文档库 最新最全的文档下载
当前位置:文档库 › §7.2正弦、余弦(2)

§7.2正弦、余弦(2)

§7.2正弦、余弦(2)
§7.2正弦、余弦(2)

§7.2正弦、余弦(2)

主备:李维明 班级________姓名____________

一.学习目标:

1.能够根据直角三角形的边角关系进行计算;

2. 能用三角函数的知识根据三角形中已知的边和角求出未知的边和角.

二.学习重点难点:重点:用函数的观点理解正切,正弦、余弦

难点:在实际问题中运用正切,正弦、余弦等知识解决相关问题.

三.教学过程

【温故知新】

1.在Rt △ABC 中,∠C =90°,分别写出∠A 的三角函数关系式:

sin A =___ __,cos A =____ _,tan A =___ __.

∠B 的三角函数关系式______________ ___________.

2.比较上述中,sin A 与cos B ,cos A 与sin B ,tan A 与tan B 的表达式,你有什么发现?

3.基础训练

①如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,则sin A =_____,cos A =_____,tan A =_____. ②如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,则sin B =_____,cos B =_____,tan B =_____. ③在Rt △ABC 中,∠B =90°,AC =2BC ,则sin C =_____.

④如图,在Rt △ABC 中,∠C =90°,AB =10,sin A =35

,则BC =_____. ⑤在Rt △ABC 中,∠C =90°,AB =10,sin B =45

,则AC =_____. ⑥如图,在Rt △ABC 中,∠B =90°,AC =15,sin C =35

,则AB =_____. ⑦在Rt △ABC 中,∠C =90°,cos A =23

,AC =12,则AB =_____,BC =_____.

第①题 第②题 第④题 第⑥题

【例题解析】

例1.小明正在放风筝,风筝线与水平线成35°角时,小明的手离地面1m ,若把放出的风筝线看成一条线段,长95m ,求风筝此时的高度.(精确到1m )

(参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)

例2.工人师傅沿着一块斜靠在车厢后部的木板往汽车上推一个油桶(如图),已知木板长为4m ,车厢到地面的距离为1.4m .

(1)你能求出木板与地面的夹角吗?

(2)请你求出油桶从地面到刚刚到达车厢时的移动的水平距离.(精确到0.1m )

(参考数据:sin20.5°≈0.3500,cos20.5°≈0.9397,tan20.5°≈0.3739)

例3.(11甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似的,可以在等腰三角形中建立边角之间的联系。我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在△ABC 中,

AB =AC ,顶角A 的正对记作sad A ,这时sad A =底边腰

=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解下列问题:

(1)sad60°= .

(2)对于0°

(3)如图②,已知sin A = 35

,其中∠A 为锐角,试求sad A 的值.

图① 图②

牛刀小试:

【随堂练习】

1.小明从8m 长的笔直滑梯自上而下滑至地面,已知滑梯的倾斜角为40°,求滑梯的高度.(精确到0.1m )(参考数据:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391)

2.一把梯子靠在一堵墙上,若梯子与地面的夹角是68°,而梯子底部离墙脚1.5m ,求梯子的长度.(精确到0.1m )(参考数据:sin68°≈0.9272,cos68°≈0.3746,tan68°≈2.475)

归纳与小结:

课时作业:

1.在Rt △ABC 中,∠C =90o,且锐角∠A 满足sin A =cos A ,则∠A 的度数是__ __.

2. 比较大小:(用>,<或=表示)

①sin40° cos40° ②sin80° cos30° ③sin45° cos45°.

3. 在Rt △ABC 中,∠B =90o,AC =15,sin C =35

,则BC =_______________. 4.已知α为锐角:

(1) sin α= 12

,则cos α=______,tan α=______. (2) cos α= 12

,则sin α=____ __,tan α=______. (3) tan α= 12,则sin α=___ ___,cos α=______. 5. 如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且 cos α= 45

,AB = 4, 则AD 的长为________. 6. 如图,AB 表示地面上某一斜坡的坡面,BC 表示斜面上点B 相对于水平地面AC 的垂直高度, ∠A =14o, AB =240m . 求点B 相对于水平地面的高度(精确到1m). (友情提示:sin14o=0.24, cos14o=0.97, tan14o=0.25)

第5题

课后拓展:

1. 在△ABC 中,∠C =90°,cos B =

1213

,AC =10,求△ABC 的周长和斜边AB 边上的高.

2. 在Rt △ABC 中,∠C =90°,已知cos A =1213

,请你求出sin A 、cos B 、tan A 、tan B 的值.

3. 等腰三角形周长为16,一边长为6,求底角的余弦值.

4. 在△ABC 中,∠C =90°,D 是BC 的中点,且∠ADC =50°,AD =2,求tan B 的值。(精确到0.01m )(参考数据:s in50°≈0.7660,cos50°≈0.6428,tan50°≈1.1918)

5. 在Rt △ABC 中,∠C =90o,点D 在BC 上,sin B =35

,且∠ADC =45,CD =6,求∠BAD 的正切值.

6.(11浙江金华)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)

关于正弦函数和余弦函数的计算公式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

二倍角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

二倍角的正弦余弦和正切公式教案

§3.1.3二倍角的正弦、余弦和正切公式(1)教案 珠海市田家炳中学:温世明 一、知识与技能 1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。 2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力; 3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力. 4.结合三角函数值域求函数值域问题。 二、过程与方法 1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 三、情感、态度与价值观 1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质. 四、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 五、学法与教学用具 学法:研讨式教学,多媒体教学; 六、教学设想: (一)复习式导入:大家首先回顾一下两角和(差)的正弦、余弦和正切公式, ()βαβαβαsin sin cos cos cos =±;()βαβαβαsin cos cos sin sin ±=±; ()β αβ αβαtan tan 1tan tan tan ±= ±. (二) 复习练习: (三)公式推导: 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+= ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢 ?

正弦 余弦 正切二倍角公式及变形升降幂公式(完全版)

§3.1.3二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ++=-. (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα =+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 升降幂公式 2 )cos (sin 2sin 1ααα±=±

αα2cos 22cos 1=+αα2sin 22cos 1=-2 2cos 1cos 2α α+=22cos 1sin 2α α-=}}升幂降角公式 降幂升角公式

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

(二倍角的正弦·余弦·正切公式)教学设计方案

“二倍角的正弦、余弦、正切”教学设计 设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构。发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。阶段的发展不是间断性的跳跃,而是逐渐、持续的变化。皮亚杰的认知发展阶段论为发展性辅导中学生智力发展水平的评估和诊断,提供了重要的理论依据。 教学内容:《普通高中课程标准实验教科书(数学)》必修4(人教A版),第三章、第一节、第145-148页。 “二倍角的正弦、余弦、正切”是在研究了两角和与差的三角函数的基础上研究具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简和证明提供了非常有用的理论工具,通过对二倍角公式的推导知道:二倍角公式的内涵是“揭示具有倍数关系的两个角的三角函数的运算规律”,通过推导还让学生了解高中数学中由“一般”到“特殊”的化归数学思想,因此这节课也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力都有重要意义。 教学目标:根据新课程标准的要求、本节教材的特点和学生对三角函数的认知特点,我们把本节课的教学目标确定为: 1、能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。 2、掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。 3、通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。 学情分析:我们的学生从认知角度上看,已经比较熟练的掌握了两角和与差的三角函数的基础上。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究的能力、较弱。

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

高一数学二倍角的正弦余弦正切

课 题:47 二倍角的正弦、余弦、正切(3) 教学目的: 要求学生能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力 教学重点:二倍角公式的应用 教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 二倍角公式: αααcos sin 22sin =;)(2αS ααα22 sin cos 2cos -=;)(2αC α α α2 tan 1tan 22tan -= ;)(2αT 1cos 22cos 2 -=αα αα2 sin 212cos -=)(2 αC ' 2 2cos 1sin ,2 2cos 1cos 22α -= αα+= α 二、讲解新课: 1.积化和差公式的推导 sin(α + β) + sin(α - β) = 2sin αcos β ? sin αcos β = 2 1 [sin(α + β) + sin(α - β)] sin(α + β) - sin(α - β) = 2cos αsin β ? cos αsin β = 2 1 [sin(α + β) - sin(α - β)] cos(α + β) + cos(α - β) = 2cos αcos β ? cos αcos β = 2 1 [cos(α + β) + cos(α - β)] cos(α + β) - cos(α - β) = - 2sin αsin β

? sin αsin β = - 2 1 [cos(α + β) - cos(α - β)] 2.和差化积公式的推导 若令α + β = θ,α - β = φ,则2φ+θ=α,2 φ -θ=β 代入得: )sin (sin 2 1)]22sin()22[sin(212cos 2sin φ+θ=φ-θ-φ+θ+φ-θ+φ+θ=φ-θφ+θ ∴2cos 2sin 2sin sin φ -θφ+θ=φ+θ 2sin 2cos 2sin sin φ -θφ+θ=φ-θ 2cos 2cos 2cos cos φ -θφ+θ=φ+θ 2 sin 2sin 2cos cos φ -θφ+θ-=φ-θ 3.半角公式 α +α -±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin α α -= α+α=αsin cos 1cos 1sin 2tan 证:1?在 α-=α2 sin 212cos 中,以α代2α, 2α 代α 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-= α 2?在 1cos 22cos 2 -α=α 中,以α代2α,2 α代α 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3?以上结果相除得:α+α-= αcos 1cos 12tan 2 4? 2tan 2cos 2sin 2 cos 2 sin 2) 2sin 21(1sin cos 12ααα α α α α α == --=- 2 tan 2 cos 2sin 12cos 212cos 2 sin 2cos 1sin 2ααα ααα α α ==-+= +

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习 一、知识要点: 1.两角和与差的正弦、余弦、正切公式 (1)():sin()sin cos cos cos S αβαβαβαβ±±=±; (2)():cos()cos cos sin sin C αβαβαβαβ±±=; (3)()tan tan :tan()1tan tan T αβαβαβαβ ±±±=. 2.二倍角的正弦、余弦、正切公式 (1)(2):sin 22sin cos S αααα=α; (2)2222(2):cos2cos sin 2cos 112sin C αααααα=-=-=-; (3)(2)22tan :tan 21tan T αααα =-. 3.常用的公式变形 (1)tan tan tan()(1tan tan )αβαβαβ±=±; (2)221cos 21cos 2cos ,sin 22 αααα+-==; (3)221sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4π ααα±=±. 4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ?θ=+=-其中()?θ可由,a b 的值唯一确定. 两个技巧 (1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等. 【双基自测】

1.(人教A 版教材习题改编)下列各式的值为14 的是( ). A .22cos 112π- B .20 12sin 75- C.0 202tan 22.51tan 22.5- D .00sin15cos15 2.0000 sin 68sin 67sin 23cos68-=( ) A .2- B.2.1 3.(2011·福建)若tan 3,α=则2sin 2cos αα =( ). A .2 B .3 C .4 D .6 4.已知2sin ,3 α=则cos(2)πα-=( ). A ..19- C.195.(2011·辽宁)设1sin(),43 πθ+=则sin 2θ= ( ). A .79- B .19- C.19 D.79 6.0000tan 20tan 4020tan 40++=________. 7.若2tan(),45 πα+=则tan α=t________. 考向一 三角函数式的化简与求值 [例1] 求值:①00 00cos15sin15cos15sin15 -+;②00sin 50(1). [例2] 已知函数()2sin(),36 x f x x R π=-∈.

二倍角的正弦、余弦和正切公式 说课稿 教案 教学设计

二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan αβαβ++=. 的公式呢?(学生自己动手,把上述公式中β看成α即可), sin 2sin cos αα=; 22cos sin ααα=-; 思 否变成只含有sin α或cos α形式的式子呢?2cos 2αα=; 2cos 21αα=-. tan 2α= 注意:2例1、已知5sin 2,,1342ππαα= <<求sin 4,cos 4,tan 4ααα的值. 解:由,42π π α<<得22π απ<<. 又因为5sin 2,13α=12cos 213α===-. 于是512120sin 42sin 2cos 221313169 ααα??==??-=- ???; 225119cos 412sin 21213169αα??=-=-?= ??? ;120sin 4120169tan 4119cos 4119169 ααα- ===-. 例2、已知1tan 2,3α=求tan α的值.

解:22tan 1tan 21tan 3 ααα==-,由此得2tan 6tan 10αα+-= 解得tan 2α=-+tan 2α=-- (四)小结:

6.1.1 正弦函数和余弦函数的图像与性质(含答案)

【课堂例题】 例1.试画出正弦函数在区间[0,2]π上的图像. 例2.试画出余弦函数在区间[0,2]π上的图像. 课堂练习 1.作函数sin y x =-与sin 1y x =+在区间[0,2]π上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系. 3.作函数cos ,[,]y x x ππ=∈-的大致图像. 4.利用3.解不等式:cos sin ,[,]x x x ππ≥∈-

【知识再现】 正弦函数:y = ,x ∈ ; 余弦函数:y = ,x ∈ . 正弦函数和余弦函数在[0,2]π上的大致图像: 【基础训练】 1.(1)若MP 和OM 分别是角 76 π 的正弦线和余弦线,则( ) A.0MP OM <<;B.0OM MP >>; C.0OM MP <<;D.0MP OM >>. (2)正弦函数与余弦函数在区间[,]ππ-内的公共点的个数是( ) A.1; B.2; C.3; D.4. 2.我们学过的诱导公式中, (1)说明余弦函数cos ,y x x R =∈的图像关于y 轴对称的是 ; (2)说明正弦函数sin ,y x x R =∈的图像关于直线2 x π = 对称的是 . 3.(1)函数cos 3,y x x R =+∈的值域是 ; (2)函数24sin 2,(0,)y x x π=-∈的值域是 . 4.函数cos ,[0,2]y x x π=∈和1y =的图像围成的封闭的平面图形的面积为 . 5.利用“五点法”,画出下列函数的大致图像:(步骤:列表、描点、联线) (1)1sin ,[,]y x x ππ=+∈-; (2)cos ,[0,2]y x x π=-∈. O y x

正弦函数和余弦函数的图象

1.4.1 正弦函数和余弦函数的图象 编写人: 杨朝书 审核人:王维芳 时间 2010-3-22 一、学习目标 1、 了解如何利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象。 2、 会用“五点法”画出正弦函数、余弦函数的简图。 二、重点难点 重点:正弦函数、余弦函数的图象。 难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数和余弦函数图象间的关系。 三、知识链接 1、sin(2)k απ+=_____________,cos(2)k απ+=____________,tan(2)k απ+=__________ (其中k Z ∈) 2、三角函数的几何表示,即___________,作出角 23 π 的正弦线、余弦线和正切线。 3、诱导公式:sin()2πα-= sin()2 πα+= cos()πα-= cos()πα+= 4、函数的定义__________________________________________________________________ 四、学习过程 [知识探究]正弦函数、余弦函数的图象 阅读课本30p 第一段:正弦函数、余弦函数的定义是:__________________________________. 问题1、用描点法作出正弦函数sin y x =的图象(试填写下表并描点,作出图象) 阅读课本31p 完成问题2、用几何法作出正弦函数sin y x =的图象。 1、利用几何法作正弦函数的图象可分为两步:一是画出______________的图象;二是把这一图象向_____________________________连续平移(每次2π个单位长度) 2、“五点法”作图的一般步骤是①_________;②_____________;③________________ 3、“五点法”作正弦函数图象的五个点是_______________________________;“五点法”作余弦函数图象的五个点是 _______________________________ 4、函数cos y x =(x R ∈)的图象可以通过sin ()y x x R =∈的图象向_______平移_____个单位长度得到。 5、通过图象能说出正弦曲线和余弦曲线是否是轴对称图象和中心对称图形?若是对称轴是什么?对称中心是什么? [典型例题] 例题 画出下列函数的简图: ⑴1sin y x =+,[0,2]x π∈;⑵cos ,[0,2]y x x π=-∈;⑶1sin(2)26 y x π= + 变式:你能否从函数图象变换的角度出发,利用函数sin y x =,[0,2]x π∈的图象来得到1sin y x =+, [0,2]x π∈的图象?同样的,能否从函数cos ,[0,2]y x x π=∈的图象得到函数cos ,[0,2] y x x π=-∈的图象?

《二倍角的正弦、余弦、正切公式》教案

《二倍角的正弦、余弦、正切公式》教学设计 高一A 组 韩慧芳 年级:高一 科目:数学 内容:二倍角的正弦、余弦、正切公式 课型:新课 一、教学目标 1、知识目标: (1)在理解两角和的正弦、余弦和正切公式的基础上,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。 (2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。 2、能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构, 培养逻辑推理能力。 3、情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。在运用二倍角公式的过程中体会换元的数学思想。 二、教学重难点、关键 1、教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式 2、教学难点:二倍角的理解及其正用、逆用、变形用。 3、关键:二倍角的理解 三、学法指导 学法:研讨式教学 四、教学设想: 1、问题情境 复习回顾两角和的正弦、余弦、正切公式 ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβαβαβ ++=-。

思考:在这些和角公式中,如果令βα=,会有怎样的结果呢? 2、建构数学 公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α的式子呢? 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. 以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了αα与2的三角函数之间的关系。既公式中等号左边的角是右边角的2倍。所以,确切地说,这组公式是二倍角的正弦、余弦、正切公式,这正是本节课要研究的内容。二倍角的正弦、余弦、正切公式有时简称二倍角公式。 3、知识运用 例1、(公式的正用) (1)已知3sin ,,52 πααπ=<<求sin 2,cos 2,tan 2ααα的值. (2)已知3sin 2,,542ππαα= <<求sin 4,cos 4,tan 4ααα的值.

正弦、余弦、正切的二倍角公式

§3.1.3 二倍角的正弦、余弦和正切公式 学习目标 1、以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 2、二倍角的理解及其灵活运用. 重点:二倍角正弦、余弦和正切公式; 难点:二倍角正弦、余弦和正切公式的灵活运用. 预习案 (预习教材P132—P134) 复习引入:请大家首先回顾一下两角和的正弦、余弦和正切公式: =+)sin(βα =+)cos(βα =+)tan(βα 探索新知 问题:由两角和的正弦、余弦和正切公式能否得到sin 2,cos 2,tan 2ααα的公式呢? 探究1:推导sin2α,cos2α sin2α= cos2α= 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?; cos2α= cos2α= 探究2:推导tan2α;(注意:2,22k k π π απαπ≠+≠+ ()k z ∈) tan2α=

课中案 例1、已知5 sin 2,,1342π π αα=<<求sin 4,cos 4,tan 4ααα的值. 变式:已知1 tan 2,3α=求tan α的值. 例2、求下列各式的值 (1)??15cos 15sin (2)8sin 8cos 22π π-

例3、在△ABC 中,54 cos =A ,。B A B 的值求)22tan(,2tan += 当堂检测 。,,的值求、已知4tan ,4cos ,4sin )128(54 8cos 1α α α παπα ??-= 。、的值求已知ααπ2cos ,53 )sin(2=-

.tan 2sin 2sin 3的值求、αππ ααα),,(,∈-= 4、已知),2(,135 sin ππ ∈α=α,求sin2α,cos2α,tan2α的值。 5、已知的值求)2tan(,31 tan ,71 tan βαβα+== 6、求值020 5.22tan 15.22tan 2)1(- (2)12cos 24cos 48cos 48sin 8π π ππ 课堂总结: 熟记二倍角的正弦、余弦和正切公式,在解题过程中要善于发现规律,学会灵活运用.

正弦函数和余弦函数的图像与性质教案

6.1课题:正弦函数和余弦函数的图像与性质(2)教案 教学目的:1、理解正、余弦函数的值域、最值、周期性、奇偶性的意义; 2、会求简单函数的值域、最小正周期和单调区间; 3、掌握正弦函数y =A sin(ωx +φ)的周期及求法。 教学重点:正、余弦函数的性质。 教学过程: (一)、引入 回顾三角函数的图像: 函数y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象, (二)、新课 1.定义域: 正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 2.值域 因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sin x |≤1, |cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1 也就是说,正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R ①当且仅当x = 2 π+2k π,k ∈Z 时, 取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1 而余弦函数y =cos x ,x ∈R ①当且仅当x =2k π,k ∈Z 时,取得最大值1 ②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1 3.周期性 由sin(x +2k π)=sin x ,cos(x +2k π)=cosx (k ∈Z )知:

正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。 由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0)都是这两个函数的周期 对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期。 注意: (1)周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无 下界; (2)“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)) (3)T 往往是多值的(如y=sinx ,2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数 叫做f (x )的最小正周期(有些周期函数没有最小正周期) 根据上述定义,可知:正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π。 4.奇偶性 由sin(-x)=-sinx , cos(-x)=cosx 可知:y =sinx 为奇函数, y =cosx 为偶函数 ∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称 5.单调性 从y =sin x ,x ∈[- 23,2ππ]的图象上可看出: 当x ∈[-2π,2 π]时,曲线逐渐上升,sin x 的值由-1增大到1 当x ∈[2 π,23π]时,曲线逐渐下降,sin x 的值由1减小到-1结合上述周期性可知: 正弦函数在每一个闭区间[- 2π+2k π,2 π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1。 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1 (三)典型例题(3个,基础的或中等难度) 例1:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么。 (1)y =cosx +1,x ∈R ; (2)y =sin2x ,x ∈R 解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取 得最大值的x 的集合{x |x =2k π,k ∈Z }。 ∴函数y =cos x +1,x ∈R 的最大值是1+1=2。

二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式 教学目标 1.会推导二倍角的正弦、余弦、正切公式.(重点) 2.掌握二倍角公式及其变形公式的应用.(难点) 3.二倍角公式与两角和与差的正弦、余弦、正切公式的区别与联系.(易混点) [基础·初探] 教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式 2.余弦的二倍角公式的变形 3.正弦的二倍角公式的变形 (1)sin αcos α=1 2sin 2α,cos α=sin 2α2sin α. (2)1±sin 2α=(sin α±cos α)2.

1.判断(正确的打“√”,错误的打“×”) (1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( ) 解:(1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π 4+k π(k ∈Z ),故此说法错误. (2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-3 2时,cos 2α=2cos α. 【答案】 (1)× (2)√ (3)× 2.已知cos α=1 3,则cos 2α等于________. 解:由cos α=13,得cos 2α=2cos 2 α-1=2×? ?? ??132-1=-79. 【答案】 -7 9 化简求值. (1)cos 4 α2-sin 4 α2; (2)sin π24·cos π24·cos π 12; (3)1-2sin 2 750°; (4)tan 150°+1-3tan 2 150° 2tan 150° .

相关文档
相关文档 最新文档