文档库 最新最全的文档下载
当前位置:文档库 › 10M100M1000M兆以太网电信号编码介绍

10M100M1000M兆以太网电信号编码介绍

10M100M1000M兆以太网电信号编码介绍
10M100M1000M兆以太网电信号编码介绍

10/100/1000兆以太网电信号编码介绍

1. 10Base-T 以太网编码方法

PLS (Physical Layer Signaling)Manchester 编码方法,即“0”=由“+”跳变到“-”,“1”=由“-”跳变到“+”,因为不论是”0”或是”1”,都有跳变,所以总体来说,信号是DC平衡的, 并且接收端很容易就能从信号的跳变周期中恢复时钟.

2. 100Base-T 以太网编码方法

100 Base -TX(物理层)

因为通常100Base-TX的PMD是使用CAT5线传输,按

TIA/EIA-586-A定义只能达到100MHz,而当PCS层将4Bit编译成5Bit时,使100Mb/s数据流变成125Mb/s数据流,所以100BaseX同时采用了MLT-3(三电平编码)的信道编码方法,使MDI的5bit输出的速率降低了(MLT-3定义只有数据是“1”时,数据信号状态才跳变,“0”则保持状态不变,以减低信号跳变的频率,从而减低信号的频率)

在数据帧与帧之间,会插入IDEL帧(IDEL=11111),告诉网上所连接的终端,链路在闲置但正常的工作状态中(按CSMA/CD,DTE数据终端机会检测链路是否空闲,才会发送数据)。

事实上链路绝大部分时间,以IDEL“11111”为主,5Bit IDLE“11111”若每个“1”都跳变的话,MDI信号的频率将会是125MHz,但是经过MLT-3编码后,原来的125MHz变成31.25MHz的信号,使频率变成原来的1/4。

FCC要求以太网不能产生过大的EMI,因为链路绝大部分时间是传输IDEL,MLT-3编码会使频率集中在31.25MHz范围,因此,在MLT-3编码前,PCS层会对数据流进行伪随机的Scrambling扰码,使“11111”分散,同

时将能量与频谱扩散。

100Base-T编码方法(传输层)

100 Base-X(包括100 BaseTx与100Base-FX)采用4B/5B编码/解码,PCS(physicalcoding sublayer)将接收MII接口输入的100Mb/s码流,每4Bit编译成5Bit码,将原来的100Mb/s编译成125Mbp/s,向MDI接口输出,解码过程相同),因2e-4只有16个组合,而2e-5有32种组合,冗余的组合其中3个将会用作为control code控制码--一个用作“IDEL”=“11111”,2个用作SOF(startof frame:J=11100,K=10001,J与K成对使用),2个用作EOF(endof frame:T=01101,R=00111,T与R成对使用)

3. 1000Base-T 以太网编码方法

1000Base-T在物理使用5电平4D-PAM编码,每个电平表示5符号

-2,-1,0,1,2中的一个符合,每个符号代表2比特信息(其中4电平中每个电平

代表2比特位,分别表示00,01,10,11,还有一个电平表示前向纠错码FEC),这比二电平编码提高了带宽利用率,并能把波特率和所需信号带宽减为原

来的一半.但多电平编码需要用多位A/D,D/A转换,采用更高的传输信噪比

和更好的接收均衡性能.

五个符号与电平的映射关系为:-2->-1, -1->-0.5, 0->0, 1->0.5, 2->1,

1000Base-T采用了UTP里所有的4对线,并且同时收发,在全双工的模式下,加上使用4D-PMA5编码方法实现1000MB/s的数据传输率每对线的数据率为100Mb/s,经8b/10b编码后变为125Mb/s。每个Baud 波特码元代表两个比特的信息,4对线的总带宽为

?125Mb/sX2 X4=1000Mb/s

3.万兆以太网规范

万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE ,2004年的IEEE ,2006年的IEEE 、IEEE 和2007年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、 10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 。在1990年以前安装的FDDI m多模光纤的FDDI 网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 10GBase-ER

万兆技术及万兆网络设计

万兆技术及万兆网络设 计 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

万兆技术及万兆网络设计 摘要:本文主要参考了万兆技术的发展,万兆技术的优势和应用特点,分析了万兆技术在校园网网络建设中的需求,阐述了构建万兆园区网的主要架构,并描述和万兆网络布线相关的经验。 关键词:万兆万兆网络 一、万兆技术的出现 目前应用最为广泛的以太网技术最早出现于1973年,当初的速率只有3M,后来陆续出现了10M、100M、1000M、10G的以太网技术,在30多年的时间里,以太网技术得到了飞速的发展,增长了3千多倍,推动了各行业信息化的突飞猛进。 2002年6月份,万兆以太网技术基于光纤传输的第一个标准IEEE 获得了通过。这个统一的标准,使用户在选择时不必再担心厂商之间的产品不能兼容的问题,大大规范了产商之间的竞争。其最终对万兆以太网技术发展的促进意义,是显而易见的。目前,包括锐捷网络、Cisco、华为3Com等公司在内的多家厂商已推出多款万兆以太网交换机产品,成就了今天以太网技术的全新局面。万兆以太网采用了以太网媒体访问控制(MAC)协议、以太网帧格式,保留以太网的最大帧长和最小帧长。万兆以太网是以太网在速度和距离方面的进化,定义了广域网和局域网两种物理层,是一种只采用全双工的技术。 二、万兆以太网的技术特色和应用特征 1、从技术角度分析,万兆以太网具有以下特色: 首先,万兆以太网相对于以往代表最高适用度的千兆以太网拥有着绝对的优势和特点。其技术特色首先表现在物理层面上。万兆以太网是一种只采用全双工与光纤的技术,

其物理层(PHY)和OSI模型的第一层(物理层)一致,它负责建立传输介质(光纤或铜线)和MAC层的连接,MAC层相当于OSI模型的第二层(数据链路层)。 其次,万兆以太网技术基本承袭了以太网、快速以太网及千兆以太网技术,因此在用户普及率、使用方便性、网络互操作性及简易性上皆占有极大的引进优势。在升级到万兆以太网解决方案时,用户不必担心既有的程序或服务是否会受到影响,升级的风险非常低,同时在未来升级到100G都将是很明显的优势。 第三,万兆标准意味着以太网将具有更高的带宽(10GB)和更远的传输距离(最长传输距离可达80公里)。 第四、在企业网中采用万兆以太网可以最好地连接企业网骨干路由器,这样大大简化了网络拓扑结构,提高网络性能。 第五、万兆以太网技术提供了更多的更新功能,大大提升QoS,具有相当的革命性,因此,能更好的满足网络安全、服务质量、链路保护等多个方面需求。 最后,随着网络应用的深入,WAN/MAN与LAN融和已经成为大势所趋,各自的应用领域也将获得新的突破,而万兆以太网技术让工业界找到了一条能够同时提高以太网的速度、可操作距离和连通性的途径,万兆以太网技术的应用必将为三网发展与融和提供新的动力。 2、万兆以太网还有十分明显的应用特征: 1、万兆以太网结构简单、管理方便、价格低廉。由于没有采用访问优先控制技术,简化了访问控制的算法,从而简化了网络的管理,并降低了部署的成本,因而得到了广泛的应用。

万兆以太网规范

百度文库-让每个人平等地提升自我 10GBase-ER 5.5.1万兆以太网规范 5.5.1万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002 年的IEEE ,2004 年的IEEE ,2006 年的IEEE、IEEE 和2007 年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这 10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线 (或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予 以介绍。 1 ?基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR 和10GBase-LX4 这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表”短距离”(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF ),有效传输距离为2?300m,要支持300m 传输需要采用经过优化的50艸线径0M3 (Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50 ^m光纤称为OM2光纤,而线径为叩的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离”(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode ),对应的标准为2006年发布的IEEE。在1990年以前安装的FDDI ?m多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

万兆以太网规范

5.5.1 万兆以太网规范 5.5.1 万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq 和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5?m多模光纤的FDDI 网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 10GBase-ER

3.万兆以太网规范

5.5.1 万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、 10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm 的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5?m多

关于万兆以太网标准

万兆以太网标准 关于万兆以太网标准 万兆以太网物理层规格 在IEEE 802.3ae中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。万兆以太网MAC(右图)在服务接口(向PHY)以 10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY和WAN PHY的略有不懂的数据速率。速率适应机制在IEEE 802.3ae中叫做Open Loop Control。 Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout 万兆以太网物理层规格(PHY)为: 连续LAN PHY 连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个10.3Gb/s的连续数据流,并将一个10.3Gb/s的连续数据流去序列化到16-bit并行数据路径(每个 644Mb/s)。 连续WAN PHY 连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为9.95Gb/s(OC-192),每个16-bit并行数据路径为622Mb/s。WIS为SONET framing和X7+ X6 + 1 scrambling专门设计。与SONET OC-192

计算机网络 万兆以太网

计算机网络万兆以太网 随着千兆以太网的标准化以及在生产实践中的广泛应用,以太网技术逐渐延伸到城域网的汇聚层。千兆以太网通常用作将小区用户汇聚到城域节点,或者将汇聚层设备连接到骨干层。虽然以太网多链路聚合技术已完成标准化且多厂商互通指日可待,可以将多个千兆链路捆绑使用。但是考虑光纤资源以及波长资源,链路捆绑等因素,它一般只用在点内或者短距离应用环境。 为了解决由带宽及传输距离而导致以太网技术不适于用在城域网骨干/汇聚层的问题,1999年IEEE标准委员会成立了IEEE 802.3ae工作组进行研究。在2002年6月由IEEE正式发布了IEEE 802.3ae 10Gbps以太网标准,自此以太网的发展势头又进一步增强。这标志着万兆位以太网标准的统一,使用户在选择时不必再担心厂商之间的产品不能互相兼容的问题,也规范了各厂商间的竞争。目前包括华为3Com、Cisco、Avaya、Enterasys、Foundry和Riverstone 公司在内的多家厂商已经推出多款万兆位以太网交换机产品,成就了今天以太网技术的全新局面。 网络拓扑结构的设计和操作也随着智能化万兆位以太网多层交换机的推出发生了转变。比如第三层路由和第四层至第七层智能,包括服务质量(QoS)、服务级别(CoS)、高速缓存、服务器负载均衡、安全性和基于策略的网络功能。万兆以太网的主要特点包括以下几个方面。 ●保留802.3以太网帧格式; ●保留802.3以太网的最大帧长和最小帧长; ●只使用全双工工作模式,彻底改变了传统以太网的半双工广播工作模式; ●使用光纤作为传输媒体,已不再适用铜缆; ●使用点对点链路,支持星型结构的LAN; ●数据传输率非常高,不直接和端用户相连; ●制定了新的光物理媒体相关(PMD)子层; ●与SONET OC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备仪器运行。

以太网GMII介绍

以太网知识GMII / RGMII接口 本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的连接方法。 1. GMII 接口分析 GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。下图定义了RS层的输入输出信号以及STA的信号: 图18 Reconciliation Sublayer (RS) and STA connections to GMII 下面将详细介绍GMII接口的信号定义,时序特性等。由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。 4.1 GMII接口信号定义 GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。 在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。 GMII接口主要包括四个部分。一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。 GMII接口的MAC模式定义:

注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。 GMII接口PHY模式定义: 表8 注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。 4.2 GMII接口时序特性

多模光纤万兆以太网的PMD之争

多模光纤万兆以太网的PMD之争 本文关键字: 光纤收发器网络千兆以太网数据通信IEEE802.3FDDI 2.5G 激光 多模光纤是用户驻地网络中最受欢迎的光纤媒质,因为多模光纤可以使用便宜的LED和VCSEL作为光源,对于数据通信来说这种特性占有很大优势。随着多模光纤网络使用者对带宽的需求越来越高,多模光纤标准和收发器技术也跟着向更高速率演进。 这些标准必须考虑多模光纤的模式色散,因为模式色散决定了光纤的带宽上限,而模式色散与波长、入射光的特性和光纤的折射率分布有关。通过这个带宽上限,可以在波长、发射条件、传输距离和数据速率之间建立联系。IEEE已经制定了快速以太网(100Mbps),吉比特以太网(1Gbps)和万兆以太网(10Gbps)支持单模和多模光纤的光学标准。 图:多模光纤的种类不同,万兆以太网PMD的性能也随之不同 网络建设者必须确定哪种PMD能够满足其对成本和性能的要求。 尤其是万兆以太网,标准制定者必须考虑各种光纤中的模式色散问题。由此提出了数种光纤和光收发器标准,网络规划者们在设计网络时必须考虑这些标准。在多模光纤网络的实际部署当中,有几个因素会影响收发器的选型。 从千兆以太网到万兆以太网 要了解使用多模光纤万兆以太网技术的演进,最好先看看千兆以太网的发展历史。IEEE P802.3标准化组织发布了两个关于多模光纤千兆以太网的标准,一个是1000Base-SX,另一个是1000Base-LX。1000Base-SX标准在通信光接口方面更加成功一些。现在,每个季度会有150万到200万端口的1000Base-SX设备交货。1000Base-SX标准只适用于各种多模光纤,工作波长为850nm。 1000Base-LX标准在1310nm波长工作,所以通常使用单模光纤(SMF)。不过它也可以使用一些多模光纤。目前,每个季度会有几十万端口的1000Base-LX设备交货。 与千兆以太网类似,万兆以太网标准为各种多模光纤制定了两个不同的PMD(physical media dependents,与物理介质相关的规范),另外还有第三个标准正在标准委员会的评审

万兆以太网技术

万兆以太网技术

目录 1.基于光纤的局域网万兆以太网规范 (1) 2.基于双绞线(或铜线)的局域网万兆以太网规范 (2) 3.基于光纤的广域网万兆以太网规范 (3) 4.万兆以太网物理层规格 (4) 4.1万兆以太网物理层规格(PHY) (4) 4.2相关物理介质层(PMD) (7)

万兆以太网技术 万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap。在规范方面,总共有10多个,总共可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1. 基于光纤的局域网万兆以太网规范 目前,基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 (1)10GBase-SR 10GBase-SR中的“SR”代表“短距离”(short range)的意思,该规范支持编码方式为64B/66B 的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 (2)10GBase-LR 10GBase-LR中的“LR”代表“长距离”(Long Range)的意思,该规范支持编码方式为64B/66B 的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 (3)10GBase-LRM 10GBase-LRM中的“LRM”代表“长度延伸多点模式”(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5μm多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 (4)10GBase-ER 10GBase-ER中的“ER”代表“超长距离”(Extended Range)的意思,该规范支持超长波(1550nm)单模光纤(SMF),有效传输距离为2m到40km。 (5)10GBase-ZR 几个厂商提出了传输距离可达到80km超长距离的模块接口,这就是10GBase-ZR规范。它使用的也是超长波(1550nm)单模光纤(SMF)。但80km的物理层不在EEE 802.3ae标准之内,是厂商自己在OC-192/STM-64 SDH/SONET规范中的描述,也不会被IEEE 802.3工作组接受。 (6)10GBase-LX4 10GBase-LX4采用波分复用技术,通过使用4路波长统一为1300 nm,工作在3.125Gb/s的分离光源来实现10Gb/s传输。该规范在多模光纤中的有效传输距离为2~300m,在单模光纤下

关于万兆以太网交换机的一些知识

万兆以太网作为最新以太网技术,不仅是以太网的“高速翻版”,更是从私有网 络到公众网络的融合。作为网络的核心设备,万兆以太网交换机需要满足更高的需求。 近年来,从局域网到城域网,从城域网到广域网,以太网技术以惊人的速度正占 据着越来越多的市场,尤其在企业网络和运营商网络中,以太网技术越来越多地成为 毫无争议的选择。从快速以太网到千兆以太网,再到万兆以太网,技术上的更新满足 了新一代互联网技术所带来的高速带宽增长和新一代应用的需求。 应市场及广大用户的需求,丰润达首次推出48口万兆以太网交换机,性能超群,相当于4~6台普通交换机进行集群的容量,并且能够达到更高的可靠性,零延迟、零丢包,无论是大型网吧还是大型企业,均能满足其组网及接入需求。 大家知道,用户购买万兆以太网交换机,是因为需要能够在任何情况下线速处理 数据包的转发,需要能够处理新一代的互联网应用,同时也需要交换机能够提供最好 的投资保护、能够占用最少的机架空间、能够尽量地节省电量、能够看得见用户的流 量等。 很显然,千兆交换机不能容纳大容量万兆端口的线速转发,目前的千兆交换机只 能够提供几十到几百个G的吞吐量,而新一代的万兆交换机能够提供每秒处理一千个 G以上的吞吐。万兆交换机不仅应该提供大容量的背板交换矩阵,还应该提供大容量 的本地交换矩阵,无阻塞的并行交换矩阵是目前最为先进的技术。 衡量万兆以太网交换机时要测试哪些方面 首先是测试它是否能够达到线速转发的吞吐量,同时观察端到端的传输延迟,一 台优秀的万兆交换机应该能够在加载关键应用的前提下(如组播应用、IPv6 应用、大容量访问列表控制),线速无阻塞地转发数据包,并且保证端到端的数据延迟尽可能 地小。 其次,衡量万兆交换机还需通过测试关键协议,如BGP4的容量、路由收敛和路 由震荡来检验,测试针对攻击的防范特性、测试流量管理的关键特性。冗余性的测试 也非常重要,冗余性包含硬件系统的冗余性和软件特性的冗余性。 可以说,选择万兆以太网交换机不仅仅是几个单项功能的选择,更是一项全面评 估的系统选择。丰润达万兆以太网交换机正好满足上面指标,是转发性能优异、且低 碳节能环保全新交换机。

10GbE以太网介绍

Introduction to 10 Gigabit Ethernet Tim Chung Version 1.0 (FEB, 2010) QSAN Technology, Inc. https://www.wendangku.net/doc/3b6324061.html, White Paper# QWP201003-P500H

lntroduction This document introduces some basic knowledge about 10 Gigabit Ethernet. It includes cable media, MSAs (multi-source agreements, the modularized adapter sets), and the solutions which QSAN provides. Users will learn the knowledge and make the right choice of their needs. Cable media Fiber Basically, optical fiber can be divided into two classifications: single-mode fiber (SMF) and multi-mode fiber (MMF). The comparison table is listed below: Fiber type Core size of cable Distance Light source Benefit Shortcoming Cable color MMF 50 or 62.5 μm Less than 300M Low-cost laser or LED Cheaper, easy to manufacture, lower power consumption Short distances Orange SMF 8~9 μm Over 10Km by diff. fiber standards High power, collimated laser Long distances Expensive, Higher power consumption Yellow The fiber solutions used by 10 Gigabit Ethernet are definded by IEEE 802.3ae. It includes fiber -SR, -LR, -ER, and –LX4. Here we take an example of -SR and –LR. Common name IEEE standard Wavelength (nm) Cable type Distance 10GBASE- SR 802.3ae 850 MMF Up to 300M 10GBASE- LR 802.3ae 1310 SMF 10KM Copper The copper solutions used by 10Gigabit Ethernet are 10BASE-CX4 (IEEE 802.3ak), 10BASE-T (IEEE 802.3an), and the SFP+ Direct Attach. Here is the comparison table. Common name IEEE standard Cable type Distance Benefit Shortcoming 10GBASE-CX4 802.3ak CX4, similar to the one used by InfiniBand? technology 15M Low latency, low cost, low power Short reach, bigger form factor SFP+ DA N/A Passive Twin- Axial (2 pair copper) cables 10M Low latency, low cost, low power small form Short reach

以太网网卡结构和工作原理

以太网网卡结构和工作原理 网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。它是使计算机联网的设备。平常所说的网卡就是将PC机和LAN连接的网络适配器。网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。它的主要技术参数为带宽、总线方式、电气接口方式等。它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。目前主要是8位和16位网卡。 网卡必须具备两大技术:网卡驱动程序和I/O技术。驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。I/O技术可以通过数据总线实现PC和网卡之间的通信。网卡是计算机网络中最基本的元素。在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。 网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。据统计,目前约有80%的局域网采用以太网技术。根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、 10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点: 网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和 10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)

计算机网络应用 万兆以太网

计算机网络应用万兆以太网 在前面讲到的千兆以太网通常用作将小区用户汇聚到网络的交换中心,或者将汇聚层设备连接到骨干层。虽然以太网多链路聚合技术已完成标准化且多厂商互通指日可待,可以将多个千兆链路捆绑使用,但是考虑光纤资源以及波长资源,链路捆绑等因素,它一般只用在POP点内或者短距离应用环境。 为了解决由带宽及传输距离而导致以太网技术不适用于用在城域网骨干/汇聚层的问题,随后由IEEE 802.3委员会成立的IEEE 802.3ae工作组制定了IEEE 802.3ae 10Gbps(10000Mbps)以太网标准,从而解决了该问题。 万兆以太网能够应用到核心层之间,以及核心层与汇聚层之间的链路上,目前包括华为3Com、Cisco、Avaya、Enterasys、Foundry和Riverstone公司在内的多家厂商已经推出多款万兆以太网交换机产品,成就了今天以太网技术的全新局面。 万兆以太网同样保留了IEEE 802.3的大部分格式,但它只支持全双工工作模式、使用光纤作为传输媒体,制定了新的光物理媒体相关子层(PMD)具有更高的数据传输速率。 万兆以太网包括IEEE 802.3ae万兆以太网标准和IEEE 802.3ak万兆以太网标准两种技术标准。 1.IEEE 802.3ae万兆以太网标准 IEEE 802.3ae万兆以太网标准是基于光纤设计的,它定义了在光纤上传输10Gbps以太网的标准,传输距离从300米到40公里,它将物理层分为局域网物理层(LAN PHY)和广域网物理层(WAN PHY)两个层次,其体系结构如图5-10所示。 10GBASE-R10GBASE-W10GBASE-X 图5-10 IEEE 802.ae定义的LAN和WAN物理层结构 其中,局域网物理层是指与标准以太网的连接,其速率为10Gbps;广域网物理层是指与SDH/SONET的连接,其速率为9.58464Bbps。每种PHY分别可以使用10Gbase-S(850nm 短波)、10Gbase-L(1310nm长波)、10Gbase-E(1550nm长波)3种规格,其最大传输距离分别为300m、10km、40km。 10GBase-S 10GBase-S是针对有850nm激光接收器和10Gbps带宽的多模式光纤(MMF)而设计的。

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

相关文档