文档库 最新最全的文档下载
当前位置:文档库 › 中子弹性散射角分布的实验技术

中子弹性散射角分布的实验技术

中子弹性散射角分布的实验技术
中子弹性散射角分布的实验技术

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

接触角的测定实验报告

—、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方 法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固?液界面所取 代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来, 有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润 湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不 粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。 此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类 型示于图仁 图1各种类型的润湿 当液体与固体接触后,体系的自山能降低。因此,液体在固体上润湿程度的 大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固 体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角 的液滴存在,如图2所示。 图2接触角 铺展润湿 粘附湿润 不银润 浸湿

假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 yso- ySL= yLG-COS0 (1) 式中ysG, yi_G,ysi.分别为固?气、液?气和固?液界面张力;8是在固、气、液三 相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0°-180°之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿Wa = ySG - ySL + yLG zO (2) 铺展润湿S = ysG?ysL?yLG >0 (3) 式中Wa, S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: Wa二ysG+yLG -ySL=yLG(1+COS0) (4) S=ySG-ySL-yLG=yLG(COS0-1) (5) 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把8=90。作为润湿与否的界限,当8>90°,称为不润湿,当0<90°时,称为润湿,8越小润湿性能越好;当8角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面

康普顿散射 实验报告

康普顿散射 【实验目的】 1、通过实验来验证康普顿散射的γ光子能量及微分散射截面与散射角的关系。 2、学会康普顿散射效应的测量技术,学习测量微分散射截面的实验技术。 【实验原理】 1.康普顿散射 康普顿效应是射线与物质相互作用的三种效应之一。康普顿效应是入射光子与物质原子中的核外电子产生非弹性碰撞而被散射的现象。碰撞时,入射光子把部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。 当入射光子与电子发生康普顿效应时,如图3.9-1所示, 其中hν是入射γ光子的能量,hν′是散射γ光子的能量,θ是散射角,e 是反冲电子,Φ是反冲角。 由于发生康普顿散射的γ光子的能量比电子的束缚能要大得多,所以入射的γ光子与原子中的电子作用时,可以把电子的束缚能忽略,看成是自由电子,并视散射发生以前电子是静止的,动能为0,只有静止能量m 0c 2。散射后,电子获得速度v ,此时电子的能量2220/1E mc m c β==-,动量为20/1mv m v β=-,其中/v c β=,c 为光速。 用相对论的能量和动量守恒定律就可以得到 22200/1m c h m c h νβν'+=-+ 20/cos /1cos /h c m v h c νβνθ'=Φ-+ 式中,hν/c 是入射γ光子的动量,hν′/c 是散射γ光子的动量。 2 0sin /sin /1h c m v νθβ'=Φ- 由式(3.9-1)、(3.9-2)、(3.9-3)可得出散射γ光子的能量 2 01(1cos )h h h m c ν νν θ'= +- 此式就表示散射γ光子能量与入射γ光子能量、散射角的关系。 2.康普顿散射的微分截面 康普顿散射的微分截面的意义是:一个能量为hv 的入射γ光子与原子中的一个核外电子作用后被散射到θ方向单位立体角里的几率(记作 ()d d σθΩ ,单位:cm 2/单位立体角)为 220()()(sin )2r d h h h d h h h σθνννθννν ''=+-'Ω 式中r 0=2.818×10-13cm ,是电子的经典半径,式(3.9-5)通 常称为“克来茵一仁科”公式,此式所描述的就是微分截面与入射γ光子能量及散射角的关系。 图3.9-1 康普顿散射示意图 反冲电子 散射光子 入射光子

卢瑟福散射实验报告

陈杨PB05210097 物理二班 实验题目:卢瑟福散射实验 实验目的: 1.通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论; 2.并学习应用散射实验研究物质结构的方法。 实验原理: 现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。 1.α粒子散射理论 (1)库仑散射偏转角公式 设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为2e的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图所示。图中ν是α粒子原来的速度,b是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。 图α粒子在原子核的库仑场中路径的偏转 当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E和L,由能量和动量守恒定

律可知: ???? ??++?=??222202241 ?πεr r m r Ze E (1) L b m mr ==? ? ν?2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 20 2242 Ze Eb ctg πεθ = (3) 设 E Ze a 02 42πε= ,则 a b ctg 22 = θ (4) 这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。 事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图所示。那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

辐射防护实验报告

《辐射防护实验报告》 专业:xxx 姓名:xxx 学号:2010xxxx 实验一:γ射线的辐射防护 一、实验目的 1、掌握X-γ剂量率仪的使用方法; 2、了解环境中的γ照射水平; 3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 二、实验原理 闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。 三、实验内容 1、测量实验室γ照射本底环境; 2、测量一条环境γ照射剂量率剖面; 3、测量岩石的γ照射剂量率; 4、加放射源,测量并计算不同测量时间情况下的剂量; 5、加放射源,测量不同距离情况下的剂量率。 四、实验设备 1、Ra-226源一个; 2、X-γ剂量率仪一台; 3、岩石标本。 五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!! 实验步骤如下: 1、调节准直器以及探测仪器的相对位置; 2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值); 3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值); 4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值); 5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值); 6、暂时屏蔽放射源,源探距离为米,测定并记录仪器的剂量率N1(连测3次,取平均值); 7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值); 8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值); 9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值); 10、数据处理。 数据处理如下: 1)本底剂量率为: 2)在距离放射源、1、2米处不同时间计数率为:

低碳钢弹性模量e的测定实验报告doc

低碳钢弹性模量e的测定实验报告 篇一:低碳钢弹性模量E的测定 低碳钢弹性模量E的测定 一、实验目的 1.在比例极限内测定低碳钢的弹性模量E 2.验证虎克定律 二、实验设备 1. WE-300型液压式万能试验机。 2.蝶式引伸仪、游标卡尺、米尺。 三、实验原理 低碳钢弹性模量E的测定,是在比例极限以内的拉伸试验中进行的。低碳钢在比例极限内服从胡克定律,即PL0 ?L?EA0 式中,P为轴向拉力,L0是引伸仪标距长度(亦即试件的标距),A0为试件原始截面面积。 为了验证胡克定律和消除测量中可能产生的误差,我们采用“增量法”测量低碳钢的弹性模量。就是对试件逐级增加同样大小的拉力?P,相应地由引伸仪测得在引伸仪标距范围内的轴向伸长量?li。如果每一级拉力?P增量所引起的轴向伸长量?li基本相等,这就验证了胡克定律。根据测得的各级轴向伸长量增量的平均值?l平均,可用下式算出弹性模量

E??PL0 A0?l平均 利用“增量法”进行测量时,还能判断实验有无错误(本文来自:小草范文网:低碳钢弹性模量e的测定实验报告),因为若发现各次的应变增量不按一定规律变化,就说明实验工作有问题,应进行检查。实验时,为了消除试验机夹具与试件的间隙,以及引伸仪机构内的间隙,需要加初载荷P0 四、实验步骤 1.用游标尺测量试件直径。 2.开动万能机,使上夹头抬高3厘米,将试件上部装入试验机上夹头内, 移动下夹头到适当位置,再夹紧试件下部。 3.把蝶式引伸仪加在试件上,如图1-3所示。 4.拟定加载方案:从载荷P=4KN开始读数,以后载荷每增加2KN读一次引伸仪数据。选好测力盘,调整试验机测力指针,使其对准零点,将引伸仪上左右两只千分表上大指针,也调到零点. 5.关闭回油阀、送油阀,启动电源,缓慢打开送油阀开始加载。取P0 =4KN作为初载荷,记下引伸仪初读数.以后每增加相同载荷△P=2KN记录一次引伸仪读数,一直加到低于比例极限的某一值(如14KN)为止。 6.停机。检查引伸仪读数差值是否大致相等,如果数值相差太大,须重新测量。

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

物理学史9.3 康普顿效应

9.3康普顿效应 在1923年5月的《物理评论》上,A.H.康普顿以《X射线受轻元素散射的量子理论》为题,发表了他所发现的效应,并用光量子假说作出解释。他写道②: “从量子论的观点看,可以假设:任一特殊的X射线量子不是被辐射器中所有电子散射,而是把它的全部能量耗于某个特殊的电子,这电子转过来又将射线向某一特殊的方向散射,这个方向与入射束成某个角度。辐射量子路径的弯折引起动量发生变化。结果,散射电子以一等于X射线动量变化的动量反冲。散射射线的能量等于入射射线的能量减去散射电子反冲的动能。由于散射射线应是一完整的量子,其频率也将和能量同比例地减小。因此,根据量子理论,我们可以期待散射射线的波长比入射射线大”,而“散射辐射的强度在原始X射线的前进方向要比反方向大,正如实验测得的那样。” 康普顿用图9-2解释射线方向和强度的分布,根据能量守恒和动量守恒,考虑到相对论效应,得散射波长为: △λ为入射波长λ0与散射波长λθ之差,h为普朗克常数,c为光速m为电子的静止质量,θ为散射角。 这一简单的推理对于现代物理学家来说早已成为普通常识,可是,康普顿却是得来不易的。这类现象的研究历经了一、二十年、才在1923年由康普顿得出

正确结果,而康普顿自己也走了5年的弯路,这段历史从一个侧面说明了现代物理学产生和发展的不平坦历程。 从(9-1)式可知,波长的改变决定于θ,与λ0无关,即对于某一角度,波长改变的绝对值是一定的。入射射线的波长越小,波长变化的相对值就越大。所以,康普顿效应对γ射线要比X射线显著。历史正是这样,早在1904年,英国物理学家伊夫(A.S.Eve)就在研究γ射线的吸收和散射性质时,首先发现了康普顿效应的迹象。他的装置如图9-3。图中辐射物和吸收物实际上是铁板铝板之类的材料,镭管发出γ射线,经散射物散射后投向静电计。在入射射线或散射射线的途中插一吸收物以检验其穿透力。伊夫发现,散射后的射线往往比入射射线要“软”些。① 后来,γ射线的散射问题经过多人研究,英国的弗罗兰斯(D.C.H.Florance)在1910年获得了明确结论,证明散射后的二次射线决定于散射角度,与散射物的材料无关,而且散射角越大,吸收系数也越大。 所谓射线变软,实际上就是射线的波长变长,当时尚未判明γ射线的本质,只好根据实验现象来表示。 1913年,麦克基尔大学的格雷(J.A.Gray)又重做γ射线实验,证实了弗罗兰斯的结论并进一步精确测量了射线强度。他发现:“单色的γ射线被散射后,性质会有所变化。散射角越大,散射射线就越软。”② 实验事实明确地摆在物理学家面前,可就是找不到正确的解释。 1919年康普顿也接触到γ散射问题。他以精确的手段测定了γ射线的波长,确定了散射后波长变长的事实。后来,他又从γ射线散射转移到X射线散射。图9-4是康普顿自制的X射线分光计,钼的Kα线经石墨晶体散射后,用游离室进行测量不同方位的散射强度。图9-5是康谱顿发表的部分曲线。从图中可以看出,X射线散射曲线明显地有两个峰值,其中一个波长等于原始射线的波长(不变线),另一个波长变长(变线),变线对不变线的偏离随散射角变化,散射角越大,偏离也越大。

中子散射技术

子术 中散射技一丰彩我生个富多的界里们活在世,通过眼睛、子来耳朵和鼻感知周围的事物,能但是所感知到的远不是世界的全部,这是由于我们长的眼睛仅仅能够感知波在390至750米纳的间“见光可”,观察到小距有的最离只约0.1米毫。对小于更的物质,必一须借些我们助工才,蕊段能观到如的花断面可怕具或手测例美丽和的新型冠状病毒。今天,小大观编就为家介绍探寻微世界的好帮手——子中散射技 对子术,于中散射技我们首先要搞清楚两个关键就是子!()一子。中散啦废话首说中和射先简要明下1920年了子了子新西兰家卢福里除质还著名物理学瑟预言原核外子,子子。某存在他给种粒有种粒这取名为中12,年之后了子,试卢瑟福的学生查德威克用验证明中的存在并因此了,荣获诺贝尔物理学奖这种不带电的微粒——子也中被了子。誉打原能时代匙射我们的为开的金钥而散在生活中,,,一,不在如手电筒现束出无处例晚上打开发有光射本,但那并光的非身我们看到的是光与空气中的颗粒发生,彩也撞碰散射到人的眼睛形成的舞台上炫的灯光秀是同,,能看不同的事射样的道理可以说人眼够到物跟散息息。 关相来子术将这两中散技反应堆而者结合起的射就是利用子,加器的中与物发生或速产生质相互作用研究物质的静力。观态结构及物质的微动学性质的方法它能够告诉我们料子,。 在什物质或者材中的原在哪里还有它们做么讲了,子术?这么多那射底哪些应么中散技到有用呢

,子,领域学不带电散过在生物科家利用中在射程中,对不会产生离作电用的特点能够实现DNA ,的无损测量更使我们能够加清楚地认识DNA ,对了的结构和性质这于类义。 的解整个自然界和人自身有着很重要意,,在业领域中接是金属制工很多焊件都由成利用中子术力。,射技可接金属层应例如散就以分析焊深的情况术涡科学利用家该技分析飞机发动机叶片与轮的焊接应 力,对接焊工艺进行指导,大了幅提高发动机的使用寿命。 ,锂子池最用充电电在能源领域离电是目前我们常的池,、本大池。子手机脑的是这种笔记电使用都电利用中术锂子池,找锂子相技展究可以楚到照开离电的研清地离,锂,位置测量浓度的的还可以实时监测电解质在充放电锂子,,部过程中内离的浓度变化等通过这些数据科学家对锂子池,、长全寿和能不断离电进行改进做到高安性命本。 低成,子术。子当射应远不止能然中散技的用这些中穿透力,料、、、强以展文物材构年代产可很好地开的结成分,力;地性质等研究为考古领域提供新的强有的研究手段,子术,在医学与健康领域通过中散射技科学家研究植入,少;使入败事例的效物涂层的结构和性能植失数目有减子术了用散射技石则以解地球利中研究南极化可帮助我们境气变化情况环与候的…… ,子而言总之中发现至今已将近100,年其作为微观,类探领域的索工具已经开始融入科学研究和人生活的方。子术一术,的测析技在方面面中散射技作为种特殊探分。子工和生中发挥用正为业生产国民活着重要的作因中散术来,用处越广很家都在积建设射技越泛多国极能够产生

粒度仪实验报告

实验一 ls230/vsm+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小 表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强 的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行 地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利 用光电探测器进行信号的光电转换,并通过信号放大、a/d变换、数据采集送到计算机中, 通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:ls230/vsm+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵, 仪器预热10分钟。 4.2进入ls230的操作程序,建立连接,再进行相应的参数设置: 启动run-run cycle(运行信息) (1)选择measure offset(测量补偿),alignment(光路校正),measure background(测量空白),loading(加样浓度),start 1 run(开始测量 (2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择include pids,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高, 反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制 好浓度,obscuration应稳定在8-12%:假如选择了pids,则要把pids稳定在40-50%,待软 件出现ok提示后,点击done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm 6思考题 6.1 ls230/vsm+激光粒度仪的技术特点 ls230/vsm+激光粒度仪的特点是测量的动态范围宽、测量速度快、操作方便,尤其适合 测量粒度分布范围宽的粉体和液体雾滴。 (1)双镜头专利技术:避免了更换镜头的麻烦,测量宽分布颗粒时,大、小颗粒的信息 在一次分析中都可得到,大大提高了分析精度。 (2)pids(偏振光强度差)专利技术:用三种方法改进了对小颗粒的测定:多波长(450nm,

粒度仪实验报告

粒度的测定实验报告 1.实验名称:利用LS230/VSM+激光粒度仪对果珍果汁进行粒度分析 2.实验目的:(1)了解粒度仪的原理及使用方法; (2)对果珍果汁的粒径进行测定分析。 3.实验步骤:(1)前期准备:去离子水,果汁,滴管; (2)利用粒度仪对果汁的粒度进行测定; (3)对数据进行分析处理。 4.粒度仪原理:通过动态光散射进行粒度测量 4.1粒子的布朗运动 悬浮在液体中的粒子由于同溶剂分子的随机碰撞而产生布朗运动。这种运动会造成粒子在整个媒介中扩散。根据斯托克斯爱因斯坦方程,扩散系数D与粒度成反比: D:扩散系数;k B:波耳兹曼常数;T:绝对温度;η0:粘度;d:流体力学直径 此方程表明,对于较大的粒子,D会相对较小,因而粒子会缓慢移动;而对于较小粒子,D会较大,并且粒子将更快速地移动。因此,通过观察布朗运动以及测定液体媒介中粒子的扩散系数,便可以测定粒子的粒径。 4.2来自布朗运动中粒子的光散射 在动态光散射中,测量布朗运动中粒子所散射光线随时间的波动。图2.1.2通过动态光散射测定粒度通过示意图表明如何通过光散射法来测定粒度及其粒度分布。当激光向粒子照射时,激光光线会向所有方向散射。所观察到的散射光线来源于在一个散射量内的一组散射元素,散射量通过散射角度和检测孔来确定。在任何时刻所观察到的散射光的强度将是每个元素所散射光的干涉的结果,因此将取决于元素的相对位置。如果微粒在运动,则微粒的相对位置将随时间变化,并且因此将会观察到散射强度在时间上的波动。 由于布朗运动中的粒子是随机移动的,所以散射强度的波动也是随机的。对于快速运动的较小粒子,波动将会快速地发生;而对于较慢运动的较大粒子,波动会慢一些。使用自相关函数对散射光的波动进行分析。

弹性模量的测量实验报告

弹性模量的测量实验报告 一、拉伸法测量弹性模量 1、实验目的 (1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。 2、实验原理 (1)、杨氏模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即 L L E S F δ= 这个规律称为胡克定律,其中L L S F E //δ= 称为材料的弹性模量。它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。 本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成: L D FL E δπ2 4= 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。实验的主要问题是测准δL 。δL 一般很小,约10?1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。通过数据处理求出δL 。

测接触角实验方案

测试接触角实验申请 实验内容:主要测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角。 实验目的:通过测定水在石墨、绢云母、石英的接触角,以表征石墨、绢云母、石英的疏水亲水性;通过测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角,可以用来石墨、石英、绢云母的表面能的计算和隐石墨浮选体系中矿物与水、捕收剂与水、矿物与气泡、矿物与捕收剂之间等一系列界面相互作用自由能的计算,进而对各界面之间的范德华力、疏水引力、水化斥力等界面热力学行为进行研究。 样品加工:采用压片机对辉钼矿样品进行压片,制各样品。压片时样品质量为10g,压片压力为2.45×104kPa,压片直径为20mm,压片表面平整光滑。采用“浸渍法”制备捕收剂表面膜,剪取尺寸为20mmx20mm的空白铜板纸,浸入捕收剂纯液中,浸渍时间1min,置于硅胶干燥器内干燥24h,备用。 采用GBX润湿角测量仪测量液体在崮体表面上的接触角。测量时,按照测量接触角的步骤、小心地滴加在固体表面,形成液滴,取10次读数的接触角平均值作为该座滴的接触角。所有测量均在室温(25℃)进行。 实验方法 测量接触角步骤( 自动滴管, 自动平台) 1. 打开计算机 2. 打开接触角仪器的开关 3. 在计算机“桌面”上, 点选GBX digidrop 的快捷方式, 打开接触角的测量与分析软件 4. 选择新的测试选单 5. 选择“Surface Energy Menu” 6. 将滴管针头申到镜头所能看到的范围之内 7. 利用仪器上左下角的旋钮, 将镜头聚焦在滴管之上(通常是滴管最清析, 最大的位置) 8. 在操作软件上的右上角, 点选MVT, 叫出操作选单 9. 选择液滴的大小(VOL) 10. 选择连续摄影模式 11. 将开始拍照录像的时间改成0ms 12. 请点选使用自动成滴系统 13. 请点选“single”, 开始一次的测试 14. 等待仪器自动滴水, 桌面自动升降, 自动在桌面上形成液滴 15. 选择左方的分析功能, 得到你的接触角角度(一共有七种方法, 根据需要选择) 16. 得到你所需要的接触角值 分析表面/界面自由能步骤 ( 在进行本实验之前?Zisman 至少必需准备两种以上的液体, 其它公式必需准备三种以上的液体, 需要极性还是非极性的液体, 请参考)

X射线的布拉格衍射和康普顿散射实验报告

实验名称:X射线的布拉格衍射 X射线的康普顿散射 学院: 班级: 姓名: 学号:

一、实验目的 1. 了解X射线的布拉格衍射与康普顿散射的原理 2. 学会测量X射线特征谱线的波长 3. 学会测量康普顿位移 二、实验仪器名称 X光发射仪、NaCl单晶、LiF单晶、Zr,Cu滤波片 三、实验原理 1.X射线衍射 (1)X射线衍射的基本原理:当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。 (2)布拉格方程的导出 如图1,当X射线投射到晶体上时,可使晶体内部的平面点阵产生散射现象,全部散射线又干涉形成衍射条纹。设相邻散射平面点阵的间距为d,从两相邻平面点阵散射出来的X 射线之间的光程差为2dsinθ,所以相干加强的条件为 其中,为X射线的波长,为掠射角,为干涉级数。上式为布拉格衍射公式,即微波布拉格衍射实验的基本公式。 图1 2.X射线的康普顿散射 (1)康普顿效应:散射光中除了有原波长l0的x光外,还产生了波长l>l0 的x光,其波长的增量随散射角的不同而变化。当X射线或伽马射线的光子跟物质相互作用,因失去能量而导致波长变长的现象。相应的还存在逆康普顿效应——光子获得能量引起波长变短。(2)康普顿频移公式的导出 由光电效应可知,电子在原子中的束缚能只相当于紫外光子的能量,比X光子的能量小得多。于是,康普顿效应可看作X光子与自由电子的散射,电子在散射前静止。设光子在散射前后的能量和动量分别为和,电子在散射后获得动量和动能,散射光子和电子动量入射光子动量的夹角分别为和。 根据动量守恒和能量守恒可得 (1) (2) 由此可解得 (3) (4) 式(3)称为康普顿方程。称为康普顿位移,称为电子的康普顿波长。

康普顿散射

康普顿散射 实验报告 一、实验目的 1. 学会康普顿散射效应的测量技术; 2. 验证康普顿散射的γ光子能量及微分截面与散射角的关系。 二、实验原理 1.康普顿散射 康普顿效应是射线与物质相互作用的三种效应之一。康普顿效应是入射光子与物质原子中的核外电子产生非弹性碰撞而被散射的现象。碰撞时,入射光子把部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。 当入射光子与电子发生康普顿效应时,如图1所示, 其中hν是入射γ光子的能量,hν′是散射γ光子的能量,θ是散射角,e 是反冲电子,Φ是反冲角。 由于发生康普顿散射的γ光子的能量比电子的束缚能要大得多,所以入射的γ光子与原子中的电子作用时,可以把电子的束缚能忽略,看成是自由电子,并视散射发生以前电子是静止的,动能为0,只有静止能量m 0c 2 。散射后,电子获得速度v ,此时电子的能量2220/1E mc m c β==-, 动量为20/1mv m v β=-,其中/v c β=,c 为光速。用相对论的能量和动量守恒定律就可以得到 22200/1m c h m c h νβν'+=-+ (1) 20/cos /1cos /h c m v h c νβνθ'=Φ-+ (2) 式中,hν/c 是入射γ光子的动量,hν′/c 是散射γ光子的动量。 20sin /sin /1h c m v νθβ'=Φ- (3) 由式(1)、(2)、(3)可得出散射γ光子的能量 2 01(1cos )h h h m c ν νν θ'= +- (4) 此式就表示散射γ光子能量与入射γ光子能量、散射角的关系。 2.康普顿散射的微分截面 康普顿散射的微分截面的意义是:一个能量为hv 的入射γ光子与原子中的一个核外电子作用后被散射到θ方向单位立体角里的几率(记作 ()d d σθΩ ,单位:cm 2 /单位立体角)为图1 康普顿散射示意图 反冲电子 散射光子 入射光子

衍射实验报告

单缝衍射光强分布研究 教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分 布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点: sgs-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度 的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说 明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有 助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体 分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相 对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会sgs-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理 解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规 律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细 线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果 障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射 [fresnel diffraction],单 缝距离光源和接收屏[receiving screen] 均为有限远[near field],或者说入射波和衍射波都 是球面波;另一 种是夫琅禾费衍射[fraunhofer diffraction],单缝距离光源和接收屏 均为 无限远[far field]或相当于无限远,即入射波和衍射波都可看作 是平面波。 在用散射角[scattering angle]极小的激 光器(<0.002rad)产 生激光束[laser beam], 通过一条很细的狭缝(0.1~0.3mm宽),在狭缝后大于0.5m的地方 放上观察屏,禾费衍射条纹,如图1所示。 当激光照射在单缝上时,根据惠更斯—菲涅耳原理[huygens- fresnel principle],单 缝上每一点都可看成是向各个方向发射球面 子波的新波源。由于子波迭加的结果,在屏 上可以得到一组平行于单 缝的明暗相间的条纹。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告 一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是= 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电

方程: (1) 式中,γ为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初 速度, 为被光线照射的金属材料的逸出功,2 21mv 为从金属逸出的光电子的 最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是 h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频

相关文档