文档库 最新最全的文档下载
当前位置:文档库 › 位阻效应

位阻效应

位阻效应
位阻效应

位阻效应

轨道杂化程度的不同对键长会有一定程度的影响,如由SP3、SP2、SP杂化形成的碳-碳轨道中的S成分依次增多,其相应的键长也依次缩短,但是这种变化对化学键的热稳定性的影响几乎不显示明显的差别。通常情况下,长键比短键更为常见,其主要原因是由于原子间斥力的增强比其它一些因素引起的成键轨道电子云密度降低所导致的键长增长更明显。Ruchardt和Bechhaus[1]对各种取代基对取代乙烷的中心碳碳键的性能的影响进行了广泛的研究。他们认为,随着取代基团的增大,位阻效应的增加,首先引起中心碳碳单键的形变,如键弯曲和转动等,而使键的力常数减小。在只有排斥作用时,要使键长超过0.1600nm必须是在取代基团非常拥挤的情况下才会发生。如化合物1的中心碳碳键长为0.1641nm。

通过对不同配比的丙烯酸乙酯—苯乙烯共聚乳液在不同PH值的粘度的测定,结果表明:苯乙烯位阻效应对乳液增稠效果有极大的影响,大体积侧链含量增加,空间位阻效应增大,乳液的增稠效果降低。在实际应用中为了满足某些特殊需要,在丙烯酸共聚体系中引进苯乙烯,在兼顾增稠效果的前提下,含量低于50℅有效,10~20℅更为适宜,苯乙烯含量大于50℅时,乳液几乎失去增稠作用。

空间位阻效应

摘要空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。

因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。

空间位阻效应

空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。

空间位阻效应-基本介绍

空间位阻效应

因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大,引起空间阻碍,使反应速率变小。然而在有些反应中,

立体效应有可能增加反应速率,例如,在单分子亲核取代反应中,三烷基取代卤代烷的烷基增大时,由于取代基之间的空间斥力,引起碳卤键的异裂,导致碳正离子的形成,从而提高了反应速率。

空间位阻效应-类型分析

空间位阻效应

空间位阻障碍或阻力位时发生的大小群体分子阻止化学反应,观察有关小分子。虽然空间位阻有时是一个问题,它也可以是一个非常有用的工具,往往是利用化学变化的反应模式的一种分子停止不必要的副作用反应(空间位阻保护)。空间位阻相邻团体也可以限制扭债券的角度。然而,超共轭效应已建议作为解释倾向于交错构乙烷,因为空间位阻小氢原子实在太小。

空间位阻屏蔽时发生收费组的分子似乎是削弱或屏蔽的空间少收费(或生地收费)原子,包括抗衡离子在溶液中(德拜屏蔽)。在某些情况下,一个原子的互动空间位阻屏蔽原子,就必须从一个办法附近那里不到屏蔽,从而控制下,从什么方向的分子相互作用才能进行。

空间位阻吸引力时,就会发生分子形状或几何形状的优化的互动合作。在这些案件中的分子反应,将对方往往是在具体安排。

链跨越-以无规卷曲不能改变从一个象一个密切相关的形状由一个小型的位移,如果它需要一个高分子链通过他人,或通过本身。

空间位阻效应-电子影响

反应的分子的结构,性能,是依赖于直线前进键的相互作用,包括共价键,离子键,氢键和较少形式的联系。这粘接用品分子的基本骨架是修改的源头。这些源头包括空间位阻互动上文所述。基本键和空间位阻有时不足以解释许多结构,性能和反应。因此,空间位阻效应往往是对比和补充电子的影响暗示的影响作用,如诱导,同时,轨道对称性,静电相互作用和自旋态。还有更深奥的电子效果,但这些是最重要的考虑结构和化学反应。

空间位阻效应-科技运用

等杂质时再生热耗高的问题,开发了包括溶液的新型催化剂、计算机流程

模拟优化系统及节能工艺流程等在内的整套新技术。该项目开发的空间位

阻胺新型催化剂,综合效能达到国外最先进催化剂的水平,吸收能力比

Benfield溶液提高10%~30%,再生热耗降低30%以上。该项目开发的气体

净化流程模拟系统,其计算值与实际值偏差在10%以内,达到90年代国际

先进水平,依此模型开发的气体净化节能辅助操作软件,实现了从当前工

况出发进行模拟调优,既能求出目标方案,也能提供操作步骤。该项目开

发的低供热源变压再生工艺,可根据变换气的热量多少和品位高低,用模拟优化技术确定工艺操作参数,提高了效率,降低了热耗。

空间位阻效应-胺醚的制备

一种用于制备式1化合物的方法,其中R1、R2、R3和R4彼此独立地是C1

-C8烷基或C1-C5羟烷基或R1和R2与它们所连接的碳原子一起是C5-

C12的环烷基,或R3和R4与它们所连接的碳原子一起是C5-C12的环烷

基;R5、R6、R7、R8和R9彼此独立地是H 、C1-C8烷基、C2-C8链烯基、

C5-C12芳基、C1-C4卤代烷基、吸电子基、或被选自C1-C4烷基、C1

-C4烷氧基、卤原子的基团取代的C6-C12芳基:和R7和R8一起也可形

成一个化学键;和R 是有2-500个碳原子的有机连接基团,其与直接相接

的碳原子和氮原子一起形成一个取代的5-、6-或7-员环结构。 空间位阻效应-现实意义

空间位阻效应的认识是至关重要的化学,生物化学和药理学。在化学,空间的影响几乎是普遍的,影响利率和精力最多的化学反应程度不同。在生物化学,空间位阻效应往往是利用自然发生的分子,如酶,在催化的网站可能会被埋葬在一个大型蛋白质结构。在药理学,空间位阻效应决定如何以及以何种速度的药物将与目标生物分子。

空间位阻效应-例子分析

从空间位阻效应和共轭效应角度分析,pbo 纤维分子链间可以

实现非常紧密的堆积,而且由于共平面的原因,pbo 分子链各

结微纤的尺寸大小由5μm 的大微纤到0.5μm 的微纤到500a

的小微纤。其空间位阻效应很大,且降低了对可溶性阳离子的

敏感度,使得煤浆稳定程度有了较大的提高,不产生沉淀的放

置时间比目前国内常用添加剂至少延长了一倍以上,制浆浓度

提高1%—2%。当ecdp 共混量高达25%时,常温常压分散染料上

染率可达80%,由此表明ecdp 大分子结构中,比pet 多了磺酸

盐侧基和较长的聚醚链段两种结构单元由于这两种结构单元的

空间位阻效应,妨碍了链段向晶格的扩散过程,致使其结晶速度

下降。基团迁移法是利用蔗糖分子中4石位基团在某些特定条

件能发生基团迁移的特点,先将蔗糖中的伯羟基利用空间位阻

效应保护起来,再经乙酞化、去保护基、基团迁移、氯化、脱乙酞基等步骤合成三氯蔗糖,显然,反应过程过于繁琐而缺乏开发前景。另外,从分子大小上分析,蛋白质的分子量在数千以上,实验所用bsa 的分子量达6万以上,而多酚类物质的分子量仅为几百,发生二聚、三聚之后,其分子量也远小于蛋白质的分子量,因此,蛋白质的空间位阻效应和溶液中的扩散效应要超过多酚类物质,故pvpp 在处理原啤酒时显示出对多酚类物质的吸附选择性。这种分散体系更易诱导聚合物结晶成核,明显提高其结晶速率2~3倍,同时可增加聚合物颗粒表面的空间位阻效应。同理,由于空间位阻效应,不同的醇与异氰酸醋反应活性也不同,20一30℃,伯醇和异氰酸醋混合即能立刻反应,而同样的条件下,仲醇的反应速度只有伯醇速度的0.3。当反应中重氮盐的用量增加时,树脂的取代度也随之增加,但最高只达到89%,这可能是偶氮邻苯二甲腈基团较大的空间位阻效应引起的。由于取代基中苯环结构的空间位阻效应该adan 体系中邻苯二甲腈结构的最大取代度只能达到89%。该现象表明链转移剂用量低时共聚物聚合度

高,相对分子质量太大,分子柔顺性小,空间位阻效应太强,塑化作用小。而链转移剂用量很高时共聚物相对分子质量较小,空间位阻作用减弱,对水泥塑化作用变小;在9%链转移剂用量下共聚物分子具备合适的减水剂分子结构,具有理想的减水效果。叔丁基酚反应较慢,而对自由基的活化程度与之相近的对甲基酚的反应速度却是它的1000倍,这种现象可能是因为庞大的叔丁基的空间位阻效应使酶的催化作用无法充分发挥,故而反应速度较慢,即第一步的酶反应发生了障碍。分析认为,当木钙的浓度较低时,低分子量级分随着分子量的增大,木钙在水泥颗料表面的吸附量也增加,颗粒间的静电斥力增大,分散作用增强,对于分子量大于3万的级分,由于大分子的空间位阻效应,水泥颗粒表面仍存在着一些未被木钙分子所覆盖的空缺,颗粒间的斥力较小,因此低掺量时高分子量木钙的分散作用较小。所以液调成不同ph值下的试样,超声波均匀分加人非离子表面活性剂后可在粒子表面形成散后,各取10ml

于标有刻度的试管中,静保护层而产生空间位阻效应,增加了悬浮液置一天,测出沉积层高度。由于烯丙基基团电子效应和空间位阻效应,反应温度须高达160℃才有利于酯化反应充分进行。

电子效应及位阻效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 刘晓 (西北大学化学系06级材料化学专业 西安 710069) 摘要:电子效应及位阻效应贯穿着整个有机化学的学习,故其在有机化学中有着广泛的应用。但由于所掌握的知识有限,我仅将所学的具有代表性的知识进行整理小结,为以后的学习奠定基础。 关键词:电子效应 诱导效应 共轭效应 位阻效应 一.引言 在有机化学的学习中我们应该都碰到了这样或那样的问题,有些问题的答案需要我们死记硬背,但有些问题的解答则有章可循.比如亲电加成的方向性,芳香族化合物的酸性,消去反应的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用,那么这类问题便迎刃而解了.那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢? 二.电子效应与位阻效应的简介 电子效应是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱导效应和共轭效应两种类型。 诱导效应 1.诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导效应,用-I (Inductive effect )表示; CR 3 X Y H 3 CR 3 -I 效应 标准 +I 效应 2.诱导效应的特点 诱导效应是沿σ键传递的,离吸(或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 导效应就很弱,可忽略不计了。例如C H 3CH 2 CH 2CH 2 CH 2 Cl δ δ δ δ δ δ + ++, 其中δ表示微 小,δδ表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向如何,σ键仍是σ键,π键仍是π键。 3.诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 吸电子基团:带正电荷的基团,如:-OR2+、-NR3+ ;卤素原子,如:-F 、-Cl 、-Br 、-I ;带氧原子或氮原子的基团,如:-NO2、>C =O 、-COOH 、-OR 、-OH 、-NR2;芳香族或不饱和烃基,如: -C 6H 5、-C ≡R 、-CR =CR 2 斥电子基团:带负电荷的基团,如:-O-、-S-、-COO-;饱和脂肪族烃基,如: -CR 3、-CHR 2、-CH 2R 、-CH 3

空间位阻效应教学提纲

空间位阻效应 又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。 目录 1简介 2基本介绍 3类型分析 4电子影响 5科技运用 6胺醚的制备 7现实意义 8实例分析 1简介 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作

用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了,两个相邻的原子就会形成重叠的电子云(表现为斥力),这可能会影响分子和首选形状(构)的反应。 2基本介绍 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性 空间位阻效应 的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大,引起空间阻碍,使反应速率变小。然而在有些反应中,立体效应有可能增加反应速率,例如,在单分子亲核取代反应中,三烷基取代卤代烷的烷基增大时,由于取代基之间的空间斥力,引起碳卤键的异裂,导致碳正离子的形成,从而提高了反应速率。

名词解释

(1)分析功能团:是在有机试剂分子中存在着一些基团,这些基团在不同的试剂分子中,但与一定的金属离子反应时,表现出一致的共性,这样的反应基团就称为这种离子 或这些离子的分析功能团。 (2)Cmc效应:溶液浓度在cmc以下时,溶液中基本上是单个表面活性剂分子,当表面吸附量随浓度增加而趋于饱和后,浓度超过cmc时,单个表面活性剂分子浓度不再增加,而是胶束浓度增加。 (3)螯合效应:是指在相同配位原子与统一金属离子生成相同数目配位化学键的情况下,由配体形成的螯合物,要比由简单配位形成的配合物稳定得多,这种螯合物具有特 殊稳定性称为螯合效应。 (4)熵效应:螯合试剂与金属离子形成螯合物的反应过程中,系统的熵变值比形成简单配合物反应的系统熵变值大,所以螯合试剂与金属离子更易形成螯合物。 (5)环效应:假定构成螯环的原子全部以单键联接,两共价键间的正常夹角为109.5°,也就是说在环结构中键夹角越接近109.5°越稳定。 (6)加重效应:随螯合试剂分子中憎水基团的加大,所形成的螯合物在水中的溶解度减小,检出限灵敏度提高,这种作用称为憎水基的加重效应。 (7)生色效应: (8)空间位阻效应:当取代基处于螯合剂某些特定位置时,能使螯合物的稳定性下降,由取代基位置而引起的螯合物稳定性下降的作用,称为取代基的空间位阻效应。(9)增溶效应:由亲水基团引起的溶解性增强称为亲水基团的增溶效应。 (10)软硬酸碱规则:硬碱优先与硬酸配位,软碱优先与软酸配位。 (11)溶剂化作用:在水溶液中,由于溶质能与水形成氢键,从而增进溶解度,这种作用称为溶剂化作用。 2.表面活性剂主要有哪几种类型?每一种写一个具体结构式。 答:分为阴离子表面活性剂,阳离子表面活性剂,两性表面活性剂,非离子型表面活性剂以及其他类型。 其中:阴离子表面活性剂——十四烷基磺酸钠 阳离子表面活性剂——氯化十六烷基三甲基铵 两性表面活性剂——十二烷基氨基丙酸 非离子型表面活性剂——聚氧乙烯烷基胺 其他类型——全氟辛酸钾

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

电子效应

电子效应 电子效应:取代基不同而对分子性质产生的影响。取代基效应可以分为两大类。一类是电 子效应,包括场效应和诱导效应、共轭效应。电子效应是通过键的极性传递所表现的分子 中原子或基团间的相互影响,取代基通过影响分子中电子云的分布而起作用。另一类是空 间效应,是由于取代基的大小和形状引起分子中特殊的张力或阻力的一种效应,空间效应也 对化合物分子的反应性产生一定影响。由于取代基的作用而导致的共有电子对沿共价键转移 的结果。 诱导效应:当电负性不同的两个原子结合时,共价键就有一定的极性,再多原子分子中, 这种极性会通过静电诱导作用而影响到它的相邻部分,使成键电子云偏移到电负性较大部 分。 双原子分子: 多原子分子: 这种由于原子或基团电负性的影响沿着分子中的键传导,引起分子中电子云按一定方向 转移或键的极性通过键链依次诱导传递的效应称为诱导效应(inductive effects )或I 效应。 这种效应如果存在于未发生反应的分子中就称为静态诱导效应。诱导效应的传导是以静电诱 导的方式沿着单键或重键传导的,只涉及到电子云密度分布的改变,引起键的极性改变, 一般不引起整个分子的电荷转移、价态的变化。这种影响沿分子链迅速减弱,实际上,经 过三个原子之后,诱导效应已很微弱,超过五个原子便没有了。 诱导效应的方向:诱导效应的方向以氢原子作为标准。 -氯代乙酸的酸性。氯原 (位阻效应) 空间效应 取代基效应 空间传递 场效应 (σ, π) ( π-π, (σ- π,σ- p) 诱导效应 共轭效应 超共轭效应 电子效应 -+++|?|?|?|?|?|?|?C X B A A B C |?|?|?|?|?|?|?+++-Y C X C H C Y _I D§ó| D§ó|I +±è??±ê×?

位阻效应

位阻效应 轨道杂化程度的不同对键长会有一定程度的影响,如由SP3、SP2、SP杂化形成的碳-碳轨道中的S成分依次增多,其相应的键长也依次缩短,但是这种变化对化学键的热稳定性的影响几乎不显示明显的差别。通常情况下,长键比短键更为常见,其主要原因是由于原子间斥力的增强比其它一些因素引起的成键轨道电子云密度降低所导致的键长增长更明显。Ruchardt和Bechhaus[1]对各种取代基对取代乙烷的中心碳碳键的性能的影响进行了广泛的研究。他们认为,随着取代基团的增大,位阻效应的增加,首先引起中心碳碳单键的形变,如键弯曲和转动等,而使键的力常数减小。在只有排斥作用时,要使键长超过0.1600nm必须是在取代基团非常拥挤的情况下才会发生。如化合物1的中心碳碳键长为0.1641nm。 通过对不同配比的丙烯酸乙酯—苯乙烯共聚乳液在不同PH值的粘度的测定,结果表明:苯乙烯位阻效应对乳液增稠效果有极大的影响,大体积侧链含量增加,空间位阻效应增大,乳液的增稠效果降低。在实际应用中为了满足某些特殊需要,在丙烯酸共聚体系中引进苯乙烯,在兼顾增稠效果的前提下,含量低于50℅有效,10~20℅更为适宜,苯乙烯含量大于50℅时,乳液几乎失去增稠作用。

空间位阻效应 摘要空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。 空间位阻效应 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。 空间位阻效应-基本介绍 空间位阻效应 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大,引起空间阻碍,使反应速率变小。然而在有些反应中,

空间位阻效应

1简介 2基本介绍 3类型分析 4电子影响 5科技运用 6胺醚的制备 7现实意义 8实例分析 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作

因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性 空间位阻效应

空间位阻障碍或阻力位时发生的大小群体分子阻止化学反应,观察有关小分子。 空间位阻效应 氢键和较少形式的联系。这粘接用品分子的基本骨架是修改的源头。这些源 空间位阻效应

头包括空间位阻互动上文所述。基本键和空间位阻有时不足以解释许多结构,性能和反应。因此,空间位阻效应往往是对比和补充电子的影响暗示的影响作用,如诱导,同时,轨道对称性,静电相互作用和自旋态。还有更深奥的电子效果,但这些是最重要的考虑结构 生热耗高的问题,开发了包括溶液的新型催化剂、计算机流程模拟优 空间位阻效应 综合效能达到国外最先进催化剂的水平,吸收能力比Benfield溶液提高10%~30%,再生 以内,达到90年代国际先进水平,依此模型开发的气体净化节能辅助操作软件,实现了从

空间位阻效应 空间位阻效应的认识是至关重要的化学,生物化学和药理学。在化学,空 空间位阻效应

空间位阻效应 子的敏感度,使得煤浆稳定程度有了较大的提高,不产生沉淀的放置时间比目前国内常用添加剂至少延长了一倍以上,制浆浓度提高1%—2%。当ecdp共混量高达25%时,常温常 生基团迁移的特点,先将蔗糖中的伯羟基利用空间位阻效应保护起来,再经乙酞化、去保护基、基团迁移、氯化、脱乙酞基等步骤合成三氯蔗糖,显然,反应过程过于繁琐而缺乏开发前景。另外,从分子大小上分析,蛋白质的分子量在数千以上,实验所用bsa的分子量达6万以上,而多酚类物质的分子量仅为几百,发生二聚、三聚之后,其分子量也远小于蛋白质的 于3万的级分,由于大分子的空间位阻效应,水泥颗粒表面仍存在着一些未被木钙分子所

定位效应的解释

同学们,大家好。今天要讲的是定位效应的解释。 通过上节课的学习,我们已经知道,有些基团会使苯环的亲电取代反应活性增大,称为活化基;有些基团会使苯的亲电取代反应活性减小,称为钝化基;苯环上的基团还会影响取代位置,根据定位效果分为邻对位定位基和间位定位基。苯环上原有基团为什么会影响亲电取代活性和取代位置呢?今天我们就来分析并解释这一问题。 大家都知道,苯亲电取代时,亲电试剂靠近苯环生成σ-络合物是整个反应的决速步骤。同样,取代苯反应的决速步骤也生成σ-络合物,如图,决速步骤中苯与亲电试剂的成键能力与苯环上电子密度有关。若原有基团是供电子基,苯环电子密度增大,容易受到亲电试剂的进攻,则亲电取代活性增大,该基团就是活化基。若原有基团是吸电子基,会使苯环电子密度减小,吸引亲电试剂的能力减小,则反应活性减小,该基团是钝化基。因此判断一个基团是活化基还是钝化基,只需要分析基团与苯环间的电子效应(包括诱导效应和共轭效应)来确定该基团是供电子基还是吸电子基即可。那么如何分析判断一个基团是邻对位定位基还是间位定位基呢?从反应式可以看出,决速步骤中生成了三种σ-络合物:邻位、间位、对位,这三个平行反应的相对速度决定了最终产物的多少,即决定了取代位置。 这三个平行反应的相对速度可以从两个角度比较。一方面可以从反应物中邻、间、对三个位置上碳的电子密度相对大小分析。基团与苯环间的电子效应使邻间对位碳上电子密度不同,电子密度大的碳自然容易受到亲电试剂的进攻而表现出较大的反应活性。另一方面也可

以从三个σ-络合物的稳定性比较。σ-络合物越稳定,能量越低,生成时经历的过渡态能量越低,反应的活化能越小,反应速度快,相应的σ-络合物生成的就多。通过以上讲解,大家脑海中要有这样几个概念:第一,分析基团与苯环间的电子效应可以判断基团是供电子基还是吸电子基,从而来确定基团使苯环活化还是钝化;第二,分析基团与苯环间的电子效应可以比较邻间对位碳的电子密度大小,以此判断基团的定位效果;第三,分析σ-络合物的稳定性也可以判断基团的定位效果。也就是说不论是对活性的影响还是对定位效果的影响都和电子效应有关。 我们知道,甲基是活化基,又是邻对位定位基。下面就以甲基为例,通过分析甲基与苯的电子效应解释甲基为什么是活化基?为什么是邻对位定位基?甲基碳是sp3杂化,苯环碳是sp2杂化,因此苯环碳电负性大,电子由甲基向苯环偏移,甲基表现出供电子的诱导效应;甲基中α-碳氢键与苯环发生σ-π超共轭效应,电子由甲基转向苯环,甲基表现出供电子的共轭效应。供电子的诱导和供电子的共轭使甲基成为供电子基,使苯环上电子密度增大,亲电取代活性增大,因此甲基是活化基。 甲基为什么是邻对位定位基呢?甲基与苯环间的供电子诱导效应在苯环中传递时,如图所示,会使邻位、对位碳带部分负电性,即邻对位碳的电子密度大,间位碳电子密度小。事实上甲苯中电子密度分布确实如此,如图所示,邻位碳电子密度是1.017,对位是1.011,而间位只有0.999。邻对位电子密度大容易受亲电试剂进攻而被取代,

空间位阻效应

空间位阻效应

————————————————————————————————作者: ————————————————————————————————日期:

空间位阻效应 又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。 目录 1简介 2基本介绍 3类型分析 4电子影响 5科技运用 6胺醚的制备 7现实意义 8实例分析 1简介 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作

用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了,两个相邻的原子就会形成重叠的电子云(表现为斥力),这可能会影响分子和首选形状(构)的反应。 2基本介绍 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性 空间位阻效应 的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大, 引起空间阻碍,使反应速率变小。然而在有些反应中,立体效应有可能增加反应速率,例如,在单分子亲核取代反应中,三烷基取代卤代烷的烷基增大时,由于取代基之间的空间斥力,引起碳卤键的异裂,导致碳正离子的形成,从而提高了反应速率。

教你计算ChemBio模型的空间位阻能

教你 ChemBio 3D Ultra 14是ChemOffice 中的一模型以及获取空间位阻能等操作,本节内容将教授 在ChemBio 3D 模型中,因分子中靠近反应中称立体效应,重要指分子中某些原子或基团彼此接 获取ChemBio 3D 模型的空间位阻能 在交错、重叠的结构组成中,连接在碳上的氢了计算该测量结果,可以计算该结构的空间位阻能 1、本次实例以乙烷模型为例,获取能量之前要在然后选择Calculations 菜单栏下MM2菜单中的 2、在对话框中单击Run。此时乙烷能量信息表教你计算ChemBio 3D 模型的空间位阻能 中的一个重要组件,也是一个重要的化学结构演示工具。在ChemBio 3D 窗口中,你可以将教授各位如何获取ChemBio 3D 模型的空间位阻能。 反应中心的原子和基团各占有一定的空间位置,降低分子反应活性的空间效应就称为“空彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。 上的氢原子间是以相互保持最大的距离而存在的,体现出整体的能量最小,这也是乙烷模位阻能量,然后与已经确认过的较高能量结构相比较。空间位阻能的获得过程如下: 前要在ChemBio 3D 窗口建立乙烷模型,如何建立乙烷模型请参考教你利用ChemBio 3中的Compute Properties 命令,此时出现Compute Properties 对话框如下图所示:信息表出现在ChemBio 3D 窗口的最下方,调整后如下图所示: 你可以建立、旋转ChemBio 3D 为“空间位阻能”。空间位阻又乙烷模型最稳定的结构状态。为 mBio 3D 键工具建立乙烷模型。示:

电子效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 一?引言 在有机化学的学习中我们应该都碰到了这样或那样的问题 ,有些问题的答案需要我们死记 硬背,但有些问题的解答则有章可循 ?比如亲电加成的方向性,芳香族化合物的酸性,消去反应 的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用 ,那么这类问题便 迎刃而解了 ?那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢 ? 二?电子效应与位阻效应的简介 电子效应 是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱 导效应和共轭效应两种类型。 诱导效应 1?诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导 效应,用—I (Inductive effect )表示; 导效应就很弱,可忽略不计了。例如 H 3C —CH 2—— CH 2 CH 2——CH 2—Cl ,其中 3表示微 小,3 3表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是 这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向 如何,b 键仍是b 键,n 键仍是n 键。 3?诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 + + 吸电子基团:带正电荷的基团,女口: — OR2、— N R 3 ;卤素原子,如:—F 、— Cl 、— Br 、— I ; —O -、一 S -、一 C00-;饱和脂肪族烃基,如: —CR 3、一 CHR 2^ — CH ?R 、一 CH 3 共轭效应 1?共轭效应的定义 体系中各个b 键都在同一个平面上,参加共轭的 P 轨道互相平行而发生重叠,形成分子轨 带氧原子或氮原子的基团,如: N02、> C 0、 C00H 、 OR 、 OH 、 NR2 .芳香族或 —C 6 H 5' — C M R 、 CR = CR 2 X —CR 3 H-CR 3 —I 效应 标准 Y ——A CR 3 +I 效应 2?诱导效应的特点 诱导效应是沿b 键传递的,离吸 (或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 不饱和烃基,如: 斥电子基团:带负电荷的基团,如:

空间位阻效应

空间位阻效应 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的 空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了,两个相邻的原子就会形成重叠的电子云(表现为斥力),这可能会影响分子和首选形状(构)的反应。 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内 的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中

心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大,引起空间阻碍,使反应速率变小。然而在有些反应中,立体效应有可能增加反应速率,例如,在单分子亲核取代反应中,三烷基取代卤代烷的烷基增大时,由于取代基之间的空间斥力,引起碳卤键的异裂,导致碳正离子的形成,从而提高了反应速率[1]。

苯环上的定位基定位效应

一、定位基定位效应 苯环上已有的取代基叫做定位取代基。 1、邻对位定位取代基 ①概念:当苯环上已带有这类定位取代基时,再引入的其它基团主要进入它的邻位或对位,而且第二个取代基的进入一般比没有这个取代基(即苯)时容易,或者说这个取代基使苯环活化。 ②特征:这类取代基中直接连于苯环上的原子多数具有未共用电子对,并不含有双键或三键。 ③定位取代效应按下列次序而渐减: -N(CH3)2 , -NH2 , -OH , -OCH3 , -NHCOCH3 , -R , (Cl,Br,I) 二甲氨基氨基羟基甲氧基乙酰氨基烷基卤素 2、间位定位取代基 ①定义:当苯环上己有在这类定位取代基时,再引入的其它基团主要进入它的间位,而且第二个取代基的进入比苯要难,或者说这个取代基使苯环钝化。 ②特征:取代基中直接与苯环相连的原子,有的带有正电荷,有的含有双键或三键。 ③定位效应按下列次序而渐减: -N+(CH3)3 , -NO2 , -CN , -SO3H , -CHO , -COOH 三甲铵基硝基氰基磺酸基醛基羧基 3、取代定位规律并不是绝对的。实际上在生成邻位及对位产物的同时,也有少量间位产物生成。在生成间位产物的同时,也有少量的邻位和对位产物生成。 4、苯环的取代定位规律的解释 当苯环上连有定位取代基时,苯环上电子云密度的分布就发生变化。这种影响可沿着苯环的共轭链传递。因此共轭链上就出现电子云密度较大和电子云密度较小的交替现象,从而使它表现出定位效应。 ①邻对位定位取代基的定位效应: 邻对位定位取代基除卤素外,其它的多是斥电子的基团,能使定位取代基的邻对位的碳原子的电子云密度增高,所以亲电试剂容易进攻这两个位置的碳原子。 卤素和苯环相连时,与苯酚羟基相似,也有方向相反的吸电子诱导和共轭两种效应。但在此情况下,诱导效应占优势,使苯环上电子云密度降低,苯环钝化,故亲电取代反应比苯难。但共轭使间位电子云密度降低的程度比邻对位更明显,所以取代反应主要在邻对位进行。 ②间位定位基的定位效应: 这类定位取代基是吸电子的基团,使苯环上的电子云移向这些基团,因此苯环上的电子云密度降低。这样,对苯环起了钝化作用,所以较苯难于进行亲电取代反应。 ③共振理论对定位效应的解释 邻对位中间体均有一种稳定的共振式(邻对位定位基的影响)。 在间位定位基的影响下,在三个可能的碳正离子中间体中,邻对位共振式中正电荷是在连有吸电子基的碳上,它使碳正离子中间体更不稳定。所以间位碳正离子中间体是最有利的。 二、二取代苯的定位规律 如果苯环上已经有了两个取代基,当引入第三个取代基时,影响第三个取代基进入的位置的因素较多。定性地说,两个取代基对反应活性的影响有加和性。 1.苯环上已有两个邻对位定位取代基或两个间位定位取代基,当这两个定位取代基的定位方向有矛盾时,第三个取代基进入的位置,主要由定位作用较强的一个来决定。 2.苯环上己有一个邻对位定位取代基和一个间位定位取代基,且二者的定位方向相反,这时主要由邻对位定位取代基来决定第三个取代基进入的位置。 3.两个定位取代基在苯环的1位和3位时,由于空间位阻的关系,第三个取代基在2位发生取代反应的比例较小。 参考资料:有机化学高等教育出版社

电子效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 一.引言 在有机化学的学习中我们应该都碰到了这样或那样的问题,有些问题的答案需要我们死记硬背,但有些问题的解答则有章可循.比如亲电加成的方向性,芳香族化合物的酸性,消去反应的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用,那么这类问题便迎刃而解了.那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢? 二.电子效应与位阻效应的简介 电子效应是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱导效应和共轭效应两种类型。 诱导效应 1.诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导效应,用-I (Inductive effect )表示; CR 3 X Y H 3 CR 3 -I 效应 标准 +I 效应 2.诱导效应的特点 诱导效应是沿σ键传递的,离吸(或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 导效应就很弱,可忽略不计了。例如C H 3CH 2 CH 2CH 2 CH 2 C l δ δ δ δ δ δ +++, 其中δ表示微 小,δδ表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向如何,σ键仍是σ键,π键仍是π键。 3.诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 吸电子基团:带正电荷的基团,如:-OR2+、-NR3+ ;卤素原子,如:-F 、-Cl 、-Br 、-I ;带氧原子或氮原子的基团,如:-NO2、>C =O 、-COOH 、-OR 、-OH 、-NR2;芳香族或不饱和烃基,如: -C 6H 5、-C ≡R 、-CR =CR 2 斥电子基团:带负电荷的基团,如:-O-、-S-、-COO-;饱和脂肪族烃基,如: -CR 3、-CHR 2、-CH 2R 、-CH 3 共轭效应 1.共轭效应的定义 体系中各个σ键都在同一个平面上,参加共轭的P 轨道互相平行而发生重叠,形成分子轨道。由于分子内原子之间的相互影响,引起电子云密度平均化,体系能量降低的现象,又称电子离域效应。 2.共轭效应形成条件

高分子物理名词解释

高分子物理总复习 第一章高分子链的结构 一、名词解释 近程结构:(一次结构)是构成高分子的最基本微观结构,包括其组成和构型。 远程结构:(二次结构)大分子链的构象,即空间结构,以及链的柔顺性等。 聚集态结构:(三次结构)通过范德华力和氢键形成具有一定规则排列的聚集态结构。 构型:是指分子中由化学键所固定的原子在空间的排列。 几何异构(顺反异构):由于主链双键的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺式、反式两种构型,它们称作几何异构。 键接异构:是指结构单元在高分子链中的连接方式。一般头-尾相连占主导优势,而头-头(或尾-尾)相连所占比例较低。 旋光异构:具有不对称C﹡原子的这种有机物,能构成互为镜象的两种异构体,表现出不同的旋光性,称为旋光异构体。但是含不对称C﹡的高分子没有旋光性的,原因是多个不对称C﹡原子的内消旋或外消旋的作用。 有规立构:有两种旋光异构单元完全是全同立构或间同立构的高分子。 规整度:(等规度)是指聚合物种全同立构和间同立构的聚合物占所有聚合物分子总的百分比。 规整聚合物:全同立构和间同立构的高分子。 全同立构:高分子链全部由一种旋光异构单元键接而成。 间同立构:高分子链由两种旋光异构单元交替键接而成。 无规立构:高分子链由两种旋光异构单元无规键接而成。 线性:高分子链呈直线形 交联:高分子链之间通过支链联结成一个三维空间网状大分子 支化:链状高分子产生分支 支化度:以支化点密度或两相邻支化点之间的链的平均分子量来表示支化程度 交联:缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构 交联度:用相邻两个交联点之间的链的平均分子量Mc来表示。交联度愈大,Mc愈小。共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物 单键内旋转:高分子链上存在大量C-C单键,单键由σ电子组成,电子云分布是轴向对称的,因此高分子在运动时,C-C单键可以绕轴旋转,称为单键内旋转。 构象:由于σ单键内旋转而产生的分子在空间的不同形态。 位阻效应:单健内旋转总是不完全自由的,因为C原子上总是带有其它原子或基团,当这些原子充分接近时,原子的外层电子之间将产生排斥力使之不能接近。这一作用被称为位阻效应。 链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。 多分散性:聚合物是分子量不均一的同系物的混合物,这一性质称为多分散性 柔顺性:高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。高分子链能形成的构象数越多,柔顺性越大。 刚性:高分子链改变构象的行为受阻,不容易改变其构象的性质称为刚性。 柔性链:当高分子链上每个键都能完全自由旋转(自由联接链),“链段”长度就是键长——

相关文档