文档库 最新最全的文档下载
当前位置:文档库 › 半导体物理期末考复习材料

半导体物理期末考复习材料

半导体物理期末考复习材料
半导体物理期末考复习材料

福州大学至诚学院09级《半导体物理学》期末考复习材料信息工程系微电子学专业 1 班姓名:陈长彬学号:210991803

第一章半导体中的电子状态

1.元素半导体硅和锗都是金刚石结构。

2.结构上,金刚石结构由两套面心立方格子沿其立方体对角线位移1/4 的长度套构而成的,

3.在四面体结构的共价晶体中,四个共价键是sp3杂化。

4.第III族元素铝、镓、铟和第V族元素磷、砷、锑组成的III-V族化合物。也是正四面体结构,四个共价键也是sp3杂化,但具有一定程度的离子性。是闪锌矿结构。

5.ZnS、GeS、ZnSe和GeSe等Ⅱ-Ⅵ族化合物都可以闪锌矿型和纤锌矿型两种方式结晶,也是以正四面体结构为基础构成的,四个混合共价键也是sp3 杂化,也有一定程度的离子性。

6.Ge、Si的禁带宽度具有负温度系数。禁带宽度E g随温度增加而减小( 负温度系数特性)

7.半导体与导体的最大差别:半导体的电子和空穴均参与导电。

半导体与绝缘体的最大差别:在通常温度下,半导体已具有一定的导电能力。

8.有效质量的意义

半导体中的电子在外场作用下运动时,外力并不是电子受力的总和,电子一方面受到外电场力的作用,另一方面还和内部的原子、电子相互作用着。电子的加速度应该是半导体内部势场和外电场作用的综合效果。

为了简化问题,借助有效质量来描述电子加速时内部受到的阻力。

引入有效质量的意义在于它概括了半导体内部势场的作用。使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及到半导体内部势场的作用。有效质量可以通过实验直接测得。

有效质量的大小取决于晶体内电子与电子周围环境的作用。

电子有效质量的意义是什么?它与能带有什么关系?

答:有效质量概括了晶体中电子的质量以及内部周期势场对电子的作用,引入有效质量后,晶体中电子的运动可用类似于自由电子运动来描述。

有效质量与电子所处的状态有关,与能带结构有关:

(1)、有效质量反比于能谱曲线的曲率:

(2)、有效质量是k的函数,在能带底附近为正值,能带顶附近为负值。

(3)、具有方向性——沿晶体不同方向的有效质量不同。只有当等能面是球面时,有效质量各向同性。

9.本征半导体:不含任何杂质和缺陷的半导体。

10.回旋共振的实验是用来测量有效质量的。

导体、半导体、绝缘体的能带

●能带理论提出:一个晶体是否具有导电性,关键在于它是否有不满的能带存在。

●导体——下面的能带是满带,上面的能带是半满带;或者上下能带重叠了一部分,

结果上下能带都成了半满带

●绝缘体——下面能带(价带)是满带,上面能带(导带)是空带,且禁带宽度比较

大。

●半导体——下面能带(价带)是满带,上面能带(导带)是空带,且禁带宽度比较

小,数量级约在1eV 左右。当温度升高或者光照下,满带中的少量电子可能被激发到上面的空带中去。满带中少了一些电子,将出现一些空的量子状态,称为空穴。在半导体中,导带中的电子和价带中的空穴均参与导电。

大题:

设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:

0212022)(3)(m k k m k k E c -+= 0

2

2021236)(m k m k k E v -

= m 0为电子惯性质量,k 1=1/2a ;a 为已知量。试求:①禁带宽度;②导带底电子有

效质量;③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①根据 0)

(232)(0

1202=-+=m k k m k dk k dEc

可求出对应导带能量极小值E

min

的k 值:1min 4

3

k k =

代入题中E C 式可得: 0

2

124(min)m k Ec =

根据 06)(0

2==m k

dk k dEv

可求出对应价带能量极大值E

max

的k 值:0max =k

代入题中E v 式可得:0

2

126(max)m k Ev =

∴2

02

0212max

min 4812a m h m k E E E g =

=-= ② ∵02

020********

m m m dk

E d C =

+= ∴02

22

83

/

m dk E d m C n ==

③ ∵02

2

26m dk

E d V -= ∴02

22

'

61

/

m dk E d m V n -== ④ 动量 a

k k k k 8343)(1max min

==

-=?

第二章 半导体中杂质和缺陷能级

1. 以As 掺入Ge 中为例,说明什么是施主杂质,施主杂质电离过程和n 型半导体? 2.半导体硅单晶的介电常数

8.11=r ε ,电子和空穴的有效质量各为:

,53.0,16.0,19.0,97.00000m m m m m m m m pt pl nt nl ====利用类氢模型估计:

(1)施主和受主电离能; (2)基态电子轨道半径。

解:

因此施主和受主电能离各为:

半径为

3. 杂质的补偿作用

因为施主杂质和受主杂质之间有相互抵消的作用,通常称为 杂质的补偿作用 。

当N D >N A 时,则N D -N A 为有效施主浓度;

当N A >N D 时,则N A -N D 为有效受主浓度。

当N A ≈N D 时,不能向导带和价带提供电子和空穴,称为杂质的高度补偿。

利用杂质补偿作用,就能根据需要用扩散或离子注入方法改变半导体中某一区域的导电类型,以制成各种器件。 4. 非III 、V 族杂质在Si 、Ge 禁带中产生的受主能级和施主能级距离价带顶和导带底较远,称为深能级,相应的杂质称为深能级杂质。这些深能级杂质能够产生多次电离,每一次电离相应地有一个能级。因此,这些杂质在硅、锗的禁带中往往引入若干个能级。

深能级杂质,一般情况下含量极少,而且能级较深,它们对半导体中的导电电子浓度、导电空穴浓度和导电类型的影响没有浅能级杂质显著,但对于载流子的复合作用比浅能级杂质强,故这些杂质也称为复合中心。

金是一种很典型的复合中心,在制造高速开关器件时,常有意地掺入金以提高器件的速度。

5. 两性杂质:既能起施主作用,又能起受主作用的杂质,如III-V 族化合物半导体中掺入的硅

第三章 半导体中载流子的统计分布

1. 1. 现有三块半导体硅材料,已知室温下(300K )它们的空穴浓度分别为:

2.25

×1016cm -3, 1.5×1010cm -3, 2.25×104cm -3。

分别计算这三块材料的电子浓度; 判断这三块材料的导电类型;

分别计算这三块材料的费米能级的位置。

(已知室温时硅的

解:

代入计算得电子浓度分别为:1×104cm -3, 1.5×1010cm -3, 1×1016cm -3。

第一块半导体,空穴浓度p >电子浓度n (2.25×1016cm -3> 1×104cm -3), 故为p 型半导体。

eV E n N T k E E i i

A

i F 37.0ln

0-=-= 即费米能级在禁带中线下0.37eV 处。

第二块半导体,n =p = 1.5×1010cm -3, 故为本征半导体

i F E E = 即费米能级位于禁带中心位置。

第三块半导体,p

eV E n N T k E E i i

D

i F 35.0ln

0+=+=

即费米能级在禁带中心线上0.35eV 处。

2. 有一块掺磷的 n 型硅,N D =1015cm -3, 分别计算温度为① 300K ;② 500K ;③ 800K

时导带中电子浓度 。

(已知硅的n i 300K =1.5×1010cm -3, n i 500K =4×1014 cm -3, n i 800K=1017cm -3) 解:

3

1703153173

152

03143

150315310/10高温本征激发区

/10/10时,800)3(/1014.12

4过渡区

~/104时,500)2(/10强电离区

/10/10时,300)1(cm n n cm N cm n K cm

n N N n N cm n K cm N n cm N cm n K i D i i D D D i D D i =≈=>>=?≈++=

?==≈=<<=

3. 含受主浓度为8.0×106cm -3和施主浓度为7.25×1017 cm -3的Si 材料,试求温度为300K

时此材料的载流子浓度和费米能级的相对位置。

(已知300K 时硅的n i 为1.5×1010cm -3) 解:300K 时,杂质补偿之后,有效施主浓度:

317*

1025.7-?≈-=cm N N N

A D D

*D i N n << 强电离区,

()31701025.7300-?=≈cm N K n D

()

3217

2

10

0201011.310

25.7105.1)300(-?≈??==cm n n K p i =??+=+=10

17

010

5.11025.7ln 02

6.0ln eV E n N T k E E i i D i F

2. 载流子的产生:本征激发 和 杂质电离 。

3. 在一定温度下,载流子产生和复合的过程建立起动态平衡,即单位时间内产生的电子-空穴对数等于复合掉的电子-空穴对数,称为热平衡状态。

4. 费米分布函数:服从泡利不相容原理的电子遵循费米统计规律。

T

k E E F e

E f 0/)(11)(-+=

其中,k 0玻尔兹曼常数,T 绝对温度,E F 费米能级。

5. 费米分布函数)(E f 的特性:

6.在热平衡状态下,非简并情况下,导带中的电子浓度:

)(exp 00c c F

c c E f N T

k E E N n =???

? ??--= 32/30*

)2(2其中h T k m N n c π= 同理可得,价带中的空穴浓度(热平衡状态,非简并情况下):

)(exp 00v v v

F v E f N T

k E E N p =???

?

?

?--= 32/30*

)2(2其中h T k m N p v π= 载流子浓度乘积:???? ??-=????

??--=

T k E N N T

k E E N N p n g v c v c v c 0000exp exp

????

?

?-???

? ???=T k E T m m m g p n 03

2

/320*

*31exp 10

33.2

N 型半导体载流子的浓度(在过渡区):

(

)

22042

1

i D D n N N n ++=

i

i F n n T k E E 0

0ln

+= p 型半导体载流子的浓度(在过渡区):

(

)

22042

1

i A A n N N p ++=

i

i F n p T k E E 0

0ln

-= 掺有某种杂质的半导体的载流子浓度和费米能级由 温度 和 杂质浓度 决定。 随着T 升高,多数载流子从以 杂质电离 为主过渡到 本征激发 为主。

费米能级位置的变化:

(1)低温弱电离区 (2)中间电离区 (3)强电离区

(4)过渡区

(5)高温本征激发区

①在低温弱电离区时,T→0K时,费米能级E F接近(E c+E D)/2,T↑, E F先上升再下降,

又回到(E c+E D)/2附近

②中间电离区,E F在(E c+E D)/2和E D之间

③E F在E D之下

④E F较接近禁带中线E i

⑤E F靠近E i

即:当杂质浓度不变时,随着温度的升高,费米能级先上升后下降,直到接近中线位置。

1.随着温度T升高,多数载流子从以杂质电离为主过渡到本征激发为主。

2.n型半导体的费米能级处在导带底和Ei之间,p型半导体的费米能级处在

Ei和价带顶之间。

3.在一定温度下,施主杂质浓度越高,费米能级越接近导带底;受主杂质

浓度越高,费米能级越接近价带顶。

4.随着T升高,n型半导体的费米能级从施主能级以上先升后降至施主能

级以下直至禁带中线。p型半导体的费米能级从受主能级以下先降后升至受主能级以上直至禁带中线。

对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;

第四章半导体的导电性

1.电子在电场力作用下所作的定向运动称为漂移运动。

2.迁移率:表示单位场强下电子的平均漂移速度,表示存在电场作用下载流子运动的难易程度的物理量。

3.电阻产生的原因在于载流子的散射。

4.自由时间:载流子在连续两次散射之间的时间间隔称为自由时间t。

自由程:载流子在连续两次碰撞内所经过的距离称为自由程l。

电子与声子的碰撞遵循两大守恒法则:准动量守恒、能量守恒

半导体中的散射机构:电离杂质散射,晶格振动散射。

晶格振动的散射中,光学波散射在能带具有单一极值的半导体中起主要散射作用的是长波,在长声学波中,只有纵波在散射中起主要作用。

在半导体中长波起主要作用的是:纵声学波散射。

在离子晶体中起主要作用的是:纵光学波散射。

6.电离杂质散射:当载流子运动到电离杂质附近时,由于库伦势场(库伦斥力)的作用,就使载流子运动的方向发生改变,以速度v接近电离杂质,在原子核附近的散射。

各种不同类型材料的电导率:

N 型:

P 型:

混合型:

6. 欧姆定律的微分形式:

载流子的迁移率由其主要作用的散射机构决定。

低温时,杂质散射占主导地位;因此,迁移率μ是杂质浓度N i 的函数。

高温时,晶格散射占主导地位;因此迁移率μ对N i 的依赖很小。

杂质浓度小时,迁移率μ趋于一定值,不随杂质浓度而变化,说明此时晶格散射相对占据主导地位。

随着杂质浓度N i 的增大,电离杂质散射相对占据主导地位. (7)温度T 越高,晶格散射越强,此时迁移率μ越小。

(8)杂质N i 越大,杂质电离散射越强,此时迁移率μ越小。 电阻率ρ与杂质浓度和温度的关系 电阻率ρ与杂质浓度N i 的关系

电阻率决定于载流子的浓度和迁移率,两者均与杂质浓度和温度有关。所以,半导体的电阻率随杂质浓度和温度而变化。

(1)对于非补偿型半导体:当杂质浓度N i 增大时,迁移率μ将下降;但是此时,载流子浓度(n 或p )将增大,故电阻率将趋于减小。

(2)对于补偿型半导体:当杂质浓度N i 增大时,迁移率μ将下降;此时,①如果N 有效增大,则电阻率将减小;②如果N 有效减小,则电阻率将增大。 电阻率ρ与温度T 的关系

(1)对于本征型半导体:当温度升高时,载流子浓度(n 0或p 0 )将增大,故电阻率ρ将趋于减小。

(2)对于杂质型半导体:

①在低温区:当温度升高时,载流子浓度(n 或p )将增大,故电阻率ρ将趋于减小; ②在电离饱和区:载流子浓度一定,当温度升高时,迁移率将下降。此时电阻率将增大。 ③在高温本征区:类似于本征半导体,当温度升高时,载流子浓度(n 或p )将增大,故电阻率ρ将减小。

对纯半导体材料,电阻率主要由本征载流子浓度n i 决定。

第五章 非平衡载流子

1.非平衡载流子的产生:电注入,光注入,高能粒子激发

2.热平衡时,用统一的费米能级 E F

描述平衡态时载流子在能级之间的分布,非简并时

200i n p n

统一的费米能级是热平衡状态的标志。

在非平衡态时,上式不再成立,不存在统一的费米能级需要分别引入导带费米能级和价带费米能级,称为“准费米能级”,包括导带准费米能级 (电子准费米能级)和价带准费

米能级 (空穴准费米能级)。 当

n F E 和P F E 重合时, → 回到平衡态,无 和

扩散机理:浓度梯度作用下 → 载流子定向运动 扩散系数:表征载流子运动的难易程度。

迁移率μ是反映在电场作用下载流子运动难易程度的物理量,而扩散系数D 是反映在有浓度梯度存在时,载流子运动难易程度的物理量 爱因斯坦关系式:

q T k D n n 0=μ q

T

k D p p 0=μ 电子的连续性方程:G n

x E n x n E x

n D t n n n n +?-??-??-??=??τμμ2

2 右侧第一项为扩散流密度不均匀引起的载流子变化;第二项为载流子浓度

不均匀引起的积累;第三项为不均匀电场导致漂移速度随空间位置变化引起的积累,第四项为复合率;第五项为产生率。

复合机理中,载流子复合式,放出能量的方法有三种:发射光子 (电子与电磁波的作用) ,发射声子(电子与晶格振动的作用) ,俄歇效应(电子间的相互作用) 按复合释能的方式分为辐射复合(发射光子)、发射声子和俄歇效应。

位于禁带中央附近的深能级是最有效的复合中心。

强N 型区: 寿命是与载流子浓度无关的常数,仅取决复合中心对空穴的俘获几率。 强 P 型 区:寿命与载流子浓度无关, 是由复合中心对电子的俘获几率决定的常数

? 寿命的长短主要取决于载流子的复合。复合越容易,寿命越短,反之越长。 ? 按复合跃迁的方式分为直接复合和间接复合; ? 按复合位置可分为体内复合和表面复合;

最有效的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。

简答题:

1. 平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同? 答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。

平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。

2. 漂移运动和扩散运动有什么不同?漂移运动与扩散运动之间有什么联系?

答:不同:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布不匀。

联系:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即:

T k q D

0=

μ

(本题最好看一下)2.某N 型半导体掺杂浓度 N D =1016cm -3,少子寿命10μs ,在均匀光的照射下产生非平衡载流子,产生率为1018 cm -3s -1,试计算室温时光照情况下的费米能级并和原来无光照时的费米能级比较。设n i =1010cm -3 解:无光照:)exp(00T

k E E n N n F

i i D --

==

eV E eV E n N T k E E i i i A i F

3592.010

10ln 026.0ln 1016

0+=+=+=?

稳定光照后:

)

exp(00T

k E E n n n n i n F i -=?+=

eV E eV E n n T k E E

i i i i n F

3594.0101010ln 026.0ln 10

13

160+=++=+=∴

同理:exp(10

10/013

4

02

0T

k E E n p p n n p p p p F i i i -=?≈+=?+=?+=

eV E eV E n p

T k E E

i i i

i p F 18.010

10ln 026.0ln

1013

0-=-=?-=∴

第六章 p-n 结

载流子扩散运动和漂移运动方向相反。

平衡时的能带图

正向偏置下的能带图

反向偏置下的能带图

理想p-n结电流电压特性

隧道结的电流电压特性

1 证明题:

从电流密度方程证明p-n 结热平衡时各区费米能级处处相等。

证明:设流过p-n 结总电子电流密度为J n ,假定电场E 沿x 方向,结区电子浓度n 只随x 变化:

利用爱因斯坦关系:

因为所以上式可化为:dx

dn

n qn q T k E nq J n n n 10μμ+

=

因为

所以上式变为:

本征费米能级E i 与电子的附加电势能-qV (x ) 变化一致,即:

则:

以上两式说明通过pn 结的电流密度与费米能级的变化有关, 对于平衡p-n 结,J n 、J p 均为零 所以可推得:

即费米能级为常数,各处相等。

2

V D 和p-n 结两边的掺杂浓度、温度、材料的禁带宽度有关 3. 问答题: 从势垒、载流子及能带等方面的变化定性的分析p-n 结的电流电压特性,并利用公式定量的予以说明。

答:在正向偏压下,外电场与内建电场方向相反,势垒区电场减弱,空间电荷减少,势垒区减薄,势垒高度降低。载流子的扩散电流大于漂移电流,产生了电子从N 区向P 区以及空穴从P 区向N 区的净扩散电流构成正向电流。电子从N 区向P 区扩散,形成电子扩散电流J p ,空穴从P 区向N 区扩散,形成空穴扩散电流J n ,两者之和为pn 结的正向偏置电流J 。在p-n 结的扩散区和势垒区的任一截面上, J n 和J p 并不一定相等,但其总和J 保持相等。随着正向偏压的增加,势垒高度越来越小,载流子漂移越来越小,扩散进一步增加。注入的少子增多,少子浓度梯度增大。因此随外加正向电压的增加,正向电流迅速增大。

在反向偏压下,外电场与内建电场方向相同,势垒区电场增强,空间电荷增加,势垒区变厚,势垒高度增高。 载流子的漂移电流大于扩散电流,边界处的少数载流子被抽取 后,内部的少数载流子来补充,形成反向偏压下的电子扩散流和空穴扩散流。结区截面上,两者之和为p-n 结的反向偏置电流。因少子浓度较低,少子浓度梯度较小,p-n 结反向电流较小(反向截止),当反向电压较大时,边界处少子已被抽取光,浓度为0,少子浓度梯度不再随电压变化, J n 、J p 及J 也不随电压变化,反向电流将达到饱和。

0e x p 1s qV J J k T ????

=-??

???

??

当加正向电压时,

000.026,exp 1

k T

qV V V q k T ??>>≈>> ???

0exp s qV

J J k T ??

=

???

V 增大时,J 呈指数性增大,所以,在正向偏压,正向电流密度随正向偏压呈指数关系迅

速增大。

当加反向电压时,

00,exp 0

k T

qV V q k T ??>>≈ ???

00n p p n s n p qD n qD n J J L L ??

=-=-+ ? ???,负号表示电流密度方向与正向时相反,而且反向电流密度为常数,与外加电压无关,故称s J -为反

向饱和电流密度。所以反向电流达到饱和状态。

4

T 1>T

正向和反向电流密度均随温度上升而增加。

5 p-n结的电容主要包括势垒电容和扩散电容两部分。

6 单边突变结势垒区宽度主要取决于低掺杂一侧的杂质浓度,为什么?

(势垒区内正,负电荷总量相等,掺杂浓度低的,相应的电离杂质浓度也低,需要更大的体积才能获得同样的总量,因此势垒区宽度要宽得多)

7 p-n结的击穿机构共有三种:

雪崩击穿(与电场强度和势垒区宽度有关)

隧道击穿(齐纳击穿)

热电击穿(反向饱和电流随温度的升高而迅速增大)

8 雪崩击穿机理:破坏性不可逆击穿

9 隧道击穿(齐纳击穿)非破坏性可逆击穿

10 热电击穿机理分析:破坏性击穿

反向电压V r在p-n结中产生一个反向饱和电流J s,J s随温度按指数规律上升;

热击穿机构对禁带宽度比较小的半导体影响较显著。

11 两种击穿机制的主要区别:

隧道击穿取决于空间电荷区中电场强度;而雪崩击穿除要求一定的电场外,还需要一定宽度的空间电荷区。

隧道击穿电压随温度的升高而减小;而雪崩击穿电压随温度的升高而增加。(隧道击穿:温度升高,电子能量状态更高,则隧穿的几率更大,因而齐纳击穿电压随温度的升高而减小。雪崩击穿:温度升高后,晶格振动加剧,致使载流子运动的平均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿)

空间电荷区中光注入的电子(或空穴)影响雪崩击穿,但对隧道击穿无明显作用。

一般,击穿电压V B< 4E g/q时是隧道击穿;而V B> 6E g/q时是雪崩击穿;V B处于两者之间时两种击穿都存在。(反向偏压升高,势垒宽度增大,隧道长度变长,不利隧穿)

12 两边都是重掺杂的p-n结,又称为隧道结,正向电流由扩散电流和隧道电流两部分构成。

例题1:

一个硅p-n结二极管具有如下参数N D=1016cm-3,N A=5×1018 cm-3,p-n结的截面积S=0.01cm2。求室温下,外加电压为0.6V时,流过p-n结的电流。已知室温下硅的本征载流子浓度n i=1.5 ×1010cm-3,另外τn=τp=1μs,p型区电子的迁移率μn= 500cm2/(V.s) ,n型区空穴的迁移率μp=180cm2/(V.s)

扩散长度:

少子浓度:

所以:

例题2:

一硅突变p -n 结的n 区掺杂浓度 143

910D N cm -=?,p 区掺杂浓度

173

510A N c m -=?,计算下列电压下的势垒区宽度和单位面积上的势垒电容:①-10V ;

②0V ;③0.3V 。(n i =1.5×1010cm -3)

解:因为N A >>N D ,所以这是p +n 结,其势垒宽度

D X ===其中:141702102

1910510()ln 0.026ln 0.74(1.510)n p A D D F F i k T N N V E E V q q n ????=-===?

外加偏压U 后,势垒高度变为V D - U ,因而:

① U =-10V 时,势垒区宽度和单位面积势垒电容分别为:

② U =0V 时:

③ U =0.3V 时: 正向偏压下的p -n

的4倍,即:

43.9410D X cm -===?14

920411.68.8510 2.610 F/cm 3.9410r T D C x εε---??===??4

1.0310D x cm -==?1492

4

11.68.85109.9710 F/cm 1.0310T C ---??==??5

7.9710D x cm -===?982T 4(0)49.9710410 F/cm T C C --==??=?

第七章

1 金属与n型半导体相接触:

若W m>W s,半导体表面形成正的空间电荷区,电场由体内指向表面,V s<0,形成表面势垒(阻挡层)。

若W m0。形成高电导区(反阻挡层)。

若是p型半导体则与之相反。

2 金属和半导体接触时还可形成非整流接触,即欧姆接触。

3 整流特性首要条件:接触必须形成半导体表面的阻挡层

半导体物理学期末复习试题及答案三汇编

一、选择题。 1. 电离后向半导体提供空穴的杂质是( A ),电离后向半导体 提供电子的杂质是( B )。 A. 受主杂质 B. 施主杂质 C. 中性杂质 2. 在室温下,半导体Si 中掺入浓度为31410-cm 的磷杂质后,半导体中 多数载流子是( C ),多子浓度为( D ),费米能级的位置( G );一段时间后,再一次向半导体中掺入浓度为 315101.1-?cm 的硼杂质,半导体中多数载流子是( B ),多子浓度为( E ),费米能级的位置( H );如果,此时温度从室温升高至K 550,则杂质半导体费米能级的位置( I )。(已知:室温下,31010-=cm n i ;K 550时,31710-=cm n i ) A. 电子和空穴 B. 空穴 C. 电子 D. 31410-cm E. 31510-cm F. 315101.1-?cm G. 高于i E H. 低于i E I. 等于i E 3. 在室温下,对于n 型硅材料,如果掺杂浓度增加,将导致禁带宽 度( B ),电子浓度和空穴浓度的乘积00p n ( D )2i n ,功函数( C )。如果有光注入的情况下,电子浓度和空穴浓度的乘积np ( E )2i n 。 A. 增加 B. 不变 C. 减小 D. 等于 E. 不等于 F. 不确定 4. 导带底的电子是( C )。

A. 带正电的有效质量为正的粒子 B. 带正电的有效质量为负的准粒子 C. 带负电的有效质量为正的粒子 D. 带负电的有效质量为负的准粒子 5. P 型半导体MIS 结构中发生少子反型时,表面的导电类型与体材 料的类型( B )。在如图所示MIS 结构的C-V 特性图中,代表去强反型的( G )。 A. 相同 B. 不同 C. 无关 D. AB 段 E. CD 段 F. DE 段 G. EF 和GH 段 6. P 型半导体发生强反型的条件( B )。 A. ???? ??= i A S n N q T k V ln 0 B. ???? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 7. 由于载流子存在浓度梯度而产生的电流是( B )电流,由 于载流子在一定电场力的作用下而产生电流是( A )电流。 A. 漂移 B. 扩散 C. 热运动 8. 对于掺杂的硅材料,其电阻率与掺杂浓度和温度的关系如图所示, 其中,AB 段电阻率随温度升高而下降的原因是( A )。 A. 杂质电离和电离杂质散射 B. 本征激发和晶格散射

江苏高校的半导体物理复习资料(整理后)

一、填充题 1. 两种不同半导体接触后, 费米能级较高的半导体界面一侧带电 达到热平衡后两者的费米能级。 2. 半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于 方向上距布里渊区边界约0.85倍处,因此属于半导体。 3. 晶体中缺陷一般可分为三类:点缺陷,如;线缺陷, 如;面缺陷,如层错和晶粒间界。 4. 间隙原子和空位成对出现的点缺陷称为; 形成原子空位而无间隙原子的点缺陷称为。 5.杂质可显著改变载流子浓度;杂质可显著改变非平衡载流子的寿命,是有效的复合中心。 6. 硅在砷化镓中既能取代镓而表现为,又能取代砷而表现 为,这种性质称为杂质的双性行为。 7.对于ZnO半导体,在真空中进行脱氧处理,可产生,从而可获得 ZnO半导体材料。 8.在一定温度下,与费米能级持平的量子态上的电子占据概率为,高于费米能级2kT能级处的占据概率为。 9.本征半导体的电阻率随温度增加而,杂质半导体的电阻率随温度增加,先下降然后,再单调下降。

10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间处,随温度升高,费米能级先上升至一极值,然后下降至。 11. 硅的导带极小值位于k空间布里渊区的方向。 12. 受主杂质的能级一般位于。 13. 有效质量的意义在于它概括了半导体的作用。 14. 除了掺杂,也可改变半导体的导电类型。 15. 是测量半导体内载流子有效质量的重要技术手段。 16. PN结电容可分为和扩散电容两种。 17. PN结击穿的主要机制有、隧道击穿和热击穿。 18. PN结的空间电荷区变窄,是由于PN结加的是电压。 19.能带中载流子的有效质量反比于能量函数对于波矢k的, 引入有效质量的意义在于其反映了晶体材料的的作用。 20. 从能带角度来看,锗、硅属于半导体,而砷化稼 属于半导体,后者有利于光子的吸收和发射。 21.除了这一手段,通过引入也可在半导体禁带中引入能级,从而改变半导体的导电类型。 22. 半导体硅导带底附近的等能面是沿方向的旋转椭球面,载流 子在长轴方向(纵向)有效质量m l 在短轴方向(横向)有效质量m t 。 23.对于化学通式为MX的化合物半导体,正离子M空位一般表现

半导体物理器件期末考试试题(全)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2015半导体物理器件期末考试试题(全) 半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共 6 题,每题 4 分)。 代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。 2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏 Fpn 结的电容。 3、Pn 结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。 4、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触。 5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。 6、阈值电压:达到阈值反型点所需的栅压。 7、基区宽度调制效应:随 C-E 结电压或 C-B 结电压的变化,中性基区宽度的变化。 8、截止频率:共发射极电流增益的幅值为 1 时的频率。 9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象) 10、隧道效应:粒子穿透薄层势垒的量子力学现象。 11、爱因斯坦关系:扩散系数和迁移率的关系: 12、扩散电容:正偏 pn 结内由于少子的存储效应而形成的电容。 1/ 11

13、空间电荷区:冶金结两侧由于 n 区内施主电离和 p 区内受主电离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而形成的带净正电荷与净负电荷的区域。 14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的 pn 结。 15、界面态:氧化层--半导体界面处禁带宽度中允许的电子能态。 16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。 17、阈值反型点:反型电荷密度等于掺杂浓度时的情形。 18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用。 19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿。 20、内建电场:n 区和 p 区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由 n 区指向 p 区。 21、齐纳击穿:在重掺杂 pn 结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由 p 区的价带直接隧穿到 n 区的导带的现象。 22、大注入效应:大注入下,晶体管内产生三种物理现象,既三个效应,分别称为:(1)基区电导调制效应;(2)有效基区扩展效应; (3)发射结电流集边效应。 它们都将造成晶体管电流放大系数的下降。 3/ 11

《半导体物理》期末复习题目

《半导体物体复习资料》 1、本征半导体是指(A )的半导体。 A. 不含杂质和晶格缺陷 B. 电阻率最高 C. 电子密度和空穴密度相等 D. 电子密度与本征载流子密度相等 2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定( D )。 A. 不含施主杂质 B. 不含受主杂质 C. 不含任何杂质 D. 处于绝对零度 3、对于只含一种杂质的非简并n型半导体,费米能级E F随温度上升而( D )。 A. 单调上升 B. 单调下降 C. 经过一个极小值趋近Ei D. 经过一个极大值趋近Ei 4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。 A. 金属 B. 本征半导体 C. 掺杂半导体 D. 高纯化合物半导体 5、公式中的是半导体载流子的( C )。 A. 迁移时间 B. 寿命 C. 平均自由时间 D. 扩散时间 6、下面情况下的材料中,室温时功函数最大的是( A ) A. 含硼1×1015cm-3的硅 B. 含磷1×1016cm-3的硅 C. 含硼1×1015cm-3,磷1×1016cm-3的硅 D. 纯净的硅 7、室温下,如在半导体Si中,同时掺有1×1014cm-3的硼和1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。将该半导体由室温度升至570K,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。(已知:室温下, n i≈1.5×1010cm-3;570K时,n i≈2×1017cm-3) A、1×1014cm-3 B、1×1015cm-3 C、1.1×1015cm-3 D、2.25×105cm-3 E、1.2×1015cm-3 F、2×1017cm-3 G、高于Ei H、低于Ei I、等于Ei 8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。 A、E A B、E D C、E F D、Ei E、少子 F、多子 10、对大注入条件下,在一定的温度下,非平衡载流子的寿命与( D )。

半导体物理期末试卷含部分答案

一、填空题 1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理期末考试试卷A参考答案与评分标准

电子科技大学二零零 七 至二零零 八 学年第 一 学期期 末 考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为( F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN 呈( A )型结构,具有( C ),它是( F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的( C )。 A.1/4 ; B.1/e ; C.1/e 2 ; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i >> /N D -N A / 时,半导体具有 ( B ) 半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si 中电子扩散系数D n与ND有如下图 (C ) 所示的最恰当的依赖关系: Dn Dn Dn Dn A B C D 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向( A )移动;当掺 ND ND ND ND

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

半导体物理刘恩科考研复习总结

半导体物理刘恩科考研 复习总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以 在整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围 内,可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取 向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂 质。) 2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能

半导体物理学期末复习试题及答案一

一、选择题 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.· 6.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 7.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 8.砷化稼的能带结构是( A )能隙结构。

A. 直接 B. 间接 9. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作 用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 10. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( A )。 · A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 11. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 12. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 13. - 14. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态 §1.1 锗和硅的晶体结构特征 金刚石结构的基本特征 §1.2 半导体中的电子状态和能带 电子共有化运动概念 绝缘体、半导体和导体的能带特征。几种常用半导体的禁带宽度; 本征激发的概念 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系()()2 * 2n k E k E m 2h -0= ; 半导体中电子的平均速度dE v hdk = ; 有效质量的公式:2 2 2 * 11dk E d h m n = 。 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.5 回旋共振 §1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴 第二章 半导体中杂质和缺陷能级 §2.1 硅、锗晶体中的杂质能级

基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。 §2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为 第三章 半导体中载流子的统计分布 热平衡载流子概念 §3.1状态密度 定义式:()/g E dz dE =; 导带底附近的状态密度:() () 3/2 * 1/2 3 2()4n c c m g E V E E h π=-; 价带顶附近的状态密度:() () 3/2 *1/2 3 2()4p v V m g E V E E h π=- §3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01 ()1exp /F f E E E k T = +-???? ; Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。费米能级位置较高,说明有较多的能量较高的量子态上有电子。 Boltzmann 分布函数:0()F E E k T B f E e --=; 导带底、价带顶载流子浓度表达式: 0()()c c E B c E n f E g E dE '= ?

半导体物理复习资料附答案

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子 的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

半导体物理学期末复习试题及答案一

1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接 8.将Si掺杂入GaAs中,若Si取代Ga则起( A )杂质作

用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的 量子态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触 13. 一块半导体材料,光照在材料中会产生非平衡载流子,若光照

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

(完整word版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。

北工大 10年 半导体物理 期末试卷

半导体物理2010-2011学年(2011.1.5) 一、简答题(8*6’=48’) 1.请填写下表中的数据: 解理面 材料晶格结构布拉伐格子直接/间接 带隙 Si GaAs 2.什么是本征半导体?什么是杂质半导体?示意画出掺杂浓度为Nd的N型半导体样品电子浓度n和本征载流子浓度ni随T变化曲线。 3.“纯净的半导体中,掺入百万分之一的杂质,可以减小电阻率达1百万倍,”是估算说明之。 4.一块杂志补偿的半导体,受主杂质和施主杂质浓度相等。设杂质全部电离,判断当杂质浓度分别为 (a) Na=Nd=1014cm-3(b) Na=Nd=1018cm-3 时,哪种情况的电导率大?简述分析理由。 5.什么是载流子的平均自由时间τ?有两块Si半导体材料1和2,其中τ1>τ2,迁移率哪个大? 如果同一块半导体中,有两种机理的平均自由时间τ1和τ2,其总迁移率如何确定? 6.写出以n型样品为例少子空穴的连续性方程。 由连续性方程写出:不考虑电场的作用、无产生、稳态载流子扩散方程; 7.什么是PN结的势垒电容?定性说明掺杂浓度对势垒电容有何影响。 8.一个p-N异质结接触前能带图见图1。画出平衡状态下能带图。

电阻率为7Ω·cm的p型硅,T=300K。 ⑴试计算室温时多数载流子和少子浓度(可查图)。 ⑵计算该半导体的功函数。 ⑶不考虑界面态,在金属铝(功函数W Al=4.20eV)和金属铂(功函数W Pi=5.3eV)中选择制备肖特基二极管的金属,给出选择理由。 ⑷求金属一侧势垒高度的理论值qΦms和半导体一侧势垒高度qV D 。 三、(16’) 室温下,一个Si的N-P结,N区一侧掺杂浓度为1017cm-3,P区为1015cm-3 ⑴求该N-P结的接触电势差。 ⑵画出平衡PN结、正向偏置PN结、反向偏置PN结空间电荷区中及边界处的载流子分布示意图。 ⑶根据正向和反向少子分布情况,解释PN结正向导通,反向截止的饱和特性。 ⑷写出理想PN结电流-电压关系公式,在对数坐标下,定性画出理想和实际I-V特性示意图。 四、(15’) 一理想的MOS结构的高频测量的C-V曲线如图2. (1)判断该结构中,半导体的导电类型。 (2)说明图中1,2,3,4,5点的半导体一侧的状态,并示意画出每点半导体一侧的能带形状,以及金属和半导体一侧的电荷分布。

半导体物理期末复习考点整理

大三下:半导体物理期末复习考点整理 重要:15年6月底期末考试原卷(除了计算题改成了书上的原题,其他题目完全一样),书上的计算题难度和这上面的难度一样,是基础计算共30分强烈建议考前翻翻这篇pdf附近有关的推广链接,有这类题型的且不难的卷子.(我就是考前看了看这个链接,考试就是原题); 计算题只用关心一两步公式就能做出来的书上作业基础原题; 简答概念 ●典型面心结构有银铜铝汞 ●金刚石/ZnS是两个彼此错开的面心结构.砷化镓结构和其类似 ●本征半导体:完全不含杂质且无晶格缺陷的 ●把价带中空着的状态看成带正电的粒子空穴 ●导带上的电子与价带空穴参与导电 ●杂质影响半导体性质原因:破坏周期性势场,导致禁带产生能级,打破 了原有的Eg大小 ●电子共有化:能量相近的电子由于壳层交叠不再局限于单个原子 ●简并度:拥有相同能量的状态个数 ●肖特基缺陷特点:晶体体积增大晶格常数变化,克尔缺陷仅错位体积晶 格常数不变

● ●←计算必考 ●这种↓题型必考计算 ● ●(计算题必考,代入计算一步出答案)●;(简答必考) ●电流密度方程 ●[了解]负微分电导现象是由非等效能谷间的电子转移引起的;n型GaAs中的 强电场输运与硅不同,其漂移速度达到一最大值后,随着电场的进一步增加

反而会减小 ●[了解]碰撞离化:当半导体中的电场增加到某个阈值以上时,载流子将得到 足够的动能,可以通过雪崩过程(avalanche process)产生电子-空穴对 ●位于禁带中央附近的深能级是最有效的复合中心。 ●载流子从高能级向低能级跃迁,发生电子-空穴复合时,把多余的能 量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回低能级时,多余的能量常以声子形式放出,这种复合称为俄歇复合。 ●(深能级)积累非平衡载流子的作用称为陷阱效应,在费米能级附近 时,最有利于陷阱效应 ● (必考简答题,p改成n就是电子对应的方程) ●金半接触的能带弯曲图会画,并能理解;很重要 ●PN结中得势垒宽度高度: 势垒高度V D=kT μln?(N D n i ); 势垒宽度X D=√kT q (1 n A +1 n D )V D;

半导体物理复习资料全

第一章 半导体中的电子状态 1. 如何表示晶胞中的几何元素? 规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。 2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π?=??3122312()a a b a a a π?=??1233122()a a b a a a π?=?? 倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。 3. 波尔的氢原子理论基本假设是什么? (1)原子只能处在一系列不连续的稳定状态。处在这些稳定状态的原子不辐射。(2)原子吸收或发射光子的频率必须满足。(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。(4)电子轨道角动量满足: h m vr n n π==L 1,2,3,2 4. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:02 2 4πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022me h n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821h n me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同? (1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。 6. 硅、锗原子的电子结构特点是什么? 硅电子排布:2 262233221p s p s s 锗电子排布:22106262244333221p s d p s p s s 价电子有四个:2个s 电子,2个p 电子。 7. 硅、锗晶体能带是如何形成的?有哪些特点? (1) 当硅、锗组成晶体后,由于轨道杂化的结果,其4个价电子形成sp 3杂化轨道。

半导体物理期末考试试卷a-参考答案与评分标准

电子科技大学二零零七至二零零八学年第一学期期末考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为(F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN呈( A )型结构,具有( C ),它是(F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr是乙的3/4,m n*/m0值是乙的2 倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs后,其中非平衡载 流子将衰减到原来的(C )。 A.1/4 ; B.1/e ; C.1/e2; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i>> /N D-N A/ 时,半导体具有( B )半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si中电子扩散系数Dn与ND有如下图(C )所示的最恰当的依赖关系: DnDnDnDn 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(A )移动;当掺

相关文档
相关文档 最新文档