文档库 最新最全的文档下载
当前位置:文档库 › 数据采集与信号处理

数据采集与信号处理

数据采集与信号处理
数据采集与信号处理

数据信息采集与处理

基本内容:基于FFT的功率谱分析程序设计与应用

1.基本要求

1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。

已知信号x(n)=80.0*COS(2*3.14*SF*n/FS)

式中:n=0,1,2 ……N-1

SF---信号频率

FS---采样频率

其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为:W(k)=2(XR(k)2 +XI(k)2)/N

式中:k=0,1,2 ……N/2-1

XR(k)--- X(k)的实部

XI(k)--- X(k)的虚部

请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MA TLAB计算。处理结果为采用窗口显示时域波形和频域波形。

此信号的时域谱、频域谱、功率谱如下面图1~图3所示:

图1

图2

图3 其MA TLAB代码为:

FS=200;

SF=10;

N=1024;

n=0:N-1;

t=n/FS;

x=80.0*cos(2*3.14*SF*t);

figure;

plot(t,x);

xlabel('t');

ylabel('y');

title('x=80.0*cos(2*3.14*SF*t)时域波形');

grid;

y=fft(x,N);

mag=abs(y);

f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换

figure;

plot(f(1:N/2),mag(1:N/2));%做频谱图

xlabel('频率(Hz)');

ylabel('幅值');

title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024');

grid;

Py =2*(y.*conj(y))/N; %计算功率谱密度Py

figure;

plot(f(1:N/2),Py(1:N/2));

xlabel('频率(Hz)');

ylabel('功率谱密度');

title('x=80.0*cos(2*3.14*sf*t)功率谱密度');

grid;

2)对实验所采集的转子振动信号进行频谱分析

50100150200

250300350400450500

00.20.40.60.8

1

1.2

1.4

频率(Hz)

幅值

转子振动信号频谱图

图4

其MA TLAB 代码:

SF=1000;

fid = fopen('D:\数据采集与信号处理作业\信号处理大作业\sanjiao_45HZ_1024_1000HZ');%转子信号 [a,N]= fscanf(fid,'%f'); fclose(fid);

y=fft(a,N);%FFT 运算

Pyy =sqrt(y.*conj(y))*2.0/N; %取功率普密度 f=(0:length(Pyy)-1)*SF/length(Pyy); LPyy=20*log10(Pyy);

plot(f(1:N/2),Pyy(1:N/2));%输出FS/2点幅频谱图 xlabel('频率(Hz)'); ylabel('幅值');

title('转子振动信号频谱图'); grid;

2. 讨论

1) 信号经过均值化处理或不经过均值化处理的结果比较:

图5

图6

通过以上两个图(图5、图6)的分析,我们可以看出均值化处理后的频谱的低频段消失,这就去去除了常规的干扰频谱,如环境噪声等,对我们进行频谱分析有很大作用。

其MA TLAB代码为:

Fs=200; %采样频率

n=0:1:200;

N=1024;

SF=10; %信号频率

xn=80.0*cos(2*3.14*SF*n/Fs)+70;%产生波形序列

window=boxcar(length(xn)); %矩形窗

nfft=512;%采样点数

[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法

plot(f,Pxx);

xlabel('频率(Hz)');

ylabel('功率谱密度');

title('含有直流分量的余弦曲线未均值化的功率谱波形图');

grid;

2)采用不同窗函数时的谱结果(矩形窗函数, 汉宁窗函数,汉明窗)如图7~12所示。

图7

图8

图9

图10

图11

图12

其MA TLAB代码为:

y=fft(x,N);

mag=abs(y);

f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换

w_han=(hanning(N))';

y1=x.*w_han;

figure;

plot(t,y1);

xlabel('t');

ylabel('y');

title('汉宁窗时域波形');

grid;

y2=mag.*w_han;

figure;

plot(f(1:N/2),y2(1:N/2));

xlabel('频率(Hz)');

ylabel('幅值');

title('汉宁窗频域特性');

grid;

w_rect=(rectwin(N))';

y3=x.*w_rect;

figure;

plot(t,y3);

xlabel('t');

ylabel('y');

title('矩形窗时域波形');

grid;

y4=mag.*w_rect;

figure;

plot(f(1:N/2),y4(1:N/2));

xlabel('频率(Hz)');

ylabel('幅值');

title('矩形窗频域特性');

grid;

w_ham=(hamming(N))';

y5=x.*w_ham;

figure;

plot(t,y5);

xlabel('t');

ylabel('y');

title('汉明窗时域波形');

grid;

y6=mag.*w_ham;

figure;

plot(f(1:N/2),y6(1:N/2));

xlabel('频率(Hz)');

ylabel('幅值');

title('汉明窗频域特性');

grid;

3)典型函数的频谱(矩形窗函数, 汉宁窗函数,直线,阶跃函数,δ函数,方波,三角波等),如图13~18所示。

050100150200250

0.511.52矩形窗函数的时域波形图

050

100150

100

200

300

矩形窗函数频域波形图

频率

幅值

图13

50

100

150

200

250

300

00.20.40.60.81δ函数的时域波形图

050

100150

0.511.5

2δ函数的频域波形图

频率

幅值

图 14

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

00.5

1

方波的时域波形图

050

100150

50

100

150

方波的频域波形图

频率

幅值

图 15

50

100

150

200

250

300

00.20.40.60.81汉宁窗函数的时域波形图

050

100150

50

100

150

汉宁窗函数频域波形图

频率

幅值

图 16

050100150200250300

0.511.52阶跃函数的时域波形图

050

100150

100

200

300

阶跃函数的频域波形图

频率

幅值

图 17

00.020.040.060.080.10.120.140.160.180.2

-1

-0.500.51三角波的时域波形图

050

100150

204060

80三角波的频域波形图

频率

幅值

图18

此部分MA TLAB 代码如下:

t=0:0.001:0.2;

N=256;

FS=300;

w=boxcar(N); %产生信号

figure;

plot(w);title('矩形窗函数的时域波形图');

axis([0,260,0,2]);grid on;

y=fft(w,N); %FFT运算

mag=abs(y);%取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图title('矩形窗函数频域波形图');grid;

xlabel('频率');ylabel('幅值');

t=0:0.001:0.2;

N=256;

FS=300;

w=hanning(N); %产生信号

figure;

plot(w);title('汉宁窗函数的时域波形图');

grid on;

y=fft(w,N); %FFT运算

mag=abs(y); %取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图title('汉宁窗函数频域波形图');

grid on;

xlabel('频率');ylabel('幅值');

t=0:0.001:0.2;

N=256;

FS=300;

w=1; %产生信号

y=fft(w,N); %FFT运算

mag=abs(y); %取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图

title('直线频域波形图');

grid on;

xlabel('Frequency(Hz)');ylabel('Magnitude');%阶跃函数的频域波图

clc;clf;t=0:0.001:0.2;

N=256;

FS=300;

w=ones(1,N); %产生信号

figure;

plot(w);

title('阶跃函数的时域波形图');

grid on;

y=fft(w,N); %FFT运算

mag=abs(y);%取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图

title('阶跃函数的频域波形图');

grid on;

xlabel('频率');ylabel('幅值');

t=0:0.001:0.2;

N=256;

FS=300;

w=zeros(1,N);w(1)=1; %产生信号

figure;

plot(w);

grid on;

title('δ函数的时域波形图');

y=fft(w,N);%FFT运算

mag=abs(y);%取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图

title('δ函数的频域波形图');

grid on;

xlabel('频率');ylabel('幅值');

t=0:0.001:0.2;

N=256;

FS=300;

w=square(2*pi*50*t); %产生信号

figure;

plot(t,w);

title('方波的时域波形图');

axis([0,0.2,-0.2,1.2]);

grid on;

y=fft(w,N); %FFT运算

mag=abs(y); %取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图title('方波的频域波形图');

grid on;

xlabel('频率');ylabel('幅值');

t=0:0.001:0.2;

N=256;

FS=300;

w=sawtooth(2*pi*50*t,0.5);

figure;

plot(t,w);

grid on;

title('三角波的时域波形图');%产生信号

y=fft(w,N); %FFT运算

mag=abs(y); %取幅值

f=(0:length(y)-1)*FS/length(y);

figure;

plot(f(1:N/2),mag(1:N/2)); %输出FS/2点幅频谱图title('三角波的频域波形图');

grid on;

xlabel('频率');ylabel('幅值');

4)整周期和非整周期采样时两者的比较,如图19~图22所示。

图19

图20

图21

图22 此部分的MATLAB代码为:

FS=900;

SF=10;

N=1024;

n=0:N-1;

t=n/FS;

x=80.0*cos(2*3.14*SF*t);

figure;

plot(t,x);

xlabel('t');

ylabel('y');

title('非整周期时域波形');

grid;

y=fft(x,N);

mag=abs(y);

f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换figure;

plot(f(1:N/2),mag(1:N/2));%做频谱图

xlabel('频率(Hz)');

ylabel('幅值');

title('非整周期幅频谱图N=1024');

grid;

FS=1024;

SF=10;

N=1024;

n=0:N-1;

t=n/FS;

x=80.0*cos(2*3.14*SF*t);

figure;

plot(t,x);

xlabel('t');

ylabel('y');

title('整周期时域波形');

grid;

y=fft(x,N);

mag=abs(y);

f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换figure;

plot(f(1:N/2),mag(1:N/2));%做频谱图

xlabel('频率(Hz)');

ylabel('幅值');

多普勒信号处理系统

多普勒信号处理系统 1.测量系统中的噪声 噪声是真是信息之外测量所得的值,往往也成为有害信号。广义的讲,噪声是扣除被测信号真实值之后的各种测量值,不论这些非零测量值的来源是外界环境、测量系统、测量人员,还是测量对象。广义的噪声分为两类:一是干扰,另一被称为噪声(狭义)。 干扰是指非被测信号或非测量系统所引起的噪声,是来自于外界仿若影响造成的非信号测量值。这些外界干扰可能来自于宇宙,如宇宙射线、宇宙电磁干扰,也可能是认为的其他器件,如开关的电火花、强电视信号、计算机的高频辐射等等。最通常的是市电的干扰和附近有强电的外部器件。 从理论上来说,干扰是属于理想上可排除的噪声。不少干扰源发出的干扰是有规律的,因此我们可以通过屏蔽、工作时间错开、电源净化器等手段,对这些干扰加以排除或削弱。 狭义的噪声是指来自于北侧对象,传感器的噪声。其特点是:不可能彻底排除,只能设法减少,这些噪声为电子噪声。它们最常见的是热噪声、散粒噪声和低频噪声。 (1).热噪声 热噪声也常称为约翰逊噪声,是1928年约翰逊首先发现的。任何电子器件,其中纵有电传导载流子,当处于一定温度环境下,这些载流子必做无规则运动。这种热运动将使器件中载流子的定向流动有起伏变化,这就形成器件闭路时的热噪声电流。即使器件开路,热运动也会形成开路噪声电压(热运动使体内电荷分布出现起伏)。奈奎斯特从热力学出发,获得了与实验一致的规律。热噪声电压有效值为 =(4kTR△f)1/2 V N 式中:k是波尔兹曼常数,T是绝对温度,R是器件的等效负载电阻,△f 是系统的频带宽度。其热噪声电流有效值为 =(4kT△f/R)1/2 I N 它们说明热噪声有效值与系统允许通过的电信号的频带宽度的平方根成正比,带宽越宽,噪声越大。因此可以认为热噪声有各种频率,其低频、高频的热噪声幅度(只要带宽相同)是相同的。所以我们成热噪声为白噪声。 (2).散粒噪声 即使进入探测器的光强宏观上是稳定的,但从光的量子特性可知,相等的测量时间内进入探测器的光子数是有涨落的,这在测量中就会形成散粒噪声。 另外,光电传感器作为光电转换时,有转换效率即量子效率问题。我们所说的量子效率只是一种平均值,实际也是变化起伏的。这也构成一种散粒噪声,

数据采集与处理技术

数据采集与处理技术 参考书目: 1.数据采集与处理技术马明建周长城西安交通大学出版社 2.数据采集技术沈兰荪中国科学技术大学出版社 3.高速数据采集系统的原理与应用沈兰荪人民邮电出版社 第一章绪论 数据采集技术(Data Acquisition)是信息科学的一个重要分支,它研究信息数据的采集、存贮、处理以及控制等作业。在智能仪器、信号处理以及工业自动控制等领域,都存在着数据的测量与控制问题。将外部世界存在的温度、压力、流量、位移以及角度等模拟量(Analog Signal)转换为数字信号(Digital Signal), 在收集到计算机并进一步予以显示、处理、传输与记录这一过程,即称为“数据采集”。相应的系统即为数据采集系统(Data Acquisition System,简称DAS)数据采集技术以在雷达、通信、水声、遥感、地质勘探、震动工程、无损检测、语声处理、智能仪器、工业自动控制以及生物医学工程等领域有着广泛的应用。 1.1 数据采集的意义和任务 数据采集是指将温度、压力、流量、位移等模拟量采集、转换为数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 数据采集系统的任务:采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。与此同时,将计算得到的数据进行显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的好坏,主要取决于精度和速度。 1.2 数据采集系统的基本功能 1.数据采集:采样周期

传感技术与传感网

传感技术及传感网 传感技术同计算机技术与通信技术一起被称为信息技术的三大支柱。从仿生学观点,如果把计算机看成处理和识别信息的“大脑”,把通信系统看成传递信息的“神经系统”的话,那么传感器就是“感觉器官”。传感技术是关于从自然信源获取信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器(又称换能器)、信息处理和识别的规划设计、开发、建造、测试、应用及评价改进等活动。获取信息靠各类传感器,它们有各种物理量、化学量或生物量的传感器。按照信息论的凸性定理,传感器的功能与品质决定了传感系统获取自然信息的信息量和信息质量,是高品质传感技术系统的构造第一个关键。信息处理包括信号的预处理、后置处理、特征提取与选择等。识别的主要任务是对经过处理信息进行辨识与分类。它利用被识别(或诊断)对象与特征信息间的关联关系模型对输入的特征信息集进行辨识、比较、分类和判断。因此,传感技术是遵循信息论和系统论的。它包含了众多的高新技术、被众多的产业广泛采用。它也是现代科学技术发展的基础条件,应该受到足够地重视。 就目前的现状来看无论是国内还是国外,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们。从80年代起才开始重视和投资传感技术的研究开发或列为重点攻关项目,不少先进的成果仍停留在研究实验阶段,转化率比较低。我国从60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号处理和识别系统仍然依赖进口。同时,我国传感技术产品的市场竞争力优势尚未形成,产品的改进与革新速度慢,生产与应用系统的创新与改进少。 为了发展先进制造与振兴机械工业的要求和国内外发展趋势的分析,传感技术攻关的目标是:提高传统传感技术等级、可靠性和可应用性水平,增强竞争力;积极创新系统,开发新产品,缩小差距,支持和促进我国先进制造技术的发展,振兴制造业。主要研究内容:1)传统传感技术与系统的研究开发。侧重应用量大、面广的力/力矩、功率/电流、视觉、声振、光学、振动、触针等工业用及

数字信号处理系统的设计

《DSP技术与应用---基于TMS320C54X》 实验指导书 湘潭大学信息工程学院 姚志强 2010.09.23

TMS320VC5402 DSK使用注意事项 1) 先用并口电缆和串口线(用到的话)将TMS320VC5402DSK与PC机相连, 而后再将电源接上,打开Code Composer Studio(简称CCS)后有可能报TMS320VC5402DSK和PC机未能连上的错误,可在PC机的CMOS_BIOS重新设置并行口的特性。 2) 将TMS320VC5402DSK上的DIP Switches的5、6置ON,其它置OFF。 3) 要在关闭CCS后及在断电的情况下插拔USB电缆线和串口线。 4) 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口容 易损坏。 5) TMS320VC5402DSK电路板上大多是CMOS集成电路,为防止静电击毁, 在拿出实验电缆后请立即将玻璃盖复原,任何时候都请不要用手及其它带电物体直接和电路板接触。 实验报告的撰写 1) 每个实验都单独写实验报告。 2) 实验要求和目的; 3) 实验主要内容; 4) 看懂程序代码,并画出程序流程图; 5) 作出硬件描述(如果与DSK板硬件有关); 6)实验结果和心得。 实验注意事项 1) 实验项目所建工程文件统一放在F:\TI\CCS\myprojects下,其余盘在重启后会复原。 2) 实验过程中,不要涉及到中文路径(CCS不支持),包括CCS程序安装路径、文件添加路径、实验源文件名称等。 3) 实验七CODEC语音回放实验用到DSK板,需要自带耳麦,请准备好。

实验一 CCS的安装与CCS操作界面的熟悉 一、实验目的 学会安装与设置Code Composer Studio。 熟悉CCS软件的操作界面。 二、实验设备 CCS安装光盘(本次安装程序在D:\DSP\ccs2.0ForC5000)、装有Windows 98以上操作系统的PC机 三、实验内容及步骤 https://www.wendangku.net/doc/3b7069922.html,S的安装 安装前需要卸载系统原来的C5000,进入控制面板进行卸载完毕后,再开始下面的步骤。 (1)找到CCS的安装软件,点击安装程序setup.exe,双击启动安装。安装完成后在 桌面上会有“CCS 2 C5000”和“SETUP CCS 2 C5000”两个快捷方式图标,分别对应CCS应用程序和CCS配置程序。 (2)双击运行“SETUP CCS 2 C5000”配置程序,配置驱动程序。本次实验没有用到实验箱,只需配置软件驱动程序。在弹出的“Import Configurantions”对话框中,先点击“Clear”键,清除以前的配置,然后选择“C5402 Simulator”,点击“Import”,最后点击“Save and Quit”按钮,完成配置。 https://www.wendangku.net/doc/3b7069922.html,S操作界面的熟悉 (1)在桌面上双击“CCS 2 C5000”,弹出一个TI仿真器并行调试管理器窗口。 (2)在管理器窗口的“open”菜单下选择“C54xx(C5402) Simulator”命令,将弹出一个CCS运行主窗口(如果直接弹出CCS运行主窗口,此步可略)。 (3) 点击Help_>Contents打开TMS320C54x Code Composer Stdio Help,在左边Contents列表中点击最后一个TMS320C5402 DSK,浏览了解其下所有子列表的内容,熟悉DSK板的基本硬件、配置及功能。 (4)对照教材介绍CCS的地方,逐一熟悉CCS中的12项菜单的功能,包括File、Edit、View、Project、Debug、Profiler、Option、GEL、Tools等菜单(结合实验二建立项目熟悉更好)。 (5)对照教材,逐一熟悉CCS的五种工具栏:Standard Toolbar、GEL Toolbar、Project Toolbar、Debug Toolbar、Edit Toolbar(结合实验二建立项目熟悉更好)。

传感技术与应用论文

光电传感器的应用与研究 学院名称:邵阳学院专业名称:自动化年级班别: 13 姓名:史利东指导教师:罗卲屏 2015年5 月 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键词:PSD,效应,原理,光电传感器 目录 摘要 (1) 一、绪论 (3) 1.1光电传感器概述 (3) 1.2光电传感器发展 (4) 二、光电传感器的基本原理 (7) 2.1光电效应 (7) 2.2光电原件及特性 (8) 2.3光电传感器 (11) 三、新型的光电传感器 (15) 3.1 CCD传感器 (15) 3.2光纤传感器 (16) 3.3光电位传置感器 (6) 四、其他的光电传感器 (20) 4.1 高速光电二极管 (20) 4.3 光位置传感器 (22)

五、光电传感器的应用 (23) 5.1光电传感器的优点 (23) 5.2光电传感器的具体应用举例 (23) 六、我对光电传感器的看法 (26) 七、结论 (28) 一、绪论 1.1光电传感器概述 (1)定义 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。(2)光电传感器的分类 光电元件有光敏电阻、光电二极管、光电三极管、发光二极管(LED)、光电倍增管、光电池、光电耦合器件等。由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质,光电式传感器可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器;模拟式光电传感器按被测量(检测目标物体)方法又可分为透射(吸收)式、漫反射式、遮光式(光束阻挡)三大类。 1.槽开光电开关把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。2.对射式光电开光若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为以射分离式光电开光,简称对射式光电开关。 3.反光板反射式光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。 4.扩散反射式光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是收不到的;当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关控制信号。 光纤式光电开关把发光器发出的光用光纤引导到检测点,再把检测到的光信号用光纤引导到光接收器就组成光纤式光电开关。按动作方式的不同,光纤式光电开关也可分成对射式、反光板反射式、扩散反射式等多种类型。 (3)光电传感器的作用

传感器与信号处理

《传感器与检测技术》试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 3、光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为三类。第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、光电倍增管;第二类是利用在光线作用下使材料内部电阻率改变的内光电 效应,这类元件有光敏电阻;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类元件有光电池、光电仪表。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 9. 电位器传器的(线性),假定电位器全长为Xmax, 其总电阻为Rmax ,它的滑臂间的阻值可以用Rx = (① Xmax/x Rmax,②x/Xmax Rmax ,③ Xmax/XRmax ④X/XmaxRmax )来计算。 10、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 11、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 12、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 13、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。 14、热电偶所产生的热电势是由两种导体的接触电势和单一导体的温差电势组成。 15、电阻应变片式传感器按制造材料可分为① _金属_ 材料和②____半导体__体材料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 _电阻应变效应 形成的,而②的电阻变化主要是由 温度效应造成的。 半导体 材料传感器的灵敏度较大。 16、在变压器式传感器中,原方和副方互感M 的大小与 绕组匝数 成正比,与 穿过线圈的磁通_成正比,与磁回路中 磁阻成反比。 17.磁电式传感器是利用导体和磁场发生相对运动而在导体两端 产生感应电势的。而霍尔式传感器为霍尔元件在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式传感器可用来测量电流,磁场,位移,压力。(6分) 18.测量系统的静态特性指标通常用输入量与输出量的对应关系来表征(5分) 简答题 1 简述热电偶的工作原理。(6分)

传感器与信号处理电路习题答案

第1章 传感器与检测技术基础 1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至 2.5V ,求该仪器的灵敏度。 解:该仪器的灵敏度为 25 .40.55.35.2-=--=S V/mm 2.某测温系统由以下四个环节组成,各自的灵敏度如下: 铂电阻温度传感器: 0.45Ω/℃ 电桥: 0.02V/Ω 放大器: 100(放大倍数) 笔式记录仪: 0.2cm/V 求:(1)测温系统的总灵敏度; (2)记录仪笔尖位移4cm 时,所对应的温度变化值。 解: (1)测温系统的总灵敏度为 18.02.010002.045.0=???=S cm/℃ (2)记录仪笔尖位移4cm 时,所对应的温度变化值为 22.2218 .04==t ℃ 6.有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 解:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器。 10.试分析电压输出型直流电桥的输入与输出关系。 答:如图所示,电桥各臂的电阻分别为R 1、 R 2、 R 3、R 4。U 为电桥的直流电源电压。当四臂电阻R 1=R 2=R 3=R 4=R 时,称为等臂电桥;当R 1=R 2=R ,R 3=R 4=R ’(R ≠R ’)时,称为输出对称电桥;当R 1=R 4=R ,R 2=R 3 =R ’(R ≠R ’)时,称为电源对称电桥。 D 直流电桥电路 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以可以认为电桥的负载电阻为无穷大,这时电桥

大数据采集与信号处理

数据信息采集与处理

基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中: n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱、频域谱、功率谱如下面图1~图3所示: 图1

图2 图3 其MATLAB代码为: FS=200; SF=10;

N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); figure; plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 figure; plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py figure; plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid; 2)对实验所采集的转子振动信号进行频谱分析

信号处理与分析

第七章信号处理与分析 6.1概述 数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。 目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。 通过分析和处理数字信号,可以从噪声中分离出有用的信 息,并用比原始数据更全面的表格显示这些信息。下图显示的是 经过处理的数据曲线。

用于测量的虚拟仪器(VI) 用于测量的虚拟仪器(VI)执行的典型的测量任务有: ●计算信号中存在的总的谐波失真。 ●决定系统的脉冲响应或传递函数。 ●估计系统的动态响应参数,例如上升时间、超调量等等。 ●计算信号的幅频特性和相频特性。 ●估计信号中含有的交流成分和直流成分。 在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性: ●输入的时域信号被假定为实数值。 ●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行 图形的绘制。 ●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二 分之一取样频率)。(即没有负频率出现) ●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰 值,可以精确地限制信号的幅值。 一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。 有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。 本章我们将介绍测量VI中常用的一些数字信号处理函数。 LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。

传感技术与信号处理

浙江工业大学之江学院010/011 学年 第二学期《传感技术与信号处理》期终试卷 (考试类型:闭卷) 班级姓名学号 一、填空( 每空1.5分共45分) 1.通常把频谱中作为信号的频宽,称为1/10法则;对于有跃变的信号,取作为频宽。 2.测试装置的灵敏度愈高,测量范围往往愈________,稳定性愈______。 3.若要信号在传输过程中不失真,测试系统的输出和输入的幅频特性必须满足(表达式)__________________,相频频特性必须满足(表达式)__________________。 4.为了消除应变片的温度误差,可采用的温度补偿措施包括:、、 和。 5. 电感式传感器按工作原理可分为_______________、________________和电涡流式三种。 6.为了提高极距变化式电容传感器的灵敏度,应_______初始间隙。但初始间隙过_______时,一方面使测量范围_______,另一方面容易使_______击穿。 7.压电式传感器测量电路的前置放大器有_________________和_________________两种,_________________作为前置放大器时压电式传感器输出信号与测量导线的距离无关。 8. 光电耦合器是由一个和一个共同封装在一个外壳内组成的复合型转换元件,又称为。 9.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B=_____________莫尔条纹的放大倍数K=_____________。 10.热电偶产生热电势必须具备的基本条件是 ____________、____________。 11.霍尔式传感器为______ _______在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式元件的电路符号图为:_________________。 14.热电动势由两部分电动势组成,一部分是两种导体的________电动势,另一部分是单一导体的______电动势。

信号与系统和数字信号处理

833-信号与系统和数字信号处理 一、考试目的 1. 信号与系统 考查学生是否掌握信号与线性系统的基本概念、基本理论和线性时不变连续(离散)系统的时域、变换域分析方法,以及相关的分析问题、解决问题的能力。 2. 数字信号处理 考察学生是否掌握数字信号处理的基本知识以及运用理论解决实际问题的能力。 二、考试要求 1. 信号与系统 掌握信号与系统的概念、表征、分类与判断;熟悉信号的分解与基本运算,特别是卷积积分(和)的定义、性质与运算;时域法会求LTI连续(离散)系统的各种响应;掌握连续(离散)信号各种变换域(FS、FT、LT,ZT、DTFT)分析法的定义、性质、反变换;并熟练应用于LTI连续(离散)系统分析;熟悉无失真传输、理想滤波器、系统的物理可实现条件、抽样定理、调制与解调的概念,掌握它们在系统分析中的应用;熟悉系统函数的概念、零极图表示,结合收敛域会判断系统的因果性、稳定性;掌握连续(离散)系统的频率响应,能大致画出系统的幅频特性,并说明其滤波性能;掌握状态方程与输出方程的概念、建立与求解;并能判断系统的稳定性、可控性与可观性。 2. 数字信号处理 掌握离散时间信号和系统分析的基本原理和基本分析方法;理解离散傅里叶变换的基本原理,运用离散傅里叶变换快速算法解决实际问题的能力;掌握数字滤波器的基本概念及结构。 三、考试内容与比例 1. 信号与系统(占70%) 1)连续(离散)信号的描述与分类;典型信号的定义、表征与性质;信号的分解、基本运算,特别是卷积积分(和)的定义、性质与运算;系统的概念、连接与分类。 2)线性连续(离散)系统的数学模型与算子表示;时域分析法求解LTI连续(离散)系统的自由响应、受迫响应,冲激响应、阶跃响应,零输入响应、零状态响应以及全响应,了解瞬态响应与稳态响应;连续(离散)LTI系统的模拟框图、特征函数与系统特性。 3)周期信号的傅立叶级数与频谱;周期信号、非周期信号以及抽样信号的傅立叶变换与频谱;能量谱与功率谱;线性连续系统的频域分析法,频率响应;无失真传输,理想滤波器,系统的物理可实现条件,抽样定理,调制与解调。

数据采集与信号处理.

哈尔滨理工大学 研究生考试试卷 考试科目:数据采集与信号处理阅卷人: 专业: 姓名: 2013年06月21日

一、基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中:n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱,频域谱,功率谱如下图所示:

其MA TLAB代码为: FS=200; SF=10; N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); subplot(221); plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 subplot(222); plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py subplot(223) plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid;

《检测传感技术》期末复习题参考答案_97451457072171904

中国石油大学(北京)远程教育学院 《检测传感技术》期末复习题参考答案 一、填空题(本题每一填空计2分,共计占总分的40%) 1. 一个完整的测试系统由激励装置、传感器、信号调理、信号处理、显示记录等五个基本环节组成。 2. 在测试系统中,激励装置的功能是激发隐含的被测信息;传感器的功能是将被测信息转换成其他信息;信号调理环节的功能是将传感器获得的信息转换成更适合于进一步传输和处理的形式;信号处理环节的功能是对来自信号调理环节的信息进行各种处理和分析;显示记录环节的功能是显示或存储测试的结果。 3. 不失真测试即测试系统的输出要真实地反映其输入的变化。为实现不失真测试,系统频率响应需要满足的条件是:幅频特性为常数;相频特性呈线性。对系统瞬态响应的要求是:瞬态误差小;调整时间短。 4. 测试工作的任务主要是要从复杂的信号中提取有用信号。 5. 测试信号的时域特征参数主要有均值、方差和均方值。 6. 信号的均值反映随机信号变化的中心趋势;信号的方差反映随机信号在均值附近的分布状况;信号的均方值反映随机信号的强度。 7. 任何周期信号均可分解为一系列频率比为有理数的简谐信号, 其频谱特性包括离散性、谐波性、收敛性。 8. 频率单一的正弦或余弦信号称为谐波信号。一般周期信号由一系列频率比为有理数的谐波信号叠加而成。 9. 周期信号的频谱特性:离散性即各次谐波分量在频率轴上取离散值;谐波性即各次谐波分量的频

率为基频的整倍数;收敛性即各次谐波分量随频率的增加而衰减。 10. 瞬态信号是在有限时间段存在,属于能量有限信号。 11. 瞬态信号的频谱为连续谱,其幅值频谱的量纲为单位频宽上的幅值,即幅值频谱密度函数。 12. 瞬态信号的时域描述与频域描述通过傅立叶变换来建立关联。 13. 不能用确定的数学公式表达的信号是随机信号。 14. 从时域上看,系统的输出是输入与该系统脉冲响应的卷积。 15. 测试系统的静特性主要包括线性度、灵敏度和回程误差。 16. 一阶测试系统的基本参数是时间常数。根据对测试系统的基本要求及一阶测试系统的频率响应和单位阶跃响应,一阶测试系统的基本参数的选取原则是时间常数小。 17. 二阶测试系统的基本参数是固有频率和阻尼比。 18. 测量传感器的动态特性的实验方法包括频率响应法和时间响应法。 19. 测试系统动态特性的测定方法包括阶跃响应试验和频率响应试验。 20.用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值的0.632倍所经过的时间作为时间常数。 21. 用二阶系统作测量装置时,为获得较宽的工作频率范围,则系统的阻尼比应接近0.7。 22. 金属丝应变片依据应变效应工作;半导体应变片依据压阻效应工作。 23. 压力传感器由弹性敏感元件和机电转换元件两部分组成。

信号处理与数据分析复习要点总结

2013年《信号处理与数据分析》课程要点 第I部分信号与系统的基本原理 第1章信号与线性时不变系统 ●信号与系统的概念 ●连续时间信号与离散时间信号的表示 ●几个重要信号,掌握其主要特点与应用 ?连续时间复指数信号 ?连续时间正弦信号 ?离散时间复指数信号 ?离散时间正弦信号 ●谐波的概念,含连续时间谐波和离散时间谐波,各自的特点 ●单位冲激(脉冲)信号与单位阶跃信号的定义、特点与主要应用 ●连续时间系统与离散时间系统的概念与特点 ●系统的基本特性,主要包括: ?记忆性与无记忆性 ?可逆性与可逆系统 ?因果性与稳定性 ?线性与时不变性 ●连续时间与离散时间线性时不变系统的概念 ●连续时间与离散时间卷积的概念与计算 ●线性时不变系统的性质:记忆性、可逆性、因果性、稳定性 第2章傅里叶级数与傅里叶变换 ●连续时间周期信号傅里叶级数的概念与计算 ●离散时间周期信号傅里叶级数的概念与计算 ●两种傅里叶级数的特点与性质 ●连续时间信号傅里叶变换的概念与计算 ●离散时间信号傅里叶变换的概念与计算 ●两种傅里叶变换的特点与性质 第3章信号与系统的频域分析 ●信号频谱的概念与频域分析的用途 ●系统微分方程和差分方程的概念与傅里叶变换求解 ●滤波器与理想滤波器的概念 ●一阶系统与二阶系统的波特图 第4章信号的采样与插值拟合 ●冲激序列采样的基本原理与过程分析 ●频谱混叠的概念与避免的方法 ●采样定理 ●信号的插值与拟合的概念与基本方法 ●最小二乘拟合的基本概念

第5章拉普拉斯变换与z变换 ●拉普拉斯变换的定义与基本计算 ●拉普拉斯变换的性质与应用 ●z变换的定义与基本计算 ●z变换的性质与应用 ●两种变换收敛域的概念与特点 ●系统的方框图表示 第II部分信号的误差分析与预处理 第6章测量不确定度的表示与估计 ●测量不确定度的概念和原因; ●A类标准不确定度、B类标准不确定度以及合成标准不确定度的基本概念; ●静态测量与动态测量的基本概念 第7章粗大误差和野点的判断与处理 ●粗大误差的基本概念以及消除措施; ●趋势项的概念和产生原因; ●趋势项的消除方法; ●异常值的识别方法; 第III部分数字信号处理部分 第8章离散傅里叶变换与快速傅里叶变换 ●离散傅里叶变换(DFT)的定义 ●离散傅里叶变换的性质 ●与DFT相关的几个问题 ?频率分辨率及DFT参数的选择 ?信号补0问题 ?信号的时宽与频宽问题 ?频谱泄漏问题 ?栅栏效应 ?频率混叠问题 ●按时间抽选的基2FFT算法 第9章数字滤波器与数字滤波器设计 ●数字滤波器的概念和特点 ●无限冲激响应(IIR)数字滤波器 ●有限冲激响应(FIR)数字滤波器 ?概念与特点 ?FIR滤波器的直接型结构 ?FIR滤波器的级联型结构 ?线性相位FIR滤波器结构 ●IIR数字滤波器的设计 ?IIR滤波器设计的冲激响应不变法 ?IIR滤波器设计的双线性变换法

基于MATLAB-的脉搏信号处理软件系统

基于MATLAB 的脉搏信号处理软件系统 摘要: 本文根据在实验室里测得的脉搏数据,基于MATLBA设计一个脉搏信号的GUI处理界面,并利用MATLAB强大数字信号处理功能还原脉搏波形,并对波形的特征信息进行提取及存储。原始信号进行了去除基线漂移、通过巴特沃斯带通滤波器以及二阶切比雪夫滤波器去除50HZ工频干扰,并且能计算实时的脉率并更新,显示脉率变化趋势曲线,进行频谱分析和输出文档。 此软件有两个GUI界面,第一个为密码登陆界面,第二个为脉搏信号处理系统GUI界面。第二个GUI界面主要分为五大模块:1.打开与退出模块包括打开数据和退出系统;2.信号回放模块包括对原信号和滤波信号的回放、暂停回放、继续回放、关闭窗口;3.信号放大与缩小模块包括对信号的X轴和Y轴的放大、缩小处理;信号快进退模块包括对信号的快进、慢进、快退、慢退处理;4.脉率实时处理模块包括输出脉率曲线、暂停回放、输出脉搏信息、脉搏频谱分析、清除波形、输出文档;5.脉率信号输出模块包括输出实时的脉率更新、以及脉搏数据的信息,诸如脉搏采样频率、采样时间、最大脉率值、最小脉率等。 关键词:脉搏;脉率;Matlab ;GUI ; 1 引言 人体内部各个生理系统之间(如循环系统、呼吸系统等)是相互耦合的。反映人身体健康状态相对最重要、最全面的是心脏血液循环系统,因此通过采集脉搏波进而分析心脏循环系统功能,能从一个方面较全面反映人体的健康情况。从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。几乎世界上所有的民族都用过“摸脉”作为诊断疾病的手段。脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。目前脉搏信息的研究已经应用于以下几个方面:(1)中医脉象信息的检测与识别;(2)血压的临床检测;(3)心率稳定性的一种简便估计方法;(4)心输出量的一种测量方法;(5)血管功能的一种早期、无创检测方法。 MATLAB(Matrix Laboratory,矩阵实验室)是由美国MathWorks公司开发的一种功能强、效率高、简单易学的可视化软件,覆盖面包括控制、通讯、金融、图像处理、建筑、生物学等几乎所有的行业与科学领域。除了经典的一些算法外,MATLAB 还提供了丰富的数据分析和处理功能模块,如神经网络、小波分析、信号处理、图

信号处理结课论文与作业

数字信号处理技术在电力系统中的发展现状和趋势 摘要:为了适应现代电力系统的要求,先进的数字信号处理技术被应 用到电力系统中,充分发挥了其快速强大的运算和处理能力以及并行 运行的能力,满足了电力系统监控的实时性和处理算法的复杂性等更 高的要求。本文首先简要介绍了电力系统和数字信号处理技术;然后 详细阐述了数字信号处理技术在电力系统中的应用,包括傅里叶变换、 小波变换、现代谱分析、相关分析、数学形态学,并介绍了数字信号 处理技术在电力系统应用中的现状和趋势。 关键词:数字信号处理,电力系统 Abstract: In order to meet the requirements of modern electric power system, the advanced digital signal processing technology is applied to the electric power system. this technology has gave full play to its fast computation and processing capacity and the ability to run in parallel, and it satisfies some higher requirements, such as the real time monitoring of electric power system and the complexity of handle algorithm. This article first briefly introduced the electric power system and digital signal processing technology; And then expounds the application of digital signal processing technology in power system, including Fourier transform, wavelet transform, the modern spectrum analysis, correlation analysis and mathematical morphology, and digital signal processing technology is introduced in the present situation and trend of power system applications. Keywords: digital signal processing, electric power system 1、引言 现代电力系统通过联网已经发展成供电区域辽阔和容量巨大的系统,作为国民经济发展的源动力,我国的电力系统正以空前的规模和速度扩大。随着互联电力系统的增长,尤其是长江三峡工程的崛起,超远距离输电的互联大电网的安全成为更加关心和突出的问题。电力系统是一个庞大的、瞬变的多输入输出的系统,为了保证其安全运行,需要实时地监视各节点的运行状况,及时发现电力系统的不正常状态及故障状态通知运行人员,或快速地进行控制和处理。这要求在电网各节点都要有数据采集单元,将测得的电力系统运行参数转化为数字量,进行分析和控制就地解决问题,或者通过远方通信送往调度中心进行处理。电力系统监视和控制的参数要求实时性较强,不仅包括频率、电压、

相关文档
相关文档 最新文档