发动机最大转矩max e T 已知,适当选取后备系数β和单位压力P 0,可估算出摩擦片外径。

摩擦片外径D (mm )也可以根据发动机最大转矩max e T (N.m )按如下经验公式选用

max e D T K D (3.1)

式中,D K 为直径系数,取值范围见表3-1。 由选车型得max e T = 372N ·m ,D K =17, 则将各参数值代入式后计算得 D=328mm

表3-1 直径系数D K 的取值范围

根据离合器摩擦片的标准化,系列化原则,根据下表3-2

表3-2 离合器摩擦片尺寸系列和参数(即GB1457—74)

4.2 摩檫片的材料选取及与从动片的固紧方式

摩擦片的工作条件比较恶劣,为了保证它能长期稳定的工作,根据汽车的的使用条件,摩擦片的性能应满足以下几个方面的要求:

(1)应具有较稳定的摩擦系数,温度,单位压力和滑磨速度的变化对摩擦系数的影响小。

(2)要有足够的耐磨性,尤其在高温时应耐磨。

(3)要有足够的机械强度,尤其在高温时的机械强度应较好

(4)热稳定性要好,要求在高温时分离出的粘合剂较少,无味,不易烧焦 (5)磨合性能要好,不致刮伤飞轮及压盘等零件的表面

(6)油水对摩擦性能的影响应最小

(7)结合时应平顺而无“咬住”和“抖动”现象

由以上的要求,目前车用离合器上广泛采用石棉塑料摩擦片,是由耐热和化学稳定性能比较好的石棉和粘合剂及其它辅助材料混合热压而成,其摩擦系数大约在0.3左右。这种摩擦片的缺点是材料的性能不稳定,温度,滑磨速度及单位压力的增加都将摩擦系数的下降和磨损的加剧。所以目前正在研制具有传热性好、强度高、耐高温、耐磨和较高摩擦系数(可达0.5左右)的粉末冶金摩擦片和陶瓷摩擦材料等。

在该设计中选取的是石棉合成物制成的摩擦材料。固紧摩擦片的方法采用较软的黄铜铆钉直接铆接,采用这种方法后,当在高温条件下工作时,黄铜铆接有较高的强度,同时,当钉头直接与主动盘表面接触时,黄铜铆钉不致像铝铆钉那样会加剧主动盘工作表面的局部磨损,磨损后的生成物附在工作表面上对摩擦系数的影响也较小。这种铆接法还有固紧可靠和磨损后换装摩擦片方便等优点

5扭转减振器主要参数选择与设计计算

离合器从动盘上扭转减振器的性能参数计算:

(1)确定发动机飞轮处激振力矩谐量和发动机工作转速范围的频谐;

(2)选择车辆传动系动力学计算模型,写出计算模型的运动方程,并确定计算模型中有关车辆的惯性参数和弹性参数,同时要对扭转减振器的特性进行初步估算;

(3)找出简化模型在各档下的固有频率和振型,把它和激振频率作比较,由此确定在各档下发动机工作转速范围内出现共振的可能性;

(4)选择不同的摩擦力矩,使用计算机根据计算模型作数值模拟计算,确定最佳摩擦力矩,依据是,考虑在各档下发动机的所有工况,在变速器输入轴上的弹

性力矩幅值为最小;

(5)确定预紧力矩

(6)有摩擦力矩、极限力矩和预紧力矩,确定减振弹簧的布置尺寸及几何尺寸,确保减振弹簧有足够的使用寿命;

(7)对带减振器的从动盘做功能试验和寿命实验,最终精确确定减振器参数。减振器的扭转刚度?K 和阻尼摩擦元件间的摩擦转矩μT 是两个主要参数。其设计参数还包括极限转矩j T 、预紧转矩n T 和极限转角j ?等。

5.1扭转减振器的极限转矩T j

极限转矩为减振器在消除限位销与从动盘毂缺口之间的间隙时所能传递的最

大转矩,,即限位销其作用的转矩。它与发动机最大转矩有关,一般可取

T j =(1.5~2.0)T emax (1-1) 式中:商用车,系数取1.5;乘用车,取2.0;T emax 为发动机最大转矩。

本设计中设计的为EQ1108k 型柴油车离合器的扭转减振器所以系数取1.5。 由设计任务书中可知式T emax =700N.m 带入式(1-1)中计算可得T j =

1.57001050?=N.m

5.2扭转角刚度?k

扭转减振器的角刚度是指离合器从动片相对于其从动盘毂转1rad 所需的转矩值。为了避免引起系统的共振,要合理选择减振器的扭转刚度足?K ,使共振现象不发生在发动机常用 工作转速范围内。

?K 决定于减振弹簧的线刚度及其结构布置尺寸。

设减振弹簧分布在半径为0R 的圆周上,当从动片相对从动盘毂转过?弧度时,弹簧相应变形量为0R 。此时所需加在从动片上的转矩为

T =1000K j Z 2

0R ? (1-2) 式中,T 为使从动片相对从动盘毂转过?=0.07弧度所需加的转矩(N ·m);

K 为每个减振弹簧的线刚度(N /mm);j Z 为减振弹簧个数;0R 为减振弹簧位置半径

(m)。

根据振动理论,对于隔振的要求,如果要把传动系的固有频率降低至发动机工作转速范围以外,减振器的扭转刚度甚至要降到1N.m/(o)以下。由K 的定义可知,为了能保证传递发动机的转矩,结构上需要减振器有很大的转角,即减振弹簧相应的变形量要很大,这在事实上是很可能的。通常为了防止弹簧过载早期失效,在结构上设计有限位销,限制减振弹簧传递最大转矩时的转角。因此存在两方面问题:第一,减振器的扭转刚度不可能太低,这就较难做到避开共振;第二,在一定的扭转刚度下其传递转矩的能力受到限制,这样传动系因转矩变化所引起的动载荷不能得到有效缓冲,而降低动载荷又是汽车上采用减振器的主要目的之一(尤其是载货汽车)。

因此,确定扭转减振器的扭转刚度应和确定减振器的传递极限转矩T j 的能力有一定的关联。极限力矩T j 的定义为:当减振器在消除了限位销与从动盘毂缺口之间的间隙时,减振器所能传递的最大力矩。

根据扭转刚度的定义?k =T /?,则

?k =1000K j Z 2

0R (1-3) 式中?k 为减振器扭转刚度(N ·m /rad)。

设计时可按经验来初选?k

?k ≤13T j (1-4)

本设计初选?k =10 T j = 10105010.5./N m rad ?=。 5.3阻尼摩擦转矩 μT

由于减振器扭转刚度?k 受结构及发动机最大转矩的限制,不可能很低,故在发动机转速范围内共振现象往往难以避免。减振器的阻尼装置可用于较小共振振幅并尽快衰减振动。因此,必须合理的选择阻尼装置的摩擦力矩,以使系统扭转振动的振幅为最小。故为了在发动机工作转速范围内最有效地消振,必须合理选择减振器阻尼装置的阻尼摩擦转矩μT 一般可按下式初选

μT =(0.06~0.17)max e T (1-5)

本设计中根据设计要求取系数为0.08

μT =0.0870056.N m ?=

在驱动工况下,由于发动机的转矩要通过从动盘的减振弹簧传出,因此扭转减振器刚度的降低受到限制,往往难以达到完全避开共振的目的。此时,只有通过系统的阻尼来压低共振峰值,已达到降低变速器噪声的目的。利用数学模型通过数值模拟分析,可以找到摩擦力矩和扭转刚度的最佳组合。根据经验,载货汽车离合器中扭转减振器的摩擦力矩一般为30-70N.m 。需要指出的是,由于分析计算技术的进步,现在国外的厂商已完全有能力对整个传动系的关键部位处的扭转振动进行可靠的计算分析,并作出评价以进行参数调整。但是他们中的大部分在对离合器的参数进行调整时,通常仍是通过有经验的工程师以声学上额定的标准为依据,由主观上的评判来决定扭转减振器的扭转刚度和摩擦力矩的最佳组合以及它们的最大、最小变化范围。这种凭主观感受和经验调整离合器减振器参数的方法能在比较短的时间内完成,通常效果良好。

5.4.预紧转矩n T

对于线性特性的减振器,减振弹簧在安装时都有一定的预紧。与无预紧力矩时相比当两种角刚度和极限转角分别相同时,有预紧力的极限转矩较大,使减振器能在较大的转矩范围内工作;当极限转矩研和极限转角分别相同时,则其角刚度较低。究表明,n T 增加,共振频率将向减小频率的方移动,这是有利的。但是n T 不应大于L ,否则在反向工作时,扭转减振器将提前停止工作,故取

n T =(O .05~O .1 5) max e T (1-6)

本设计中根据设计要求取系数为0.10

n T = ?=0.1070070N.m

5.5.减振弹簧的位置半径0R

0R 的尺寸应尽可能大些,一般取

0R =(0.60~0.75)d/2 (1-7)

式中d 摩擦片内孔直径(mm )。

由前边摩擦片设计知d=175mm ,则减振弹簧的位置半径

0R =(0.60~0.75)d/2=52.5~61.25mm 。

本设计中取0R 为55mm 。 5.6.减振弹簧个数j Z

j Z 参照表1-1选取。

表1-1减振弹簧个数的选取

已知摩擦片的外径300mm 由表1-1可知j Z =6

5.7 减振弹簧窗口尺寸A

查找《汽车设计手册》其推荐值A=25~27mm 。 本设计中取A=26mm 。

图1-2减振弹簧窗口

5.8减振弹簧总压力∑F

当限位销与从动盘毂之间的间隙△1或△2被消除,减振弹簧传递转矩达到最大值Ti 时,减振弹簧受到的压力∑F 为

∑F =j T /0R (1-8) ∑F =1050/55=19.09KN

6 减振弹簧设计计算

在初步选定减振器的主要参数后,根据离合器的总体布置,确定和计算减振弹簧的相关尺寸。

6.1 减振弹簧的工作负荷F

F=∑F /Z j (6-1) F=19.09/6=3.18KN 6.2 减振弹簧尺寸

图6-1 扭转减振弹簧尺寸示意图

6.2.1 弹簧中径D c

一般由结构布置确定,通常D c =11~15mm ,本设计取13mm 。 6.2.2 弹簧钢丝直径d 及材料选择

d =

式中:扭转许用应力[]τ可取550~600Mpa;通常d=3~4mm 。

本设计中取d=4mm 通过计算可以选择材料65Mn 钢。 6.2.3 减振弹簧刚度K

应该根据已选定的扭转刚度?k 及其分布半径R 0,由下式计算出,即

2

0j

K K 1000R Z ?=

(6-2)

由公式(6-2)得K=210.51000

578N /mm

10000.0556?=??

6.2.4 减振弹簧有效圈数

4

3C Ed i 8D K =

(6-3) 式中:E 为材料的切弹性模量,对65Mn 可取E=8.3?104Mpa 。

由公式(6-3)得44

38.3104i 2.89813K 578

??=

=??=

取i=3。

6.2.5 减振弹簧总圈数n

一般在六圈左右,总圈数n 和有效圈数i 之间关系为 n=i+(1.5~2)。 本设计取n=4。

6.2.6 减振弹簧最小长度l min

指减振弹簧在最大在最大载荷下的工作长度,考虑到此时被压缩弹簧各圈之间须有一定的间隙可确定为

L min =n (d+δ)=1.1dn (6-4) 由公式(6-4)得L min =1.1 ?4 ?4=17.6mm 6.2.7 弹簧总变形量?l

指减振弹簧在最大工作载荷下产生的最大压缩变形量,为

l=F/K (6-5) 由公式(6-5)得?l=3.18?103/578=5.5mm

6.2.8 减振弹簧自由高度l 0

指减振弹簧无负荷时的高度,为

l 0=lmin+?l (6-6) 由公式(6-6)得l 0=5.5+17.6=23.1mm 6.2.9 弹簧的预变形量?l ′

指减振弹簧压缩时的预变形量,它与选取的预紧力矩Tn 有关,其计算公式为

n

j 0

T l KZ R '?=

(6-7) 由公式(6-7)得3

70

l 0.3657665510

-'?=

=???mm

6.2.10减振弹簧工作高度l

它关系到等零件窗口尺寸的设计,为

l=l 0-l '? (6-8)由公式(6-8)得l=23.1-0.36=22.74mm ,取工作高度为23mm ,则预变形量为0.1mm 。 6.3 从动盘钢片相对从动盘毂的最大转角j ?

减振器从从预紧转矩增加的极限转矩时,从动盘钢片相对从动盘毂的极限转角

j ?为

j ?=2arcsin

2R l

?=12o (6-9) 式中,l ?为减振弹簧的工作变形量。

j ? 通常取3°~12°,对平顺性要求高或对工作不均匀的发动机,j ?取上

限。

由公式(6-9)得j ?~2arcsin 55

21.055?-=5.6o

6.4 限位销与从动盘毂缺口侧边的间隙λ

2j R sin λ=? (6-10) 式中:R 2为限位销安装半径。λ值一般为2..5~6mm 。 由公式(6-9)得60sin 5.6 5.85mm λ=?= 6.5 限位销直径d ′

d ′按结构布置选定,一般d ′=9.5~12mm 。本设计取d ′=10mm 。

7 从动片设计

7.1 从动片选材及厚度设计

设计从动片时,要尽量减轻其重量,并应使其质量的分布尽可能地靠近旋转中

心,以获得最小的转动惯量。这是因为在汽车行驶中进行换挡时,首先要切断动力分离离合器,而在变速器挂挡过程中,与变速器第一轴相连的离合器从动盘的转速一定要发生变化,或是增速,或是减速。离合器从动盘转速的变化将引起惯性力,惯性使变速器换挡齿轮的轮齿间产生冲击或使变速器中的同步器装置加速磨损。惯性力的大小与从动盘的转动惯量成正比,因此为了减少转动惯量以减轻变速器换挡时的冲击,从动片要求质量轻,具有轴向弹性,硬度和平面度高。材料常用中碳钢板(50号或85号)或65Mn 钢板。一般厚度为1.3-2.5mm ,表面硬度为38-48HRC 。

本设计,从动片由2.0mm 厚的65Mn 钢板冲压而成,并且将其外缘的盘形部分磨薄至1mm ,以减小其转动惯量。 7.2 从动片的结构选择

为了使离合器结合平顺,保证平稳起步,本设计中从动盘钢片钢片做成具有轴向弹性的结构。这样,在离合器结合过程中,主动盘和从动盘之间的压力是逐渐增加的。

现代常用的具有轴向弹性的从动盘钢片,主要有三种结构形式:整体式弹性从动盘钢片结构,分开式弹性从动盘钢片结构,组合式从动盘钢片结构。本设计选择整体式弹性从动盘钢片结构。其主要尺寸有摩擦片尺寸决定。

8 从动盘毂设计

从动片毂是离合器中承受载荷最大的零件,它几乎承受由发动机传来的全部转矩。它一般采用齿侧对中的矩形花键安装在变速器的第一轴上,花键的尺寸可根据摩擦片的外径与发动机的最大转矩max e T 由表4-1选取。

选取,齿数n =10,外径D ′=40mm ,内径d ′=32mm ,齿厚b=5mm ,有效长度l=40mm

表4-1 从动盘毂花键的尺寸

从动盘毂的轴向尺寸不宜过小,以免在花键轴上滑动时产生偏斜而使分离不彻底。从动盘毂一般采用锻钢(如35,45,40r C 等) ,并经调质处理,表面和心度一般在2632HRC .为提高花键内孔表面硬度和耐磨性,可采用镀铬工艺,对减振弹簧窗口及与从动片配合处,应进行高频处理。 花键强度校核:

由于花键损坏的主要形式是由于表面受挤压过大而破环,所以花键要进行挤压应力计算,当应力偏大时可适当增加花键毂的轴向长度。 挤压应力的计算公式如下:

P

nhl

σ=挤压 (4-1)

式中 P —花键的齿侧面压力,N 。它由下式确定:

max

''

4()e T P D d Z

=

+ '',d D —分别为花键的内外径 Z —从动盘毂的数目

max e T —发动机最大转矩 n —花键齿数

h —花键齿工作高度,''()/2h D d =- l —花键有效长度 由公式(4.1) σ挤压=8Temax '-9

(D 110(40-32)10emax '''88700

)()(4032)40?=

=+-+?????T d Znl D d σ

12.6pa<20Mpa M = 所以满足设计要求。

9 减震盘及减振摩擦片的设计

9.1 减震盘的设计

由前边零件装配关系及参照同类车型,可以确定减震盘内径为d=58mm ,外径D=175mm ,厚度h=6mm 。

9.2 减振摩擦片的设计

由前边零件装配关系及参照同类车型,可以确定减震盘内径为d=58mm,外径D=100mm,厚度h=4mm。

参考文献(小3号黑体,加粗,居中)

[1] ×××××××(小4号宋体,行距1.5倍)×××××

[2] ××××××××××××××××××××××××××××××××××××××××××

[3] ××××××××××××××××××××××

…………

…………

致谢(小3号黑体,加粗,居中)

×××××××××(小4号宋体,1.5倍行距)×××××××××××××××××××××…………

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

扭转减震器设计开题报告

中北大学 毕业设计开题报告 学生姓名:蔡增源学号:0601074104 学院、系:机电工程学院动力机械系 专业:地面武器机动工程 设计题目:EQ1108K型柴油车离合器的扭转减震器设计 指导教师:徐忠四讲师 2010 年 3 月17日

毕业设计开题报告 1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1.1国内外研究现状、发展动态 随着社会经济的发展,汽车走进了千家万户,人们在享受着汽车带来的便利的同时也对汽车的性能提出了更高的要求。离合器作为汽车上一个必不可少的部件,除了能通断动力传动以外,还有减振调频的功能,越来越受人们的重视。 汽车传动系中的扭转振动将加大传动系零部件如轴、轴承、齿轮、壳体等的载荷,提高车厢内的噪声水平,降低汽车的行驶舒适性,汽车传动系的振动也是导致整车振动的主要原因。据统计,我国因运输车辆的振动使包装不妥的产品受损,所造成的经济损失一年达数亿元。同时由于轿车、客运车市场的发展,对汽车平顺性的要求也越来越高,振动使乘客产生不舒适的感觉,使驾驶者易疲劳降低了安全性,也使汽车零部件因振动而减少寿命,甚至使汽车的燃油经济性变差【1】。因此,需要分析研究汽离合器在汽车传动系统中的作用,建立传动系的振动模型,找出离合器最优工作状态和最优参数,为改善传动系的扭转振动状况找到一些新思路,为厂家研究开发新型离合器提供理论依据。 现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿车上使用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向与首选单片干式摩擦离合器,因为它具有从动部件转动惯量小、散热性好、结构简单、调整方便、尺寸紧凑、分离彻底等优点,而且在结构上采取一定措施,已能做到接合平顺,因此现在广泛用于大、中、小各类车型中。如今单片干式摩擦离合器在结构设计方面相当完善。采用具有轴向弹性的从动盘,提高了离合器接合时的平顺性。离合器从动盘总成中装有扭转减振器,防止了传动系统的扭转共振,减小了传动系噪声和动载荷,随着人们对汽车舒适性要求的提高,离合器已在原有基础上得到不断改进,汽车上愈来愈多地采用具有双质量飞轮的扭转减振器,能更有效地降低传动系的噪声【2】。

减振器设计

唐山学院 机械系统动力学论文 题目adams动力减振器的模型设计 系别:机电工程系 专业:机械设计制造及其自动化 班级:**机本**班 学号:********** 姓名:**** 指导老师:***** 2011年***月***日

目录 摘要*****************************************************3 关键词***************************************************3 1.消振的方法*********************************************3 2.动力减振器的模型***************************************3 3.动力减振器的设计计算***********************************5 4.adams的模型设计分析***********************************7 5.总结***************************************************9 参考文献************************************************9

adams动力减振器的模型设计 摘要:两自由度系统振动的应用相当广泛。如轴的扭转,梁的弯曲振动,动力减振和变速减震等。机器在运转时,由于没有完全平衡或是其他原因,往往要产生振动,从而在零件中引起附加的动应力。如果加入减振器可以减小振动或是消除振动。 关键词:adams 动力减振器模型激振力 1.消振的方法 在一些工业部门,如动力,航空,机械制造和交通运输等已经采用各种行之有效的消振和减震方法,其基本方向是: a.设法使激振力得到平衡,采取措施消除或减少激振力的波动幅度。 b.改变系统的自然频率与激振力频率的比值,使其在非共振区内运 转。 c.增加阻尼力以减少共振时的振幅。 2.动力减振器的模型 梁上装有一台电动机,由于电动机运转时产生的偏心力作用而使系统做强迫振动此时系统可以简化为如图所示的单自由度系统,质量为M,刚度为K,在一个频率为w,振幅为FA的简谐外力激励下,系统将做强迫振动。

(完整word版)扭转减震器设计

1绪论 1.1 引言 由发动机传到汽车传动系统中的转矩是周期性地不断变化的,因此使传动系统产生扭转振动。如果这一振动频率和传动系统固有频率相重合,就将发生共振,从而对传动系统中零件的寿命有很大影响。因此,在不分离离合器的情况下进行紧急制动或者进行猛烈结合离合器时,在瞬间内将对传动系统的零件产生极大地冲击载荷,从而缩短零件的使用寿命。为此,为了避免共振和缓和传动系统所受的冲击载荷,在汽车离合器中设置了扭转减振器。 扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。 1.2扭转减振器的发展 随着社会经济的发展,汽车走进了千家万户,人们在享受着汽车带来的便利的同时也对汽车的性能提出了更高的要求。离合器作为汽车上一个必不可少的部件,除了能通断动力传动以外,还有减振调频的功能,越来越受人们的重视。 汽车传动系中的扭转振动将加大传动系零部件如轴、轴承、齿轮、壳体等的载荷,提高车厢内的噪声水平,降低汽车的行驶舒适性,汽车传动系的振动也是导致整车振动的主要原因。据统计,我国因运输车辆的振动使包装不妥的产品受损,所造成的经济损失一年达数亿元。同时由于轿车、客运车市场的发展,对汽车平顺性的要求也越来越高,振动使乘客产生不舒适的感觉,使驾驶者易疲劳降低了安全性,也使汽车零部件因振动而减少寿命,甚至使汽车的燃油经济性变差【1】。因此,需要分析研究汽离合器在汽车传动系统中的作用,建立传动系的振动模型,找出离合器最优工作状态和最优参数,为改善传动系的扭转振动状况找到一些新思路,为厂家研究开发新型离合器提供理论依据。 现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿

曲轴扭转减振器概述

1.1 课题背景 由于汽车工业具有很强的产业关联度,因而被视为一个国家工业和经济发展水平的重要标志,因此汽车被称为“改变世界的机器”。 随着科技的进步,社会的发展,人们对生活质量的要求越来越高,包括对汽车舒适性、安全性等性能提出了越来越苛刻的要求。为了提高汽车舒适性,减轻汽车的振动,首先要找到汽车的振源,汽车是多自由度的振动体,并受到各种振源的作用而发生振动,发动机就是振源之一。 当发动机工作时,曲轴在周期性变化的转矩作用下,各曲拐之间发生周期性相对扭转的现象称为扭转振动,简称扭振[1]。发动机的振动关系到它的寿命、工作效率和对周围环境的影响。曲轴系统的振动是引发内燃机振动的重要因素。由于曲轴上作用有大小、方向都周期性变化的切向和法向作用力, 曲轴轴系将会同时产生弯曲振动和扭转振动。因为内燃机曲轴一般均采用全支承结构, 弯曲刚度较大, 所以其弯曲振动的自然频率较高。虽然弯曲振动不会在内燃机工作转速范围内产生共振, 但它会引起配套轴系和机体其它部件的振动, 是内燃机的主要噪声源。对扭转振动而言, 由于曲轴较长,扭转刚度较小, 而且曲轴轴系的转动惯量又较大, 故曲轴扭振的频率较低, 在内燃机工作转速范围内容易产生共振,当发动机转矩的变化频率与曲轴扭转的自振频率相同或成整数倍时,就会发生共振。共振时扭转振幅增大,并导致传动机构磨损加剧,发动机功率下降,甚至使曲轴断裂。曲轴作为内燃机中主要的运动部件之一,它的强度和可靠性在很大程度上决定着内燃机的可靠性。因此, 扭转振动是内燃机设计过程中必须考虑的重要因素[2]。 如何降低曲轴的振动是发动机曲轴设计的重要内容之一,为了消减曲轴的扭转振动,现在汽车发动机多在扭转振幅最大的曲轴前端装置扭转减振器,目前在汽车发动机曲轴系统中广泛采用的是橡胶阻尼式扭转减振器(图 1.1),有效地改善了发动机曲轴系统的扭振特性,降低了扭振幅值。 a) b) c) a)橡胶扭转减振器(CA8V100);b)带轮-橡胶扭转减振器;c)复合惯性质量减振器(尼桑VH45DE) 1-减振器壳体;2-硫化橡胶层;3-扭转减振器惯性质量;4带轮毂; 5-带轮;6-紧固螺栓;7-弯曲振动惯性质量

汽车液压减震器的设计与研究范本

汽车液压减震器的设计与研究

论文题目: 汽车液压减震器的设计与研究 Design and research of vehicle hydraulic shock absorber 指导教师签字: 答辩小组成员签字:

摘要 当前,汽车行业一直在快速的发展,这样情况也致使广大人民群众除了要求汽车要有最基本的安全,同时还对汽车的舒适度以及稳定性提出了更高的要求。人民所要求的汽车是要具有相正确稳定性以及舒适性,二者缺一不可。那么想要增加汽车乘坐的舒适度,汽车减震器则是汽车发展中不可或缺的零件,同时还能够在一定程度上保证汽车的舒适性和稳定性,除此之外,它还能够有效的避免其它零件的过度损坏,因此当前在汽车领域中对于减震器的研究是非常重要的内容。 关键词:汽车;液压减震器;设备控制

ABSTRACT At present, the auto industry has been rapid development, this situation has also led to the broad masses of people in addition to the requirements of automobile must have the most basic safety, but also put forward higher requirements on the vehicle comfort and stability, people's car just required a stable and relative comfort of vehicle vibration can effectively solution. The shock absorber is an integral part of the development of automobile, but also can ensure the vehicle comfort and stability in a certain extent, besides, it can also effectively avoid excessive damage to other parts, so the current in the automotive field for the study of shock absorber is very important. Key words: automobile; hydraulic shock absorber; equipment control

最新发动机曲轴溷联式扭转减振器

发动机曲轴溷联式扭 转减振器

摘要 发动机的扭转振动严重影响了整车的舒适性。本文基于多级并联和串联扭转减振器的设计背景,提出混联式曲轴扭转减振器的设计,对扭转减振器的优化方案做了介绍,建立了两种三级混联减振器的简化模型,运用MATLAB软件对其参数进行优化分析,并运用CATIA软件对其进行实体建模。分析完扭转减振器的优化参数,结果表明本研究成果对曲轴扭转减振器的设计有一定借鉴价值。 关键词:发动机振动;曲轴扭转减振器;混联;优化

Abstract The Torsional Vibration (TV) of engine seriously affects the comfort of vehicle. Based on the background of parallel and serial multi-stage torsion damper design, the hybrid design of crankshaft Torsional Vibration Absorber (TVA) is proposed. This paper describes the optimization program of the TVA and establishes two simplified models of hybrid tri-mode TVA. The paper analyzes the optimization parameters with MATLAB and modeling TVA with the CATIA. After analyzing optimization parameters of TVA, the result indicates that the conclusions of this paper have some reference value for the design of TVA. Keywords: engine vibration; torsional absorber; hybrid-mode; optimization.

扭转减震器课程设计

摘要 为了降低汽车传动系的振动,通常在传动系中串联一个弹性阻尼装置,它就是装在离合器从动盘上的扭转减振器。其弹性元件用来降低传动系前端的扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振,其阻尼元件用来消耗扭振能量,从而可有效降低传动系的共振载荷、非共振载荷及噪声。本文介绍了扭转减振器的原理、工作过程及设计过程。并对其进行了简单的解释、分析。 关键词:离合器;扭转减振器;扭转弹簧;从动盘

Abstract In order to reduce the vibration of vehicle transmission system, usually in the transmission lines in series a damping device, it is installed in the clutch driven plate on the reverse shock absorber. The elastic element used to reduce the torsional stiffness of the front driveline, thereby reducing the powertrain system, a reverse order (usually third-order) the natural frequency, changing the system's inherent vibration mode, so that the engine torque by as much as possible to avoid the main harmonic resonance caused by the amount of incentives, the torsional vibration damping device is used to consume energy, which can effectively reduce the transmission system of the resonance load, non-resonant load and noise. This article describes the principle of reversing the shock absorber, work process and the design process. And gain a simple explanation and analysis. Key words: Clutch ;Torsional absorber;Torsion spring ; Driven plate

扭转减振器的参数确定

3.4.3扭转减振器的参数确定 1、扭转减振器的角刚度 决定于减振弹簧的线刚度及结构布置尺寸,按下列公减振器扭转角刚度k a 式初选角刚度 ≤13T j(3-19) K a 式中:T j为极限转矩,按下式计算 T j=(1.5~2.0)T e max(3-20)式中:2.0适用乘用车,1.5适用商用车,本设计为商用车,选取1.5, T e max 为发动机最大扭矩,代入数值得T j=257.25N.M,K a ≤ 3344.25N.mm/rad 2、扭转减振器最大摩擦力矩 由于减振器扭转刚度C 受结构及发动机最大转矩的限制,不可能很低,故 a 为了在发动机工作转速范围内最有效地消振,必须合理选择减振器阻尼装置的阻尼摩擦转矩Tμ。一般可按下式初选为 Tμ=(0.06~0.17)T e max(3-21)取Tμ=0.15T e max,本设计按其选取Tμ=25.725N·m。 3、扭转减振器的预紧力矩 减振弹簧安装时应有一定的预紧。这样,在传递同样大小的极限转矩它将降低减振器的刚度,这是有利的,但预紧力值一般不应该大于摩擦力矩否则在反向工作时,扭转减振器将停止工作。 一般选取T预=(0.05~0.15)T e max,取T预=0.12T e max=20.58 N·m。 4、扭转减振器的弹簧分布半径 减振弹簧的分布尺寸 R的尺寸应尽可能大一些,一般取 =(0.60~0.75)d/2 (3-22) R 取 R 0.7 d/2 0 = 其中d为摩擦片内径,代入数值,得R =54.25mm。 5、扭转减振器弹簧数目 可参考表3.10选取,本设计D=250mm,故选取Z=6。 表3.10减振弹簧的选取

离合器结构图

【 1-飞轮 2-从动盘 3-压盘 4-膜片弹簧 离合器的主动部分和从动部分借接触面间的摩擦作用,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。 液力离合器结构与动作原理 1-叶轮 2-输出轮 3-油 4-油的流向

液力偶合器靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态. 磁粉式电磁离合器的动作原理 1-粉末 2-输入侧 3-输出侧 4-激磁线圈 5-线型粉末 6-磁通 电磁离合器靠线圈的通断电来控制离合器的接合与分离。在主动与从动件之间放置磁粉,可以加强两者之间的接合力,这样的离合器称为磁粉式电磁离合器 Audi 100型轿车离合器盖及压盘总成构造图 1,3-平头铆钉 2-传动片 4-支承环 5-膜片弹簧 6- 支承铆钉 7-离合器压盘 8-离合器盖

离合器从动部分 从动部分是由单片、双片或多片从动盘所组成,它将主动部分通过摩擦传来的动力传给变速器的输入轴。从动盘由从动盘本体,摩擦片和从动盘毂三个基本部分组成。为了避免转动方向的共振,缓和传动系受到的冲击载荷,大多数汽车都在离合器的从动盘上附装有扭转减震器。 为了使汽车能平稳起步,离合器应能柔和接合,这就需要从动盘在轴向具有一定弹性。为此,往往在动盘本体园周部分,沿径向和周向切槽。再将分割形成的扇形部分沿周向翘曲成波浪形,两侧的两片摩擦片分别与其对应的凸起部分相铆接,这样从动盘被压缩时,压紧力随翘曲的扇形部分被压平而逐渐增大,从而达到接合柔和的效果。 扭转减振器 离合器接合时,发动机发出的转矩经飞轮和压盘传给了动盘两侧的摩擦片,带动从动盘本体和与从动盘本体铆接在一起的减振器盘转动。动盘本体和减振器盘又通过六个减振器弹簧把转矩传给了从动盘毂。因为有弹性环节的作用,所以传动系受的转动冲击可以在此得到缓和。传动系中的扭转振动会使从动盘毂相对于动盘本体和减振器盘来回转动,夹在它们之间的阻尼片靠摩擦消耗扭转振动的能量,将扭转振动衰减下来。 捷达轿车的从动盘有两级减振装置。第一级为预减振装置,第二级为减振弹簧,其扭转特性为变刚度特性。

轿车减振器的设计方案书

毕业论文(设计) 题目:轿车减震器的设计 (英文):Shock Absorber Design of car 院别:机电学院 专业:机械设计制造及其自动化(汽车工程) 姓名:曾令剑 学号:2004090243025 指导教师:陈森昌 日期:2009年5月28日

轿车减震器的设计 摘要 本文设计出适用于中国一般城市道路使用的双作用筒式减振器。首先,根据轿车的质量算出减振器的阻尼系数,确定缸体结构参数,然后建立流体力学模型,先选定一条理想的减振器标准阻尼特性曲线,然后利用逼近理想阻尼特性曲线的方法,进行各阀、系的设计计算;在此基础上,设计出整个减震器,并对主要部件的强度进行了校核。 关键词:双作用筒式减振器;流体力学模型;理想特性曲线;强度校核

轿车减振器的设计 Shock Absorber Design of car Abstract The double use of drum shock absorber which applicable to the general city road conditions in China is designed in the paper. First of all, the damping coefficient of the shock absorber is calculated according to the quality of car. The parameters of the cylinder structure are determined. And then a hydrodynamic model is set up. The valve and the Department are calculated and the designed by using the way of approach to the damping characteristics of the ideal standard shock absorber curve. After that a set of the double use of drum shock absorber is designed. The strength of the main parts of the shock absorber is checked. Key words: Double use of shock absorber; hydrodynamic model; characteristics of the ideal curve; strength checking 1

扭转减振器设计

第五节 扭转减振器的设计 扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。所以,扭转减振器具有如下功能: 1)降低发动机曲轴与传动系接合部分的扭转刚度,调谐传动系扭振固有频率。 2)增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的瞬态扭振 3)控制动力传动系总成怠速时离合器与变速器轴系的扭振,消减变速器怠速噪声和主减速器与变速器的扭振与噪声。 4)缓和非稳定工况下传动系的扭转冲击载荷和改善离合器的接合平顺性。 扭转减振器具有线性和非线性特性两种。单级线性减振器的 扭转特性如图2-1 4所示,其弹性元件一般采用圆柱螺旋弹簧, 广泛应用于汽油机汽车中。当发动机为柴油机时,由于怠速时发 动机旋转不均匀度较大,常引起变速器常啮合齿轮齿间的敲击, 从而产生令人厌烦的变速器怠速噪声。在扭转减振器中另设置一 组刚度较小的弹簧,使其在发动机怠速工况下起作用,以消除变 速器怠速噪声,此时可得到两级非线性特性,第一级的刚度很小, 称为怠速级,第二级的刚度较大。目前,在柴油机汽车中广泛采 用具有怠速级的两级或三级非线性扭转减振器。 图2-14 单机线性减震器 在扭转减振器中,也有采用橡胶代替螺旋弹簧作为弹性元件,以液体阻尼器代替干摩擦阻尼的新结构。减振器的扭转刚度 ?K 和阻尼摩擦元件间的摩擦转矩μT 是两个主要参数。其设计参数还包括极限转矩j T 、预紧转矩n T 和极限转角j ?等。 1.极限转矩j T 极限转矩为减振器在消除限位销与从动盘毂缺 口之间的间隙△1(图2-1 5)时所能传递的最大转矩, 即限位销起作用时的转矩。它与发动机最大转矩有 关,一般可取 j T =(1.5~2.O) max e T (2-27) 式中,货车:系数取1.5,轿车:系数取2.O 。 2.扭转刚度尾?k 为了避免引起系统的共振,要合理选择减振器 的扭转刚度足?K ,使共振现象不发生在发动机常用 工作转速范围内。 图2-15 减震器尺寸简图 ?K 决定于减振弹簧的线刚度及其结构布置尺寸(图2-15)。 设减振弹簧分布在半径为 0R 的圆周上,当从动片相对从动盘毂转过?弧度时,弹簧相应变形量为0R 。此时所需加在从动片上的转矩为

悬架用减振器设计指南设计

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

扭转减震器设计

1 绪论 1.1引言 由发动机传到汽车传动系统中的转矩是周期性地不断变化的,因此使传动系统产生扭转振动。如果这一振动频率和传动系统固有频率相重合,就将发生共振,从而对传动系统中零件的寿命有很大影响。因此,在不分离离合器的情况下进行紧急制动或者进行猛烈结合离合器时,在瞬间内将对传动系统的零件产生极大地冲击载荷,从而缩短零件的使用寿命。为此,为了避免共振和缓和传动系统所受的冲击载荷,在汽车离合器中设置了扭转减振器。 扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。 1.2扭转减振器的发展 随着社会经济的发展,汽车走进了千家万户,人们在享受着汽车带来的便利的同时也对汽车的性能提出了更高的要求。离合器作为汽车上一个必不可少的部件,除了能通断动力传动以外,还有减振调频的功能,越来越受人们的重视。 汽车传动系中的扭转振动将加大传动系零部件如轴、轴承、齿轮、壳体等的载荷,提高车厢内的噪声水平,降低汽车的行驶舒适性,汽车传动系的振动也是导致整车振动的主要原因。据统计,我国因运输车辆的振动使包装不妥的产品受损,所造成的经济损失一年达数亿元。同时由于轿车、客运车市场的发展,对汽车平顺性的要求也越来越高,振动使乘客产生不舒适的感觉,使驾驶者易疲劳降低了安全性,也使汽车零部件因振动而减少寿命,甚至使汽车的燃油经济性变差【1】。因此,需要分析研究汽离合器在汽车传动系统中的作用,建立传动系的振动模型,找出离合器最优工作状态和最优参数,为改善传动系的扭转振动状况找到一些新思路,为厂家研究开发新型离合器提供理论依据。 现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925 年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20 世纪20 年代末,直到进入30 年代时,只有工程车辆、赛车和大功率的轿

汽车减震器的设计

汽车减震器的设计 1 绪论 (1) 1.1 本课题设计的目的 (3) 1.2 设计的主要研究内容 (5) 2 减震器阻尼值计算和机械结构设计 (5) 2.1 相对阻尼系数和阻尼系数的确定 (5) 2.1.1 悬架弹性特性的选择 (5) 2.1.2 相对阻尼系数ψ的选择 (6) 2.1.3 减震器阻尼系数δ的确定 (7) F的确定 (7) 2.2 最大卸荷力0 2.3 缸筒的设计计算 (8) 2.4 活塞杆的设计计算 (8) 2.5 小结 (8) 3 减震器其他部件的设计 (8) 3.1 固定连接的结构形式 (8) 3.2 减震器油封设计 (10) 3.3 O型橡胶密封圈 (10) 3.5 弹簧片和减震器油的选择 (11) 3.5.1 弹簧片的选择 (11) 3.5.2 减震器油的选择 (11) 3.6 小结 (12) 4 活塞杆的强度校核 (12) 4.1 强度校核 (12) 4.2 稳定性的校核 (12) 5 全文总结及展望 (13) 参考文献 (13) 谢辞................................................... 错误!未定义书签。

1 绪论 社会不断在进步,人们对出行的要求也越来越高。汽车作为越来越普及的出行方式受到了人们的关注。于是人们对包括对汽车平顺性,舒适性的要求也是不断在加大,而减震器则是提供舒适性的一个很关键的部位。减震器是汽车悬挂系统的重要组成部件。如果把发动机比喻为汽车的“心脏”,变速器为汽车的“中枢神经”,那么底盘及悬挂系统就是汽车的“骨骼骨架”。悬挂系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,从而成为衡量汽车质量及档次的重要指标之一。设计师们一直不断对汽车的各种性能进行优化为了提供更好的驾驶体验。一个好的减震器可以使驾驶员感觉到更加舒服,可以提供更好的驾驶体验。 世界上第一个有记载、比较简单的减震器是1897由两个姓吉明的人发明的。他们把橡胶减震块与叶片弹簧的端部相连,当悬架杯完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓,产生止动。这种减震器再很多现代汽车悬架上仍有使用,但其减震效果很小。1898年第一个适用的减震器由一个法国人特鲁芬研制成功并安装到摩托赛车上。该车的前叉悬置于弹簧上,同时与一个摩擦阻尼件相连,以防止摩托车的震颤。1899年,美国汽车哈特福特意识到这种阻尼件跨越应用到汽车上。第二年他制成了特鲁芬摩托阻尼件的变形结构,并把它装到哈德福特的乌兹莫别汽车上。它是一副用铰链连接在一起的杠杆,该汽车上的第一个减震器再铰链轴处装有橡胶垫,一个杠杆臂与车架连接,而另一个用螺栓与叶片弹簧连接。螺栓安装再铰链结点,能够通过调节通过对减震器的结构进行改变摩擦阻力的大小,从而得到所需要的缓冲程度。因此它们的设计的部件不仅仅是第一个汽车缓冲器,而且也是第一个“可调”减震器。哈特福特把装有这种减震器的汽车弄回到美国后不久,在新泽西城州的泽西城开办了一个哈特福特悬架公司。随后该减震器与前轮螺旋弹簧一起被安装到1906年生产的布鲁舒小型轻便汽车上。从此以后,减震器的结构发生了几种新的发展。加布里埃尔减震器它是由固定在汽车大梁上的罩壳和装再其里面的涡旋形钢带组成,钢带通过一个弹簧保持其张力,钢带的外端与车桥轴端连接,以限制由震动引起的弹跳量。弹簧式减震器这是加到叶片弹簧上的一种辅助螺旋弹簧。由于每一个弹簧都有相同的谐震频率,它们趋向于抵消各自的震颤,但同时也增大了悬架的刚性,所以很快就停止了使用。以及后来的空气弹簧和液力弹簧。现代汽车大部分都装有减震器,且减震器和弹性元件是并联安装的。现今汽车大部分采用的是液力减震器。液力减震器的作用原理是当车架与车桥作往复相对运动时 减震器中的活塞在钢筒内也做往复运动,于是减震器壳体内的油液便反复的从一个内腔通过一些窄小的孔隙流入另一内腔。此时,孔壁与油液间的摩擦及液体分子内摩擦便形成对震动的阻尼力,使车身与车架的震动能转化为热能,被油液和减震器壳体所吸收,然后散到大气中。减震器的阻尼力的大小随车架和车桥相对速度的增减而增减,并且与油液

扭转减振器的设计

扭转减振器的设计 扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。所以,扭转减振器具有如下功能: 1)降低发动机曲轴与传动系接合部分的扭转刚度,调谐传动系扭振固有频率。 2)增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的瞬态扭振o 3)控制动力传动系总成怠速时离合器与变速器轴系的扭振,消减变速器怠速噪声和主 减速器与变速器的扭振与噪声。 4)缓和非稳定工况下传动系的扭转冲击载荷和改善离合器的接合平顺性。 扭转减振器具有线性和非线性特性两种。单级线性减振 器的扭转特性如图2-1 4所示,其弹性元件一般采用圆柱螺 旋弹簧,广泛应用于汽油机汽车中。当发动机为柴油机时, 由于怠速时发动机旋转不均匀度较大,常引起变速器常啮合 齿轮齿间的敲击,从而产生令人厌烦的变速器怠速噪声。在 扭转减振器中另设置一组刚度较小的弹簧,使其在发动机怠 速工况下起作用,以消除变速器怠速噪声,此时可得到两级 非线性特性,第一级的刚度很小,称为怠速级,第二级的刚 度较大。目前,在柴油机汽车中广泛采用具有怠速级的两级 或三级非线性扭转减振器。 图2-14 单机线性减震器 在扭转减振器中,也有采用橡胶代替螺旋弹簧作为弹性 元件,以液体阻尼器代替干摩擦阻尼的新结构。 减振器的扭转刚度?K 和阻尼摩擦元件间的摩擦转矩μT 是两个主要参数。其设计参数还包括极限转矩j T 、预紧转矩n T 和极限转角j ?等。 1.极限转矩j T 极限转矩为减振器在消除限位销与从动盘毂缺 口之间的间隙△1(图2-1 5)时所能传递的最大转矩,即 限位销起作用时的转矩。它与发动机最大转矩有关,一 般可取 j T =(1.5~2.O) max e T (2-27) 式中,货车:系数取1.5,轿车:系数取2.O 。 2.扭转刚度尾?k 为了避免引起系统的共振,要合理选择减振器 图2-15 减震器尺寸简图 的扭转刚度足?K ,使共振现象不发生在发动机常用 工作转速范围内.

离合器扭转减振弹簧计算及试验方法研究

离合器扭转减振弹簧计算及试验方法研究 目前计算离合器扭转减振弹簧切应力时假定弹簧两端面是平行的,实际上减振弹簧受压缩后其两端面还转过角度β,弹簧产生弯曲变形,缩短的一侧弹簧丝切应力增加。为分析弹簧弯曲变形对切应力的影响,定义弹簧弯曲系数Kb,并提出更精确的切应力计算公式。根据减振弹簧的实际受力状态改进了弹簧疲劳试验方法。 标签:离合器;减振弹簧;弯曲系数 离合器在汽车传动系中起着保证汽车平稳起步、变速器顺利换挡和防止传动系过载等作用。为减小汽车传动系扭转振动,离合器从动盘扭转减振器一般采用圆柱螺旋弹簧作为弹性元件,扭转减振弹簧设计计算方法参照GB/T 1239.6-2009《圆柱螺旋弹簧设计计算》,该计算方法用于弹簧受压缩后两端面平行的受力状态,用曲度系数K修正弹簧丝升角和曲率对切应力的影响。弹簧疲劳试验参照GB/T 1239.2-2009《冷卷圆柱螺旋弹簧技术条件》第2部分:压缩弹簧。 分析从动盘扭转减振器时发现,减振弹簧受压缩时其两端面并不平行,如图1所示,弹簧产生弯曲变形,伸长的一侧弹簧丝切应力减小,缩短的一侧切应力增加,切应力增加的比率与弹簧弯曲后两端面夹角β、中径D2和压缩长度λ有关。因为扭转减振弹簧的疲劳寿命与最大切应力有关,在设计扭转减振弹簧时需考虑弹簧弯曲对切应力的影响,弹簧疲劳试验方法也需相应改进,以真实反映减振弹簧的实际受力状态,试验结果更准确。 图1 扭转减振弹簧变形示意图 1 受压缩时两端面平行的圆柱螺旋压缩弹簧分析计算 1.1 受力分析及切应力计算 如图2所示,扭转减振弹簧承受轴向载荷F,由于弹簧丝具有螺旋升角α,在通过弹簧轴线的X-X截面上,弹簧丝的截面呈椭圆形,该截面上作用有力F 及转矩T=FD2/2。在弹簧丝的法向截面Y-Y上作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及转矩T’=Tcosα。由于扭转减振弹簧的螺旋升角α≤9°,cosα≥0.9877,sinα≤0.1564,计算时可认为法向截面Y-Y上作用有力F及转矩T,则弹簧丝法向截面上的切应力 式中C=D2/d 称为弹簧旋绕比,离合器扭转减振弹簧旋绕比C的范围为3~6.5,比设计手册推荐的常用值5~8小。 图2 两端面平行的圆柱螺旋压缩弹簧受力分析 常用离合器减振弹簧旋绕比C值(表1)

减震器的设计(学术参考)

产品设计项目说明书 一号宋体,居中 汽车减震器的研究设计 三号粗黑体,居中 院(系)机械工程学院 专业机械工程及自动化 班级创新班 学生姓名 指导老师 2015 年 01 月 05 日

目录 摘要 (3) 第一章绪论 (4) 1.1概述 (4) 1.2 双筒液压减震器工作原理及优点 (5) 1.3项目名称和要求 (6) 1.4项目分析 (7) 1.4.1双筒式减振器的外特性设计原则 (7) 1.4.2减震器参数 (7) 第二章参数的计算 (9) 比亚迪S6主要参数 (9) 2.1悬架静挠度的计算 (9) 2.2相对阻尼系数 (10) 2.3阻尼系数的确定 (11) 2.4最大卸载力的计算 (12) 2.5工作缸直径和减震器活塞行程的确定 (12) 2.6减振器活塞行程的确定 (13) 2.7 液压缸壁厚、缸盖、活塞杆和最小导向长度的计算 (14) 2.7.1、液压缸的壁厚的计算 (14) 2.7.2、液压缸的稳定性验算 (15) 2.7.3、缸盖厚度的计算 (16) 2.7.4、活塞杆的计算 (17) 2.7.5、对杆强度进行 (17) 2.7.6最小导向长度的确定 (18) 2.8 活塞及阀系的尺寸计算 (18) 第三章液压缸的结构设计 (19) 3.1、缸体与缸盖的连接形式 (19) 3.2、活塞杆与活塞的连接形式 (19) 3.3、活塞杆导向部分的结构 (19) 3.4、活塞及活塞杆处密封圈的选用 (19) 3.5、液压缸的安装连接结构 (20)

3.6、活塞环 (20) 3.7、液压缸主要零件的材料和技术要求 (20) 3.8弹簧片的选择 (20) 3.9 密封元件和工作油液的确定 (21) 3.9.1油封设计 (21) 3.9.2密封元件 (21) 3.9.3、油液的选取 (21) 第四章使用说明 (23) 4.1匹配技巧 (23) 4.2故障维修与检测 (23) 4.3漏油故障编辑 (25) 总结 (26) 参考文献 (27) 附录 (28)

相关文档