文档库 最新最全的文档下载
当前位置:文档库 › EFFECT OF FUEL NOZZLE GEOMETRY ON THE STABILITY OF A TURBULENT JET METHANE FLAME

EFFECT OF FUEL NOZZLE GEOMETRY ON THE STABILITY OF A TURBULENT JET METHANE FLAME

This article was downloaded by: [China Science & Technology University]

On: 04 July 2011, At: 06:27

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Combustion Science and Technology

Publication details, including instructions for authors and

subscription information:

https://www.wendangku.net/doc/3a8617397.html,/loi/gcst20

Effect of Fuel Nozzle Geometry on the

Stability of a Turbulent Jet Methane

Flame

C. O. Iyogun a & M. Birouk a

a Department of Mechanical and Manufacturing Engineering,

University of Manitoba, Winnipeg, Manitoba, Canada

Available online: 21 Oct 2008

PLEASE SCROLL DOWN FOR ARTICLE

EFFECT OF FUEL NOZZLE GEOMETRY ON THE STABILITY OF A TURBULENT JET METHANE FLAME C.O.Iyogun and M.Birouk

Department of Mechanical and Manufacturing Engineering,University of Manitoba,Winnipeg,Manitoba,Canada

The effect of asymmetric fuel nozzles on the stability of turbulent jet methane flame discharging into still air is investigated experimentally.The emphasis of this study is however,more on the flame liftoff height and velocity,as well as reattachment and blowout velocities.Five nozzles;a pipe,a contracted circular,a triangular,a rectangular and a square,which all have an equivalent diameter of approximately 4.50mm,are tested.The experimental results reveal that asymmetric nozzles reduces the jet flame liftoff height,and hence stabilizes the flame base closer to the nozzle compared with conventional circular nozzles.This finding correlates well with the entrainment rate of the corresponding non-reacting jets.That is,the flame liftoff height decreases as the jet entrainment increases.Furthermore,the asymmetric nozzles are found to significantly influence the blowout,liftoff and reattachment velocities.The blowout is believed to be primarily governed by the far-field local mixing rate.

Keywords :Blowout;Diffusion flame;Liftoff;Reattachment;Turbulent free jet

INTRODUCTION

Turbulent jet diffusion flame and particularly the flame liftoff height stability mechanisms have been an attractive topic for many decades and are still receiving considerable attention due to their practical importance.The stability limit of turbu-lent diffusion flame encompasses the liftoff height and velocity,reattachment velocity,and blowout velocity.Several theories were proposed to explain the height stabilization mechanism of a turbulent jet diffusion flame.The first stabilization mechanism theory was conceived by Wohl et al.(1949)and has been the most commonly accepted theory.It states that the local flow velocity at the liftoff height matches the turbulent burning velocity of a premixed flame.This is the same theory which has later been pursued by Vanquickenborne and Van Tiggelen (1966).Their main finding is that a lifted diffusion flame stabilizes at a height above the burner where stoichiometry is reached.They also concluded that the flame base is a form of a ‘‘premixed’’flame as the gas entrains air until it reaches this point.Following the same thought,Kalghathi (1984)determined that the turbulent jet diffusion flame

The financial support from Manitoba Hydro and the Natural Sciences and Engineering Research

Counsel of Canada (NSERC)is greatly acknowledged.

Address correspondence to M.Birouk,Department of Mechanical and Manufacturing Engineer-ing,University of Manitoba,Winnipeg,Manitoba,Canada.E-mail:biroukm@cc.umanitoba.ca

2186

Combust.Sci.and Tech.,180:2186–2209,2008Copyright #Taylor &Francis Group,LLC ISSN:0010-2202print/1563-521X online DOI:

10.1080/00102200802414980

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

liftoff height increases linearly with the jet exit velocity independently of the nozzle diameter.

The second theory has its origins with Peters (1983),which has been expanded on by Peters and Williams (1983).Peters’(1983)theory suggests that the flame lifts off when the mixture of air and fuel in the combustion zone near the burner exit is stretched faster than the mixture can ignite itself.The liftoff height is scaled in terms of a non-dimensional average scalar dissipation at extinction.

The third theory,which was proposed by Broadwell et al.(1984),states that the time available for backmixing by large-scale flow structures of hot products with fresh mixtures is less than a critical chemical time required for ignition.A blowout criterion has then been proposed,which is expressed as a ratio of the local mixing time to a characteristic chemical time.Pitts (1988),reviewed the aforementioned theories and reported that the implicit assumption is that the base (i.e.,the most upstream position)of a lifted jet diffusion flame is the stabilization point.In addition,Pitts (1988)pointed out that all the theories are based on the turbulent flow-field of the unignited regions close to the flame base.Pitts (1988)concluded that the stabilization mechanism of turbulent diffusion flame is still poorly understood.

Recently,another theory,called triple flame,has been developed to describe the stabilization mechanism of lifted jet diffusion flame (Dold,1989;Veynante et al.,1994;Ruetsch et al.,1995),although an observation of the triple flame has been reported several decades ago (Phillips,1965).The triple flame theory presup-poses that the base of a diffusion flame (i.e.,stoichiometry point)is a confluence of three types of flames;fuel-lean and fuel-rich,which essentially are premixed flames and a diffusion flame aligned with the stoichiometry line.This assumption of triple flame,therefore,presupposes that the base of a lifted diffusion flame is a partially premixed flame.This theory has recently been pursued vigorously though it is still in its infancy.Upatnieks et al.(2004)applied cinema-PIV in an attempt to better understand the liftoff of turbulent jet diffusion flames and to further exam-ine some of published theories developed to explain the stabilization mechanisms.They assessed the turbulence intensity theory proposed by Kalghatgi (1984),the edge-flame or triple flame concept as reported by Buckmaster and Webber (1996)and Boulanger et al.(2003),and the large-eddy theory reported by Miake-Lye and Hammer (1988).A thorough analysis of an up to date published work on of the issue of lifted jet diffusion flame and all related theories was recently reported by Lyons (2007).Lyons (2007)reviewed all the aforementioned theories,with more emphasis on work published since Pitts’review in 1988.Lyons concludes that there is still lack of complete understanding of the stabilization mechanisms of a lifted jet diffusion flame issuing from axisymmetric nozzles.

However,the reattachment and blowout phenomena as well as the liftoff velocity,which are also vital elements in the stabilization of a lifted jet diffusion flame,have not received equal treatment as the stability mechanisms of the liftoff height.Scholefield and Garside (1949)studied the full stability range of a jet dif-fusion flame,such as the liftoff,reattachment and blowout velocities and their mechanisms.Scholefield and Garside (1949)attributed the reattachment and blowout phenomena to the effect of the turbulent flow-field of the unignited gas stream while they reported that the liftoff still cannot be explained by any of the proposed theories.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2187

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

After the work of Scholefield and Garside (1949),further investigations of the diffusion flame liftoff,reattachment,and blowout mechanisms have been reported by several investigators (Coats and Zhao,1989;Dahm and Mayman,1990;Eickhoff et al.,1984;Gollahalli et al.,1986;Langman et al.,2007;Takahashi et al.,1984;Wu et al.,2006).All these studies agree about the occurrence of hysteresis in which the liftoff velocity is higher than the reattachment velocity.However,some of these stu-dies reported different mechanisms as being responsible for the different stability phenomena.For example,Gollahalli et al.(1986)reported that the liftoff (i.e.,the flame transition form attached to lifted)is governed by diffusion and flow structures,while the reattachment is governed primarily by the dynamics of the organized flow structures.However,Eickhoff et al.(1984),Coats and Zhao (1989),and recently Langman et al.(2007)all agreed that the flame liftoff is caused by the invasion of the laminar flame base by the unignited gas turbulence.The blowout phenomenon,according to Dahm and Mayman (1990),is governed primarily by the molecular mixing rate,while the liftoff is controlled by the straining out of flame front,which is in line with the theory of Peters (1983).

Nevertheless,the literature surveyed above concerns only jet flames issuing from axisymmetric nozzles.However,analyses about the effect of asymmetric (i.e.,three-dimensional)nozzles on the stability of a jet diffusion flame are still lacking.In fact,nozzle’s geometry has a significant effect on the overall jet flow profiles.For example,asymmetric nozzles have been shown to increase air entrainment and thereby improve mixing (Gutmark et al.,1989a,b,1991;Quinn,1989,1991,2005;Koshigoe et al.,1989;Mi et al.,2000;Iyogun and Birouk,2008),which in turn could improve the stability limits of the ensuing flame.However,the only stability studies to our knowledge carried out on diffusion flames issuing from asymmetric nozzles are those from elliptic nozzles (Gollahalli et al.,1992).However,there are several other studies that examine diffusion flame issuing from asymmetric geome-tries but their focus was more on determining temperature and pressure fields (Gut-mark and Co-workers,1989a,b,1991).Nonetheless,it was found that the geometry (e.g.,elliptic)of the nozzle has an influence on the liftoff and reattachment velocities (Gollahalli et al.,1992).

Therefore,the purpose of the present work is to expand upon these studies by examining specifically the effect of nozzle geometry on the liftoff phenomena of a jet diffusion flame for which a wide range of nozzle’s geometries are tested.In addition,although the focus of the present experiment is not intended to examine published liftoff theories,but rather to seek additional experimental data which may help to shed more light on the mechanisms governing the liftoff height and associated liftoff and blowout phenomena.However,some of these published stabilization height the-ories will be appraised with a view to unraveling the more relevant one that describes best the present experimental data.EXPERIMENTAL SETUP

Figure 1depicts a schematic of the burner test facility.It consists mainly of a flow seeding system,a long flow pipe and a nozzle.The gas (methane or air)is sup-plied from a compressed supply line.Prior to the flow control panel (not shown in Figure 1),the delivered flow rate is adjusted via a high accuracy pressure gauge,

2188 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

and thereafter,the desired mass flow rate is measured via a Matheson Tri-Gas High accuracy flowmeter.The gas flow rate measured is based on the flow inlet pressure and the flowmeter’s reading.Consequently,for non-reacting flow measurements,the gas (air)enters the settling chamber,where it mixes with seeding particles of titanium oxide.

Whereas for the reacting flow,the gas flow (methane)is not seeded in the settling chamber.The gas at the exit of the settling chamber flows through a 7.62mm in diameter pipe,and exits through a nozzle,which is attached to the pipe,as shown in Figure 1.To ensure a well-developed flow in the pipe,the ratio of the length to diameter of the pipe,L =D e ,is made equal to 135.Then,the nozzle,which is about 47mm long and attaches to the pipe,is interchangeable.Five nozzles with different internal geometries;which are a pipe,a contracted circular,a rectangular,a triangular,and a square,are tested in the present

study.

Figure 1Schematic of the experimental burner setup.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2189

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

Figure 2a is an illustration of the contracted circular nozzle.The non-circular nozzles quoted in Figure 2b have a similar arrangement except that their contraction section is longer and tapered,as shown in Figure 1.The tapered contraction section is circular for the first portion or the nozzle,as shown in Figure 2a,after which it starts changing to adopt the corresponding nozzle shape as it gradually shrinks down to the size of the nozzle’s orifice.All the nozzles have a section of L =D e that is slightly greater than 6with a rounded entrance to minimize the effect of contraction inlet conditions on the jet flow.Note that the pipe,which is used for the reacting flow,has a diameter of 4.45mm,while the pipe used for the non-reacting airflow has a diameter of 7.62mm.This relatively large diameter of the pipe,which is employed for determining the jet non-reacting flow characteristics,is chosen because the smaller pipe used for the reacting gas flow is found prone to misalignments due to its flexi-bility,which can cause error in the LDV measurements.This difference in the pipe diameter should not,in fact,affects the results as it has been shown by Kalghatgi (1984)that liftoff height is independent of nozzle diameter.The contracted circular nozzle has a diameter of 4.81mm,and the rectangular with an aspect ratio of 2:1,equilateral and square nozzles have an equivalent diameter,D e (i.e.,the diameter of round slot with the same exit area as the geometry in question)of 4.71mm,4.46mm and 4.56mm,

respectively.

Figure 2(a)Schematic of the contracted circular nozzle (all dimensions are in mm);(b)2-D LDV measure-ment (x-y top-view)plane for (a)Contracted circular nozzle,(b)Rectangular nozzle,(c)Equilateral triangular nozzle and,(d)Square nozzle.

2190 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

The fuel tested is 99%pure methane supplied from compressed cylinders.The velocities quoted in this paper are averaged velocities based on readings from the flowmeters (e.g.,rotameters)and the exit area of the nozzle.The rotameters have full-scale accuracy of 5%.The experimental conditions for each nozzle are listed in Table 1with the equivalent nozzle diameter,D e ,being the diameter of an equiva-lent circular nozzle with the same exit area as the geometry in question.The flame liftoff height is imaged by using a high-speed camera.The camera resolution of 1280?1024pixel at a frequency of 60Hz is used for flames with exit velocities beyond 43m =s,while a frequency of 30Hz is employed for the flames with lower range of exit velocities,i.e.below 43m =s.For each experiment a total of not less than 1600images are taken to determine the average liftoff height.

Note that the relatively high number of images is needed to statistically improve the accuracy of the fluctuating flame liftoff height.A ruler is first placed over the bur-ner in order to calculate the height of a pixel,and thus calibrate the imaged field of view.The height of each flame is measured from the nozzle exit plane.An in-house developed MATLAB code is used to analyze the images and determine the flame base based on the brightness of each pixel,and thus calculates the number of pixels between the nozzle exit and the flame base.A threshold is applied to separate the background from the real flame image.The MATLAB code assigns each pixel a brightness level from 0to 256with 0being black and 256being white.The number of pixels between the flame base and nozzle exit is then multiplied by a pixel height to determine the lift-off height.2D TSI LDV is used to measure the characteristics of the non-reacting jet airflow at two typical exit velocities of 30and 65m =s.

These two velocities are selected to represent the flame two demarcated liftoff regions,which are shown in the next section of the paper.The two-component LDV Model FSA4000operates in backscattering mode.The laser source is an argon-ion laser of 5Watts.However,the maximum laser power employed in the present experi-ment,combined for both the green (wavelength of 514.5nm)and blue (488nm)beams,is less than 600mW.The lens focal length is 363mm,the separation distance between the two focused beams is 40mm,and the beams diameter is 2.8mm.This setup results in a probe volume of a maximum length of 1.5mm,and diameter of 0.085mm.The airflow is seeded with titanium oxide particles with a mean diameter of less than 3m m.Figure 2b presents a schematic of the LDV plane of measurements

Table 1Experimental test conditions

Nozzle

D e (mm)U (m =s)Reacting jet

Re t

Reacting Jet (?10à4)U (m =s)Non-reacting

jet

Re

Non-reacting Jet

(?10à3)

Pipe

4.45,7.62?

27–687.2–23.13016.1

Contracted circular 4.8227–687.8–2530,6510.2–22.1Rectangle 4.7127–787.6–24.430,659.9–21.6Triangle 4.4627–687.2–23.130,659.4–20.4Square

4.56

27–68

7.4–23.7

30,

65

9.6–20.9

?

The pipe with a diameter of 7.62mm was used for the non-reacting jet flow measurements,and the pipe with a diameter of 4.45mm was used for the flame measurements.t

Re ?q j UD e =l j :

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2191

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

for the nozzles tested here.In fact,the LDV data are taken along only the x and y axis for all nozzles.The center of the triangular nozzle is the radial position that has the highest centerline velocity along the y -axis which is shown in Figure 2.Table 1summarizes the experimental test conditions.

RESULTS AND DISCUSSION

Results of the flame liftoff height and velocity,as well as flame reattachment and blowout are presented here.The discussion provided is based on the characteri-stics of the corresponding non-reacting jet airflows.

Liftoff Height

The liftoff height,as a function of the jet exit velocity for the five different nozzle geometries tested in the present study,is shown in Figure 3.Figure 4presents a comparison of the present data for the pipe and contracted circular nozzle with the liftoff data of Kalghatgi (1984).The present lowest and highest exit velocities are based on the liftoff and blowout velocities of the jet diffusion methane flame.Kalghatgi’s (1984)flame liftoff height correlation is expressed as follows:

hS u e

?C U u q e =q 1

à

á1:5e1T

where h is the flame liftoff height,S u is the laminar flame speed,n e is the kinematic

viscosity of the fuel at the nozzle exit,U is the exit velocity of the reacting jet,C is a constant,q e is the density of the fuel at the nozzle exit and,q 1is the density of the ambient

air.

Figure 3Flame liftoff height versus jet exit velocity for the different nozzle geometries tested.

2192 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

From Figure 4it can be seen that the pipe nozzle tested in the present study produces flame liftoff height data that are in fair agreement with that of Kalghati (1984).In addition,Figures 3and 4exhibit no significant difference between the lift-off height of the contracted circular nozzle and that of the pipe.This is in good agreement with the findings of Coats and Zhao (1989),but not in agreement with those of Langman et al.(2007)who reported significant differences in the liftoff height between the contracted circular nozzle and the pipe.These discrepancies may be attributed to the difference in the total mass of ambient air that each jet is able to entrain.

For example,in the present study,the near-field centreline mean-velocity decay of the pipe jet and that of the contracted circular jet are nearly identical (as shown in the discussion presented below),which might justify why they also exhibit similar liftoff heights.Whereas,Langman et al.(2007)reported different entrainment rate between the pipe and contracted circular jets.In fact,Langman et al.(2007)did not provide conclusive evidence about the reasons behind the discrepancies between the liftoff height of the pipe and contracted circular nozzle,as well as with published data of Coats and Zhao (1989).

Furthermore,Figure 3shows clearly that the asymmetrical nozzles’flame lift-off heights are,in general,lower than those of the pipe and the contracted circular nozzle.The rectangular nozzle has the lowest liftoff height at exit velocities beyond 43m =s.In addition,the square and triangular nozzles have relatively lower liftoff heights compared to their circular counterparts (i.e.,the pipe and the contracted circular nozzle).Apart from the axisymmetric nozzles (i.e.,pipe and contracted circular)and the square nozzle,the triangle and rectangle nozzles exhibit two distinct flame liftoff regions.

One region spans up to an exit velocity of around 43m =s,while the other region occurs at an exit velocity of around 48m =s and above.These two regions are separated by a transition region or a step change for the rectangular nozzle.In the first region (i.e.,U ?27–43m =s),the triangular nozzle has the lowest flame

liftoff

Figure 4Comparison of the present liftoff height with that of Kalghatgi (1984).

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2193

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

height,however,in the second region (i.e.,at U ?48m =s and above),the flame liftoff height of the rectangular nozzle is the lowest.For exit velocities greater than approximately 48m =s,the trend of the asymmetrical nozzles’liftoff heights can be fairly described by Kalghatgi’s (1984)correlation but with different values of the constant C of Eq.(1)than the value of C ?50reported in (1984).However,in the lower range of the exit velocity,i.e.,below approximately 43m =s,Kalghatgi’s correlation fails to completely describe the flame liftoff height trend of the triangle and rectangle nozzles without changing the value of the constant C .A complete analysis of the effect of asymmetric nozzles on the flame liftoff height is discussed later in this paper.

Figure 5presents an attempt to compare the present flame liftoff heights with the extinction theory of Peters and Williams (1983).This theory,which scales the instantaneous scalar dissipation at quenching with the global residence time;D e =U ,is formulated as

X ?qu ?X qu eD e =U T

e2T

Peters and Williams (1983)derived three analytical expressions using the extinction

theory to account for the liftoff height.The three formulated methods relate the non-dimensional average rate of the scalar dissipation to the liftoff height and nozzle diameter as follows:

X ?

qu ?X tb 1?0:24eD e =h T1:51à0:096???????????h =D e

p e3TX ?qu

?X tb 2?0:46eD e =h T2

1à0:039eh =D e T

1=1:4

e4TX ?qu ?X tb 3?0:018eD e =h T

e5T

According to Peters and Williams (1983),the presumed liftoff criterion is when

X st ?X qu where X st is the rate of scalar dissipation at stoichiometry and X qu is the instantaneous scalar dissipation rate at extinction or quenching.

Figure 5presents the evolution of X ?

qu versus h =D e of Eqs.(2)through (5)for the five different nozzles tested in the present study.The ultimate goal is to adjust X qu by trial and error,for each nozzle,to enable the collapse of Eq.(2)with one or more of the three Eqs.(3)–(5).Among the three expressions,i.e.,Eqs.(3)through (5),it is found that Eq.(5)has the best agreement with the theory of extinction described by Eq.(2).It is important to mention that,for each nozzle’s geometry,the value of X qu in Eq.(2)should normally be obtained experimentally or solved for analytically.Nevertheless,the instantaneous scalar dissipation rate at extinction or quenching,X qu ,is found (by trial and error)to be 7.8s à1,8.0s à1,8.1s à1,8.3s à1,and 10.1s à1for the contracted circular,pipe,triangular,square,and rectangular nozzles,respectively.The fact that X qu $8:1s à1for the triangular nozzle is lower than that of the square nozzle may be attributed to the presence of two distinct liftoff regions for the triangular nozzle,as shown in Figure 3.

2194 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

In the lower jet exit velocity region,that is for U <43m =s,the triangular nozzle has the lowest flame liftoff height.However,in the higher exit velocity region,i.e.,for U >48m =s,its liftoff height increases significantly and almost levels off

with

Figure 5Comparison of the present liftoff height with the theory of Peters and Williams (1983).(a)Pipe,(b)Rectangle,(c)Triangle,(d)Contracted circular and (e)Square.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2195

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

the other nozzles,except the rectangular which produces a flame with the lowest liftoff height.This trend suggests that the instantaneous scalar dissipation rate some-how would depend on the jet exit velocity,as the value of 8.1s à1appears adequate only for the second liftoff region.Nonetheless,the differences in the strain rate between the different nozzle geometries are in accordance with Peters and Williams (1983)proposition that turbulence intensity has a significant effect on the strain rate.Consequently,the difference in turbulence intensity between the different nozzles could possibly be the cause for the difference between their strain rates.

The liftoff data of the present study,shown in Figure 5,are in fair agreement with the third method (i.e.,X tb 3or Eq.(5))of Peters and Williams (1983).The reason for finding a good agreement between Eq.(5)for determining the non-dimensional average rate of scalar dissipation rate and the present liftoff data might be due to the way Eq.(5)has been formulated.This equation is derived purely for the purpose of producing better agreement with experimental liftoff data,and does not include the assumption of quenching in its formulation (Peters and Williams,1983).It is,there-fore,not surprising why this method of Peters and Williams (1983)describes fairly well the liftoff trend of all the tested nozzle’s geometries.

It is demonstrated above that the correlation of Kalghatgi (1984)can,in general,be used to describe the liftoff heights of the present data but with a value of the constant C of Eq.(1)different for each nozzle geometry.The correlation of Kalghatgi (1984)simply states that the flame liftoff height is proportional to the jet bulk exit velocity,as for a given hydrocarbon fuel all the remaining terms in Eq.(1)are constant.Equating Eqs.(2)and (5)results in the following equation

X qu eD e =U T?0:018eD e =h T

e6T

knowing that X qu is a constant for a particular nozzle and fuel type,Eq.(6),there-fore,reveals that h /U ,which is the same as the correlation of Kalghtagi (1984).However,the other methods represented by Eq.(3)(e.g.,X tb 1)and Eq.(4)(e.g.,X tb 2),which rely less on empirical data,have poor agreement with the present flame liftoff data,as illustrated in Figure 5.

The foregoing indicates that the laminar flamelet extinction theory of Peters and Williams (1983)gives about the same scale of liftoff height as the experimental data of the present study.However,it falls short of predicting the right liftoff height trend.This demonstrates that the theory of Peters and Williams (1983)is not fully developed to account for the liftoff height and,therefore,cannot in its present form be used as a stabilization mechanism of a jet diffusion flame.This is what led to the development of the triple flame concept by Peters (2000)in which the flame base is partially premixed;however,this theory still needs additional experimental =empirical data before it becomes fully exploitable.

Blowout,Liftoff,and Reattachment Velocities

The blowout,liftoff,and reattachment velocities of the diffusion methane flame issuing from the five different nozzles tested in the present study are summari-zed in Table 2.The flame stability limits are determined by the liftoff and blowout velocities.The lower flame stability limit is the velocity at which the flame lifts off the

2196 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

nozzle exit;whereas the blowout velocity is the upper stability limit at which the flame ceases to exist.Liftoff is attained only when the flame completely detaches from the nozzle exit.Note that the liftoff velocity is achieved by gradually increasing the fuel jet exit velocity until the flame lifts off the nozzle exit.The blowout velocity,on the other hand,is attained by gradually increasing the jet exit velocity of the already lifted flame until the flame blows out or ceases to exist,whereas the reattach-ment velocity is the velocity at which the lifted flame suddenly re-attaches itself to the nozzle.The reattachment velocity is achieved by gradually reducing the exit velocity of the lifted flame until the flame re-attaches again to the nozzle.

It is worth mentioning that each measurement was repeated at least three time for each set conditions to ensure the repeatability and hence the reliability of the data.An order of magnitude of the variability of these measurements is reported in Table 2.As shown in Table 2,the flame blowout velocity of the rectangular nozzle is the highest,followed by the contracted circular nozzle,the squarer nozzle,the tri-angular nozzle,and the pipe which has the lowest.This indicates that the rectangular nozzle has the widest flame stability limit compared to all other nozzles tested here.However,the surprising result concerns the triangular nozzle which is found to have a lower blowout velocity than the contracted circular nozzle.An attempt to explain this unexpected finding is provided in the discussion section.

The flame liftoff velocity,on the other hand,is found different for all the nozzle’s geometries.The rectangular has the highest liftoff velocity followed by the contracted circular,the square,the triangular,and lastly the pipe,which has the low-est value.However,the behaviour of the flame during transition from attached to lifted is very similar for all the tested nozzles except for the pipe.For all nozzles with the exception of the pipe,shortly before the occurrence of the liftoff,sort of ‘‘holes’’are formed in the flame front,which tend to completely disconnect the ‘‘neck’’of the flame from the rest of the flame.Figures 6a to c illustrate the evolution of the jet diffusion flame from attached to lifted.Figure 6a shows the pipe’s flame during tran-sition from attached to a lifted flame while Figures 6b to c present that of the rec-tangular nozzle,which is also representative of the flame liftoff event of all the other nozzles (i.e.,asymmetric,including the contracted circular,nozzles).

Figures 6b to c show the holes that are formed during transition to liftoff for all these nozzles except the pipe.However,for the pipe,the flame during transition has no such holes as it lifts cleanly from the exit plane of the nozzle and stabilizes at a new height above the nozzle exit plane.This finding is consistent with those of Langman et al.(2007)and Coats and Zhao (1989)who both investigated lifted flame from a pipe and a contracted circular nozzle.Nevertheless,the initial stabilization height which corresponds to the onset of liftoff is very similar for all nozzles except the triangular nozzle and pipe.For all nozzles,except the triangular nozzle and pipe,

Table 2Blowout,liftoff,and reattachment velocities for different nozzle geometries

Nozzle geometry

Pipe Contracted circular

Rectangle Triangle Square Blowout velocity (m =s)69.3?2.181.1?2.490.3?2.673.4?2.180.1?2.4Liftoff velocity (m =s)

18.0?0.624.7?0.727.0?0.819.5?0.624.2?0.7Reattachment velocity (m =s)

6.3?0.1

6.8?0.2

6.9?0.2

7.1?0.2

6.5?0.1

FUEL NOZZLE GEOMETRY AND FLAME STABILITY

2197

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

the lifted flame stabilizes at a height of about 10nozzle diameters above the nozzle exit.In fact,there are different explanations in the open literature that purportedly clarify the liftoff process (transition from anchored to lifted flame).

For example,Coats and Zhao (1989)showed that the liftoff is initiated as a result of invasion of the initial laminar flame base by turbulence that originates from the gaseous fuel jet.For the pipe nozzle,Coats and Zhao (1989)reported that the pipe’s flame liftoff height is approached when the initial laminar base of the flame is invaded directly by the pipe’s core flow turbulence.However,for the contoured (i.e.,contracted circular)nozzle,the corresponding flame liftoff height approaches when holes develop in the flame sheet as a result of selective quenching of the diffusion flame at the point of interference between the inner gaseous jet’s high frequency vortices and the flame front (Eickhoff et al.,1984).According to

Coats

Figure 6(a)Attached pipe flame during transition to lifted flame;(b)Attached rectangular nozzle jet flame before transition to lifted flame;(c)Attached rectangular nozzle jet flame during transition to lifted flame.

2198 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

and Zhao (1989),as the holes appear,the part of the flame,which is still attached to the nozzle,becomes increasingly more turbulent until the flame finally lifts off the nozzle.

Consequently,the transition from attached to lifted flame is fairly similar for all the nozzles (except the pipe)as they have identical velocity profiles,that approaches a top-hat shape in the near-field (Iyogun and Birouk,2008).There is a so-called ‘‘necking’’and holes present in the flame sheet before the onset of liftoff for all the nozzles except for the pipe’s flame (See Figures 6a through c).In addition,the appearance of ‘‘holes’’seems to reduce the damping effect of the flame on the growth of the vortical structures in the jet shear-layer zone.As breakdown of vor-tices increases,the part of the flame below its neck becomes increasingly more tur-bulent until liftoff is initiated.

However,the conclusions of Gollahalli et al.(1986)and Takahashi et al.(1984)regarding the factors responsible for the flame liftoff are not completely in line with those of Scholefield and Garside (1949),Coats and Zhao (1989),and Eickoff et al.(1984).However,it has not been confirmed in the present study if molecular diffusion is primarily responsible for the liftoff process according to Gollahalli et al.(1986).Scholefield and Garside (1949)reported that diffusion,heat release,and velocity profiles could all be key factors.On the other hand,the present study reveals that turbulence and flow structures are very likely to have an effect.The influence of the growth =reduction of organized vortical struc-tures as the jet exit velocity is increased could explain why the flame issuing from nozzles characterized by velocity profiles that approaches approximately a top-hat shape have different liftoff velocities.

In addition,the influence of the turbulence profiles in the center region of the pipe could be responsible for the lowest liftoff velocity of the pipe,which is similar to the findings of Coats and Zhao (1989)and Langman et al.(2007).Nevertheless,the flame base is seen to be located away from the shear-layer zones.This,in fact,seems to corroborate the findings of Gollahalli et al.(1986)and Takahashi et al.(1984)that the flame base is laminar at liftoff.However,the conclusion of Gollahalli et al.(1986)concerning the mechanism of liftoff does not address the differences in the liftoff velocity of the various nozzles used in the present study.The explanation of Eickhoff et al.(1984)might be appropriate for this apparent liftoff velocity differences.For example,local extinction regarded as holes in the flame front,according to Eichkoff et al.(1984),might be caused by the interference of the vortical structures with the flame front in which significant heat release could be diffused by the small-scale turbulence structures.This explanation of Eichkoff et al.(1984)also seems to make sense as holes are absent in the pipe jet flame during transition to liftoff.

The liftoff velocity for the contracted circular nozzle in the present study is slightly different from that of Gollahalli et al.(1986)who found a liftoff velocity of 29m =s for a contoured nozzle with a diameter of 5.53mm.However,the present flame liftoff velocities of the pipe and contracted circular nozzle are in good agree-ment with the findings of Coats and Zhao (1989)who reported 18and 24m =s,respectively,for a 6mm in diameter tube and a contracted circular nozzle,as well as with those of Langman et al.(2007)who reported 28?0.8and 20?0.6m =s for a 5mm diameter contracted circular nozzle and pipe,respectively.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2199

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

The reattachment velocity,on the other hand,is nearly identical,within experimental errors,for all the tested nozzles,as shown in Table 2.This finding seems to be in line with the conclusion of Gollahalli et al.(1986),that the reattach-ment process is governed primarily by the dynamics of the organized structures for nozzles which have uniform velocity profiles at the exit.Consequently,the flame reattachment velocity is not significantly influenced by the nozzle geometry except the pipe which has a distinct velocity profile at the nozzle exit.Subsequently,from Table 2,it appears that the higher the growth of the organized structures of the shear layer,the greater the reattachment velocity.In addition,the reattachment velocities are quite lower than the liftoff velocities for all the tested nozzles (see Table 2).This finding of hysteresis is consistent with the hysteresis phenomenon observed by Coats and Zhao (1989)and Gollahalli et al.(1986).Consequently,asymmetry of the nozzle does not seem to have an influence on the hysteresis.DISCUSSION

Why does a jet diffusion flame issuing from asymmetric nozzles have lower lift-off heights and higher blowout velocities compared to their conventional circular counterparts?In this section,experimental data of turbulent non-reacting air jet are used in an attempt to shed light on issues surrounding this question.In fact,non-reacting air jet is used instead of jet flame to measure the axial mean-velocity and turbulence profiles for two exit velocities which represent the two distinct liftoff regions shown in Figure 3.It is more economical to use air,although combustion may alter the free jet characteristics.However,non-reacting turbulent free jet has been shown to still give a good trend and representation of the flow dynamics in the presence of chemical reactions (Gollahalli et al.,1986;Gutmark et al.,1989a,b,1991;Langman et al.,2007).

Figures 7a to b and Figure 8present,respectively,the streamwise centreline mean velocity decay and jet half-velocity width of the non-reacting free turbulent air jet at an exit velocity of 30m =s for the five different nozzles tested in the present study.Figure 7a shows the overall streamwise centerline mean velocity decay while Figure 7b presents the near-field streamwsie centerline mean velocity decay.These Figures (7and 8)show that,in general,the asymmetric nozzles have higher center-line mean velocity decay and jet half-velocity width compared to the circular nozzles counterparts.

This is in accordance with published reports (see,for example,Gutmark et al.,1989a,b,1991;Mi et al.,2000;Quinn,1995,2005)in which it was observed that asymmetric nozzles induce higher streamwise centerline mean velocity decay rate compared to their axisymmetric counterparts.These higher rates of the streamwise centerline mean velocity decay and jet half-velocity width of the asymmetric nozzles is an indication of increased entrainment and jet spreading,which in turn an indication of improved mixing.From Figure 7it can be seen that at an exit velocity of 30m =s,the triangular nozzle has the highest rates of entrainment followed by the rectangular nozzle with the pipe having the lowest near-field centerline mean-velocity decay.

However,Figure 8,which presents the jets spreading along only one axis does not in fact represent the overall spreading rates especially for the rectangular nozzle

2200 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

which has two distinct major and minor axis.The square nozzle,for example,which seems to have the highest rate of spread in the far-field (i.e.,x =D e !20)has symmetric axes and as a result the axis switching which occurs in the triangular and especially the rectangular jet is not so prevalent in the square jet.Quinn (1995)showed that the rectangular jet experiences ‘axis switching’at around x =D e >10such that the spread rate of the minor axis becomes higher than that of the major axis.The equilateral triangular jet has also been reported to experience axis switching (Quinn,

2005).

Figure 7(a)Streamwise centerline mean-velocity decay of non-reacting jet airflow at an exit velocity of 30m =s;(b)Near-field streamwise centerline mean velocity decay of non-reacting jet airflow at an exit velocity of 30m =s.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2201

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

Consequently,this phenomenon could explain why the square nozzle seems to have a higher far-field half-velocity width but it does not imply that it has the largest overall spread.Quinn (2005)emphasized that the more the predominant axis switch-ing is,the faster the rate of mixing.Figures 9and 10compare,respectively,the cen-terline velocity decay and jet half-velocity width at an exit velocity of 30m =s with those at 65m =s.Figures 11and 12,on the other hand,show the comparison between only the two nozzles (i.e.,triangle and rectangle)as they have the highest rates of entrainment and jet spreading.From Figures 9and 11,it can be seen that the stream-wise centerline mean velocity decay of all nozzles decrease as the jet exit velocity increases from 30to 65m =s.

The difference in the rate of decay exhibited as a result of the exit velocities might be a contributing factor for the occurrence of the two different liftoff regions for the rectangular and triangular nozzles (see Figure 3).However,the effect of exit velocity on the jet half-velocity width,shown in Figures 10and 12,is reproduced on the jet streamwise centerline mean velocity decay for all nozzles except for the rec-tangular nozzle where the inverse scenario occurs.That is,for the rectangular jet as the exit velocity increases the jet half-velocity width in the major plane =axis increases especially in the far-field.The phenomenon of axis switching might be responsible for this ‘unexpected trend’.It appears also that the jet exit velocity my have an effect on the onset =frequencies of axis switching.Consequently,axis switch-ing is believed to be responsible for the occurrence of the two liftoff regions observed for the triangular flame and especially for the rectangular flame.

In addition,it has been reported that axis switching takes place much earlier for the triangular jet compared to the rectangular jet (Quinn,1995)which may explain why these two distinct liftoff regions are quite different for the two different nozzles,as shown in Figure 3.That is,the rectangular nozzle’s liftoff height is lower than that of the triangular nozzle in the second liftoff region (i.e.,U >48m =s)but the inverse scenario happens in the first liftoff region (i.e.,U <43m =s).In

addition,

Figure 8Jet half-velocity width of non-reacting jet airflow at an exit velocity of 30m =s.

2202 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

by comparing the near-field centerline mean-velocity decay trend of the contracted circular and pipe jets,at an exit velocity of 30m =s,with their corresponding liftoff heights,it can be seen that they generally do correlate.That is,the two jets exhibit almost similar lift-off height as they have nearly identical near-field centreline mean-velocity decay.In brief,the above discussion leads to believe that the flame liftoff height,as shown in Figure 3,may be governed primarily by local mixing rate,which is indicated by the streamwise centerline mean velocity decay and jet spreading rates of Figures 7through 12.

From the blowout results shown in Table 2and the entrainment rate (jet decay and spreading rates)results presented above,it can be concluded that the blowout is not only influenced by streamwise centerline mean-velocity decay but it is also affec-ted by other factors.For example,the jet entrainment results show that the near-field centerline mean-velocity decay of the contracted circular nozzle is lower than most nozzles tested here but its blowout is only second to the rectangular nozzle.In fact,there have been several attempts in the literature aimed at understanding the blow-out mechanism.For example,some studies reported that flame front

instabilities

Figure 9Streamwise centerline mean velocity decay of non-reacting jet airflow at exit velocities of 30m =s and 65m =s.(a)Rectangle,(b)Triangle,(c)Contracted circular,and (d)Square.

FUEL NOZZLE GEOMETRY AND FLAME STABILITY 2203

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

play a significant role in the blowout process.The kind of instabilities and how they affect blowout process have not yet been investigated thoroughly.

The work of Dahm and Mayman (1990)identifies two distinct mechanisms which are responsible for liftoff and blowout.They emphasize that the extinction theory of Peters (1983)governs the liftoff process while local molecular mixing rate is the mechanism that determines the blowout.However,this mechanism of blowout reported by Dahm and Mayman (1990)seems to contradict the findings of Langman et al.(2007),which state that the mixing rate of the pipe is higher than that of the contracted circular nozzle.Consequently,based on the conclusion of Langman et al.(2007)and the findings of Dahm and Mayman (1990)(i.e.,local mixing rate governs blowout);the blowout of the pipe should be higher than that of the contrac-ted circular nozzle which is,however,not the case.

It has to be acknowledged that while Langman et al.(2007)refers to global molecular mixing rate,Dahm and Mayman (1990)calls it local molecular mixing rate which could possibly resolve the apparent contradiction.Consequently,if the molecular mixing rates of the various nozzles used in the present study would have been measured,they might have reinforced the authenticity of the

blowout

Figure 10Jet half-velocity width of non-reacting jet airflow at exit velocity of 30m =s and 65m =s.(a)Rectangle,(b)Triangle,(c)Contracted circular,and (d)Square.

2204 C.O.IYOGUN AND M.BIROUK

D o w n l o a d e d b y [C h i n a S c i e n c e & T e c h n o l o g y U n i v e r s i t y ] a t 06:27 04 J u l y 2011

(精选文档)公司组织架构图及岗位职责

黄金珠宝公司组织架构图及岗位职责 一、组织架构图设计说明 组织架构在企业十分重要,企业的经营和管理是围绕组织架构开展的,而组织架构又是以公司的规模、经营的项目、业务关系而定的。组织架构清晰,使其工作职责明确,工作目标性强。 从人力资源管理的角度讲,组织架构是排在第一位的,这说明其重要性。如果组织架构设置不合理,就会导致责权不清,工作混乱。 从企业管理学的角度讲,企业的组织架构分五种形式:(1)直线制;(2)直线职能制能;(3)事业部制;(4)矩阵组织形式;(5)多维组织形式。此组织架构设计的理由是: 1、根据公司目前状况,按职线职能制设计比较合适。所以, 此图按直线职能制的组织架构形式设计。 2、根据公司发展,和现代企业的管理特点,设置了营销策划 部,和行政部。此组织架构设计,使工作职能和责权划分清楚。 3、在人员配置上,使其一人多职的原则。

二、组织架构图

三、各部门岗位职责: (一)董事会职责 根据《公司法》规定和公司章程,公司董事会是公司经营决策机构,也是股东会的常设权力机构。董事会向股东会负责。 1、负责召集股东会;执行股东会决议并向股东会报告工作; 2、决定公司的生产经营计划和投资方案; 3、决定公司内部管理机构的设置; 4、批准公司的基本管理制度; 5、听取执行董事及总经理的工作报告并作出决议; 6、制订公司年度财务预、决算方案和利润分配方案、弥补亏损 方案; 7、对公司增加或减少注册资本、分立、合并、终止和清算等重 大事项提出方案; 8、聘任或解聘公司总经理、副总经理、财务部门负责人,并决 定其奖惩。 (二)执行董事职责 1、主持召开股东大会、董事会议,并负责上述会议决议的贯彻落实。

模具弹簧规格及参数

模具彈簧规格及参数 一.彈簧功能 彈簧是模具中廣泛應用的彈性零件,主要用于卸料、壓料、推件和頂出等工作.根據荷重不同,共分五種不同顏色加以區分,易於判別和選用. 二.規格系列 1.彈簧外徑系列: Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ 30,Φ35,Φ40,Φ50等. 2.種類 3.彈簧長度:15<=L<=80MM時,每5MM為一個階; 80==100MM時,每25MM為一個階.

4.扁线彈簧最小直径6mm 5.彈簧內徑等于彈簧外徑的二分之一. 6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大壓縮比是彈簧使用30萬次的最大壓縮比. 汽车模具使用50萬次的最大壓縮比.. 8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多 长? 50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm, 弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧? 长弹簧 10. 11.

预压3mm,預壓縮量隨實際情況而定.);閉模狀態彈簧壓縮量小於或等於最大壓縮量(最大壓縮量LA=彈簧自由長L*最大壓縮比取值%). 2.模板压料,脱料板压料優先選用綠色或棕色(茶色,咖啡色) 彈簧;如果向上成形的下模压料,折弯脱料所需的頂料力不很大時,可選用紅色,绿色彈簧,浮料用黄色,圆线弹簧. 3.復合模外脫料板用紅色彈簧,內脫料板用綠色或棕色彈簧.

公司组织架构图和岗位说明书

广西建设有限公司 部门职能及岗位职责 (汇编) 2010年3月 目录 一、组织架构

-----------------------------------------------------------------------------------------2 1、公司行政组织架构---------------------------------------------------------------------------------2 2、工程项目部组织架构----------------------------------------------------------------------------3 二、总经理-----------------------------------------------------------------------------------------4 三、副总经理-----------------------------------------------------------------------------------------5 四、总工程师-----------------------------------------------------------------------------------------6 五、人力总监--------------------------------------------------------------------------------------7 六、财务总监--------------------------------------------------------------------------------------8 七、行政人事部--------------------------------------------------------------------------------------------9 1、人事主管---------------------------------------------------------------------------------------10 2、行政后勤主管------------------------------------------------------------------------------------11 3、文员-----------------------------------------------------------------------------------------12 八、财务部----------------------------------------------------------------------------------------13 1、部门经理-----------------------------------------------------------14 2、会计----------------------------------------------------------------------------------15 3、出纳--------------------------------------------------------------------------------------16 九、总工程师办公室-------------------------------------------------------------------------17 1、副总工程师--------------------------------------------------------18 2、预决算员---------------------------------------------------------19 3、质检员----------------------------------------------------------20 4、土建工程师--------------------------------------------------------21 十、采购部------------------------------------------------------------------------22 1、部门经理---------------------------------------------------------23 2、材料员-----------------------------------------------------24十一、设备部-------------------------------------------------------------------------------------------------- 25 1、部门经理-----------------------------------------------------------26 2、操作员----------------------------------------------------------------------------27十一、项目部----------------------------------------------------------------------------------------------- 28 3、部门经理-----------------------------------------------------------29 4、工长---------------------------------------------------------29 5、资料员------------------------------------------------------------30 6、试验员----------------------------------------------------------31 7、水电工 ---------------------------------------------------------------32 8、项目作业班长 ---------------------------------------------------------33 9、门卫-------------------------------------------------------34 一、建设公司行政组织机构:

XX科技公司组织结构及岗位说明书

XX科技公司组织结构及岗位说明书 北京XXX科技开发有限公司组织结构及岗位说明书

目录 法人治理结构: (5) 董事会职责: (5) 执委会职责: (6) 经营层职责: (7) 技术委员会职责: (7) 薪酬考核委员会职责: (8) 预算审计委员会职责: (8) 战略投资委员会职责: (8) 公司组织结构: (9) 总经理岗位说明书 (10) 营销副总岗位说明书 (13) 研发副总岗位说明书 (16) 首席设计师岗位说明书 (19) 副总工程师岗位说明书 (22) 副总工程师岗位说明书 (25) 生产副总岗位说明书 (27) 部门结构、部门职责和岗位职责 (30) 企划部 (30) 企划部部门结构: (30) 企划部部门职责: (30) 企划部岗位职责: (32) 企划部经理岗位说明书 (32) 综合计划岗位说明书 (36) 综合统计岗位说明书 (39) 企划岗位说明书 (42) 人力资源部 (45) 人力资源部部门结构: (45) 人力资源部部门职责: (45) 人力资源部岗位职责: (46) 人力资源部经理岗位说明书 (46) 人事管理岗位说明书 (50) 培训岗位说明书 (53) 薪酬考核岗位说明书 (56) 办公室 (59) 办公室部门结构: (59) 办公室部门职责: (59) 办公室岗位职责: (60) 办公室主任岗位说明书 (60) 秘书岗位说明书 (64) 外事岗位说明书 (66) IT岗位说明书 (68) 行政内勤岗位说明书 (71)

物业管理员岗位说明书 (77) 行政主管岗位说明书 (79) 市场营销部 (82) 市场营销部组织结构: (82) 市场营销部部门职责: (82) 市场营销部岗位职责: (83) 市场营销部经理岗位说明书 (83) 产品规划岗位说明书 (86) 市场推广岗位说明书 (88) 客户经理岗位说明书 (90) 订单管理岗位说明书 (92) 营销管理岗位说明书 (94) 客户服务部 (98) 客户服务部组织结构: (98) 客户服务部部门职责: (98) 客户服务部岗位职责: (99) 客户服务部经理岗位说明书 (99) 客户服务岗位说明书 (102) 技术支持岗位说明书 (105) 备品备件管理岗位说明书 (107) 维修管理岗位说明书 (109) 维修工岗位说明书 (111) 财务部 (113) 财务部部门结构: (113) 财务部部门职责: (113) 财务部岗位职责: (114) 财务部经理岗位说明书 (114) 应付会计岗位说明书 (118) 应收会计岗位说明书 (120) 成本会计岗位说明书 (123) 总账会计岗位说明书 (125) 预算管理岗位说明书 (127) 出纳岗位说明书 (129) 质量部 (132) 质量部部门结构: (132) 质量部部门职责: (132) 质量部岗位职责: (133) 质量部经理岗位说明书 (133) 体系管理工程师岗位说明书 (137) 质量管理工程师岗位说明书 (140) 质检主管岗位说明书 (143) 进货检验岗位说明书 (146) 过程检验岗位说明书 (148)

模具弹簧规格及参数

模具弹簧规格及参数 一.弹簧功能 弹簧是模具中广泛应用的弹性零件,主要用于卸料、压料、推件和顶出等工作.根据荷重不同,共分五种不同颜色加以区分,易於判别和选用. 二.规格系列 1.弹簧外径系列:Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ30,Φ35,Φ40,Φ50等. 2.种类 3.弹簧长度:15<=L<=80MM时,每5MM为一个阶; 80==100MM时,每25MM为一个阶. 4.扁线弹簧最小直径6mm 5.弹簧内径等于弹簧外径的二分之一. 6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大压缩比是弹簧使用30万次的最大压缩比. 汽车模具使用50万次的最大压缩比.. 8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长?

50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm,弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧? 弹簧的长度=20÷28.8%+5MM=74.4 查表选用75MM长弹簧 一般选弹簧长度会加5mm的安全余量 10.弹簧要压缩的长度=活动板行程+3~5mm预压(常规预压3mm) 11.弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2 三.选用原则 1.长度选择一般保证:在开模状态弹簧的预压缩量等於3~5(常规预压3mm,预压缩量随 实际情况而定.);闭模状态弹簧压缩量小於或等於最大压缩量(最大压缩量LA=弹簧 自由长L*最大压缩比取值%). 2.模板压料,脱料板压料优先选用绿色或棕色(茶色,咖啡色)弹簧;如果向上成形的 下模压料,折弯脱料所需的顶料力不很大时,可选用红色,绿色弹簧,浮料用黄色,圆线弹簧. 3.复合模外脱料板用红色弹簧,内脱料板用绿色或棕色弹簧. 4.活动定位销一般选用Φ6顶料销,配Φ10黄色弹簧和M12止付螺丝. Φ8顶料销,配Φ12黄色弹簧和M14止付螺丝. 5.冲孔模和成形模用绿色或棕色(茶色,咖啡色)弹簧,如有特殊需求时,由专案主管确 定. 6.弹簧规格优先选用Φ30.在空间较小区域可考虑选用其它规格(如Φ25,Φ20,Φ18,Φ 16…...等).Φ25的内导柱用Φ30的弹簧脱料 Φ20的内导柱用Φ25的弹簧脱料 四.排配原则 1.弹簧过孔中心到模板边缘距离大於外径D,与其他孔距离保持实体壁厚大於5MM, 空间不足时最少留2MM. 2.弹簧排列首先考虑受力重点部位,然後再考虑整个模具受力均衡平稳.受力重点部 位是指:复合模的内脱料板外形和冲头的周围;冲孔模的冲头周围;成形模的折弯边 及有抽成形的地方. 3.成形模采用气垫结构时,下打板排配2~6个弹簧.下模座上不沉孔,弹簧选用黄色或 蓝色即可.

公司组织架构图及岗位职责说明书

XX公司组织架构及部门岗位职责 说明书 一、总经理职责 总经理是公司经营管理的领导核心,是经营管理的最高决策人。 1.1职能 ①组织制订公司经营方针、经营目标、经营计划,分解到各部门并组织实施。 ②负责制订并落实公司各项规章制度、改革方案、改革措施。 ③提出公司组织机构设置方案。 ④提出公司经营理念,主导企业文化建设的基本方向,创造良好的工作环境、生活环境,培养员工归属感,提升企业的向心力、凝聚力、战斗力。 ⑤负责处理部门相互之间事务矛盾和问题。 ⑥负责公司投资项目选定。 ⑦负责审核公司经营费用支出。 ⑧决定公司各部门人员的聘用任免。对公司的经济效益负责,拥有经营指挥权和各种资源分配权 1.2权力 ①有权根据公司经营目标、经营方针、制订经营计划; ②有权实施公司改革方案、改革措施,制订公司制度。 ③有权提出公司机构设置建议。 ④有权聘用或解聘公司各部门经理、员工,并决定其薪酬待遇,有权对各部门员工进行工作调配。 ⑤有权审核公司经营费用支出与报销。 ⑥有权对公司员工作出奖惩决定 1.3 工作流程 ①依据公司各类信息,如财务报表、汇总的信息、各部门报告等,向各部门经理发出指令,提出工作安排。 ②接受指令人员,根据总经理要求,制订出相应制度、方案、政策、措施,做出决议报总经理。 ③总经理对提供的制度、方案、政策、决议等进行审阅,同意则签批给职能部门实施;不同意,则指令有关部门修订完善后,再审核、签批、下发、实施。 ④有关部门定期将各类制度、方案、政策、措施的执行情况,检查、落实后汇总上报总经理。 ⑤依据执行情况,总经理发出新指令。 二、总经办部门职能 1、项目工作的监督、管理:协助、监督公司重大项目工作的组织、实施、落实和绩效评估工作,部门工作重大问题的监控工作; 2、法律事务:依据公司工作开展的需要,全面负责公司内外法律事务,监管重大合同谈判,以确保公司的权益不受损害; 3、对外关系:代表公司参加有关会议,保持与政府部门、同行业机构等的联系,树立公司良好形象; 4、重大活动组织:协助、监管有关部门组织重大活动,企业文化建设,企业形象提升活动时,提供后勤保证;

模具弹簧规格及参数

模具弹簧规格及参数 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

模具弹簧规格及参数 一. 弹簧功能 弹簧是模具中广泛应用的弹性零件,主要用于卸料、压料、推件和顶出等工作.根据荷重不同,共分五种不同颜色加以区分,易於判别和选用. 二. 规格系列 1.弹簧外径系列: Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ30,Φ 35,Φ40,Φ50等. 2.种类 3.弹簧长度:15<=L<=80MM时,每5MM为一个阶; 80==100MM时,每25MM为一个阶. 4.扁线弹簧最小直径6mm 5.弹簧内径等于弹簧外径的二分之一. 6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大压缩比是弹簧使用30万次的最大压缩比. 汽车模具使用50万次的最大压缩比..

8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长 50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm, 弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧 弹簧的长度=20÷%+5MM= 查表选用75MM长弹簧 一般选弹簧长度会加5mm的安全余量 10.弹簧要压缩的长度=活动板行程+3~5mm预压 (常规预压3mm) 11.弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2 三. 选用原则 1.长度选择一般保证:在开模状态弹簧的预压缩量等於3~5(常规预压3mm,预 压缩量随实际情况而定.);闭模状态弹簧压缩量小於或等於最大压缩量 (最大压缩量LA=弹簧自由长L*最大压缩比取值%). 2.模板压料,脱料板压料优先选用绿色或棕色(茶色,咖啡色)弹簧;如果 向上成形的下模压料,折弯脱料所需的顶料力不很大时,可选用红色,绿色弹簧,浮料用黄色,圆线弹簧. 3.复合模外脱料板用红色弹簧,内脱料板用绿色或棕色弹簧. 4.活动定位销一般选用Φ6顶料销,配Φ10黄色弹簧和M12止付螺丝. Φ8顶料销,配Φ12黄色弹簧和M14止付螺丝. 5.冲孔模和成形模用绿色或棕色(茶色,咖啡色)弹簧,如有特殊需求时,由 专案主管确定. 6.弹簧规格优先选用Φ30.在空间较小区域可考虑选用其它规格(如Φ25,Φ 20,Φ18,Φ16…...等).Φ25的内导柱用Φ30的弹簧脱料 Φ20的内导柱用Φ25的弹簧脱料 四. 排配原则 1.弹簧过孔中心到模板边缘距离大於外径D,与其他孔距离保持实体壁厚大 於5MM,空间不足时最少留2MM. 2.弹簧排列首先考虑受力重点部位,然後再考虑整个模具受力均衡平稳.受 力重点部位是指:复合模的内脱料板外形和冲头的周围;冲孔模的冲头周 围;成形模的折弯边及有抽成形的地方.

组织架构及岗位职责分析

旅游资源开发有限公司 人员机构设置方案 根据我公司实际情况,拟下设1室3部1店,5个职能部门,即行政办公室、财务部、景区管理部、市场经营部、。总编制人员65名,其中公司领导3名,中干4名,主管 8名,一般管理员6名,工作人员44名。 一、组织架构 二、部门职责及岗位编制 行政办公室(编制4名。其中:主任1名,人事主管(主任兼),文员1名,驾驶

员2名。) 1、负责公司规章制度及重大事项的调查研究工作; 2、审核或起草重要文件、汇报材料,负责公文流转及印章管理工作; 3、负责公司各种会议准备工作,协助公司领导组织会议决定事项的实施; 4、督查公司各部门贯彻上级文件、公司会议决定事项及领导批示的执行情况; 5、负责组织、协调和管理公司的大型活动; 6、负责公司值班工作、信访工作,协助领导处理突发事件和重大事故; 7、负责公司信息系统建设、应用和管理工作; 8、负责机关后勤、内保事务和办公用品管理工作; 9、负责公司对外宣传工作; 10、完成公司交办的其他工作。 (二)财务部(编制:2名。其中:部长(兼任会计)1名,出纳1名) 1、负责公司的会计核算工作,定期编制各类会计报表和财务报告,提供真实完整的会计信息; 2、负责公司的会计管理,并对本部门人员进行培训、考核; 3、负责对公司的各项经济活动进行控制和监督,保证公司资产的安全完整; 4、负责拟定科学、合理、有效的财务管理制度,做好财务信息化工作; 5、负责定期开展经营活动及财务状况分析工作,为公司决策提供财务信息和决策建议; 6、负责开展全面预算管理,做到各项费用开支事前监督,事中控制,事后总结分析、考核; 7、负责公司资金的统筹、统贷、统还、统管,科学管理资金,降低企业成本; 8、负责按期申报缴纳各种税金,争取各项税收优惠政策,合理避税,减轻公司税

公司组织架构图及岗位职责说明书

组织架构及部门岗位职责 一、董事长职责 1、贯彻执行党和国家的方针政策、法律法规,制定企业总体发展规划和发展战略。 2、主持董事会工作,定期向董事会报告工作。 3、决策企业经营方向和经营策略。 4、决定总经理及其他高级管理人员的聘用和免职。。 5、决定公司高层管理人员的报酬、待遇和支付方式。 6、审批财务报告。 7、董事长不能履行职责时,可授权总经理代理。 二、总经理职责 (一)职能 1、组织制订公司经营方针、经营目标、经营计划,分解到各部门并组织实施。 2、负责制订并落实公司各项规章制度、改革方案、改革措施。 3、提出公司组织机构设置方案。 4、提出公司经营理念,主导企业文化建设的基本方向,创造良好的工作环境、生活环境,培养员工归属感,提升企业的向心力、凝聚力、战斗力。 5、负责处理部门之间工作协调问题。 6、负责公司投资项目选定。 7、负责审核公司经营费用支出。 8、决定公司各部门人员的聘用任免。对公司的经济效益负责,拥有经营指挥权和各种资源分配权 (二)权力 1、有权根据公司经营目标、经营方针、制订经营计划; 2、有权实施公司改革方案、改革措施,制订公司制度。

3、有权提出公司机构设置建议。 4、有权聘用或解聘公司各部门经理、员工,并决定其薪酬待遇,有权对各部门员工进行工作调配。 5、有权审核公司经营费用支出与报销。 6、有权对公司员工作出奖惩决定 三、总经理助理岗位职责 1、日常工作的监督、管理:及时审核各部门、分公司月度总结、计划,根据总结计划安排相关部门或人员监管部门月度工作开展和改进。 2、法律事务:依据公司工作开展的需要,全面负责公司内外法律事务,监管重大合同谈判,以确保公司的权益不受损害; 3、对外关系:代表公司参加有关会议,保持与政府部门、同行业机构等的联系,树立公司良好形象。 4、协助总经理处理其它事务。 三、线下销售团队职责 (一)店长 1、完成公司制定的经营指标。 2、根据公司年度经营目标,制定卖场运营规划以及年度、季度和月度销售计划。 3、卖场全年经费的预算和控制。 4、卖场管理制度的拟定、实施和改善。 5、负责市场调研、市场分析工作,制定推进计划。 6、了解客户的基本情况及与本消费习惯,建立和运用客户资料库。 8、对卖场做进销存分析,设立库存的最低和最高限额,设定货物周转时间。 9、定期对营业员进行培训,提高终端导购水平,建立一支高素质的销售队伍。 10、对部门内部人员的绩效管理,并对部门人员的奖励、处罚进行审核。

模具弹簧规格及参数

模具彈簧规格及参数 一. 令狐采学 二.彈簧功能 彈簧是模具中廣泛應用的彈性零件,主要用于卸料、壓料、推件和頂出等工作.根據荷重不同,共分五種不同顏色加以區分,易於判別和選用. 三.規格系列 1.彈簧外徑系 列:Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ30,Φ35, Φ40,Φ50等. 2.種類

3.彈簧長度:15<=L<=80MM時,每5MM為一個階; 80==100MM時,每25MM為一個階. 4.扁线彈簧最小直径6mm 5.彈簧內徑等于彈簧外徑的二分之一. 6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm 产生的力越大 7.通常使用的最大壓縮比是彈簧使用30萬次的最大壓縮比. 汽车模具使用50萬次的最大壓縮比.. 8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长? 50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm, 弹簧颜色为红色,弹簧要求寿

命50万次 要用多长的弹簧? 弹簧的长度=20÷28.8%+5MM=74.4 查表选用75MM长弹簧 一般选弹簧长度会加5mm的安全余量 10.弹簧要压缩的长度=活动板行程+3~5mm预压(常规 预压3mm) 11.弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2 四.選用原則 1.長度選擇一般保証:在開模狀態彈簧的預壓縮量等於 3~5(常规预压3mm,預壓縮量隨實際情況而定.);閉模狀態 彈簧壓縮量小於或等於最大壓縮量(最大壓縮量LA=彈 簧自由長L*最大壓縮比取值%). 2.模板压料,脱料板压料優先選用綠色或棕色(茶色,咖 啡色)彈簧;如果向上成形的下模压料,折弯脱料所需的 頂料力不很大時,可選用紅色,绿色彈簧,浮料用黄色, 圆线弹簧. 3.復合模外脫料板用紅色彈簧,內脫料板用綠色或棕色彈 簧. 4.活動定位銷一般選用Φ6頂料銷,配Φ10黃色彈簧和

公司组织架构图和岗位职责说明书模板

普雪公司组织架构及部门岗位职责 说明书 一、总经理职责 总经理是公司经营管理的领导核心,是经营管理的最高决策人。 1.1职能 ①组织制订公司经营方针、经营目标、经营计划,分解到各部门并组织实施。 ②负责制订并落实公司各项规章制度、改革方案、改革措施。 ③提出公司组织机构设置方案。 ④提出公司经营理念,主导企业文化建设的基本方向,创造良好的工作环境、生活环境,培养员工归属感,提升企业的向心力、凝聚力、战斗力。 ⑤负责处理部门相互之间事务矛盾和问题。 ⑥负责公司投资项目选定。 ⑦负责审核公司经营费用支出。 ⑧决定公司各部门人员的聘用任免。对公司的经济效益负责,拥有经营指挥权和各种资源分配权 1.2权力 ①有权根据公司经营目标、经营方针、制订经营计划; ②有权实施公司改革方案、改革措施,制订公司制度。 ③有权提出公司机构设置建议。 ④有权聘用或解聘公司各部门经理、员工,并决定其薪酬待遇,有权对各部门员工进行工作调配。 ⑤有权审核公司经营费用支出与报销。 ⑥有权对公司员工作出奖惩决定 1.3 工作流程 ①依据公司各类信息,如财务报表、汇总的信息、各部门报告等,向各部门经理发出指令,提出工作安排。 ②接受指令人员,根据总经理要求,制订出相应制度、方案、政策、措施,做出决议报总经理。 ③总经理对提供的制度、方案、政策、决议等进行审阅,同意则签批给职能部门实施;不同意,则指令有关部门修订完善后,再审核、签批、下发、实施。 ④有关部门定期将各类制度、方案、政策、措施的执行情况,检查、落实后汇总上报总经理。 ⑤依据执行情况,总经理发出新指令。 二、总经办部门职能 1、项目工作的监督、管理:协助、监督公司重大项目工作的组织、实施、落实和绩效评估工作,部门工作重大问题的监控工作; 2、法律事务:依据公司工作开展的需要,全面负责公司内外法律事务,监管重大合同谈判,以确保公司的权益不受损害; 3、对外关系:代表公司参加有关会议,保持与政府部门、同行业机构等的联系,树立公司良好形象; 4、重大活动组织:协助、监管有关部门组织重大活动,企业文化建设,企业形象提升活动时,提供后勤保证;

模具弹簧规格及参数

模具弹簧规格及参数 弹簧功能 弹簧是模具中广泛应用的弹性零件,主要用于卸料、压料、推件和顶出等工作?根据荷重不同,共分五种不同颜色加以区分,易於判别和选用? 规格系列 1. 弹簧外径系列:①6①8,①10,①12,①14,①16,①18,①20,①22, ①25,①30,①35,①40,①50等. 2. 种类 3. 弹簧长度:15<=L<=80MM 时,每5MM 为一个阶; 80=V L V=100MM时,每10MM 为一个阶; L>=100MM 时,每25MM 为一个阶. 4. 扁线弹簧最小直径6mm

5?弹簧内径等于弹簧外径的二分之 6?相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大压缩比是弹簧使用30万次的最大压缩比. 汽车模具使用50万次的最大压缩比.. 8?弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:①20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长? 50x24% =12(mm) 9?弹簧的长度=弹簧要压缩的长度-弹簧的压缩比 例:弹簧要压缩20mm,弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧? 弹簧的长度=20 - 28.8 % +5MM=74.4 查表选用75MM长弹簧 一般选弹簧长度会加5mm的安全余量 10. 弹簧要压缩的长度=活动板行程+3~5mm预压(常规预压3mm) 11. 弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2 三.选用原则 1. 长度选择一般保证:在开模状态弹簧的预压缩量等於3~5(常规预压3mm, 预压缩量随实 际情况而定.);闭模状态弹簧压缩量小於或等於最大压缩量(最大压缩量LA=弹簧自由 长L*最大压缩比取值%).

模具弹簧规格及参数

模具弹簧规格及参数 一. 弹簧功能 弹簧是模具中广泛应用的弹性零件,主要用于卸料、压料、推件和顶出等工作.根据荷重不同,共分五种不同颜色加以区分,易於判别和选用. 二. 规格系列 1.弹簧外径系列:Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ 30,Φ35,Φ40,Φ50等. 2.种类 3.弹簧长度:15<=L<=80MM时,每5MM为一个阶; 80==100MM时,每25MM为一个阶.

4.扁线弹簧最小直径6mm 5.弹簧内径等于弹簧外径的二分之一. 6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大压缩比是弹簧使用30万次的最大压缩比. 汽车模具使用50万次的最大压缩比.. 8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长? 50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm, 弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧? 弹簧的长度=20÷28.8%+5MM=74.4 查表选用75MM长弹簧一般选弹簧长度会加5mm的安全余量 10.弹簧要压缩的长度=活动板行程+3~5mm预压 (常规预压3mm) 11.弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2 三. 选用原则 1.长度选择一般保证:在开模状态弹簧的预压缩量等於3~5(常规预

模具弹簧规格及参数

模具弹簧规格及参数 Last updated at 10:00 am on 25th December 2020

模具弹簧规格及参数 一.弹簧功能 弹簧是模具中广泛应用的弹性零件,主要用于卸料、压料、推件和顶出等工作. 根据荷重不同,共分五种不同颜色加以区分,易於判别和选用. 二.规格系列 1.弹簧外径系列: Φ6Φ8,Φ10,Φ12,Φ14,Φ16,Φ18,Φ20,Φ22,Φ25,Φ30,Φ35,Φ40,Φ50等.

2.种类 3.弹簧长度:15<=L<=80MM时,每5MM为一个阶; 80==100MM时,每25MM为一个阶. 4.扁线弹簧最小直径6mm 5.弹簧内径等于弹簧外径的二分之一.

6.相同直径颜色的弹簧,不管自由长度是多长,压40%产生的力一样 结论:相同直径颜色的弹簧,自由长度越短,压缩1mm产生的力越大 7.通常使用的最大压缩比是弹簧使用30万次的最大压缩比. 汽车模具使用50万次的最大压缩比.. 8.弹簧能压缩的长度=弹簧的自由长度x弹簧的压缩比 例:Φ20绿色弹簧长度50mm,弹簧要求寿命30万次,弹簧能压缩多长? 50x24%=12(mm) 9.弹簧的长度=弹簧要压缩的长度÷弹簧的压缩比 例:弹簧要压缩20mm, 弹簧颜色为红色,弹簧要求寿命50万次 要用多长的弹簧? 弹簧的长度=20÷%+5MM= 查表选用75MM长弹簧 一般选弹簧长度会加5mm的安全余量 10.弹簧要压缩的长度=活动板行程+3~5mm预压 (常规预压3mm) 11.弹簧模板孔的大小直径<20模板孔=D+1 直径>=20模板孔=D+2

组织机构及岗位职责

计划汇总

办事处清资清债 验收审核证券业务采购价格审计 调拨 地区物业工程预决算复审 总复核主仓仓管员 预决算委托外审 总出纳出纳分仓仓管员专项审计 项目/工程票据管理总帐 收入/成本票据稽核明细表 费用/往来系统维护商品售价会审 存货/土地收入/现金稽核积压物品处理 固定资产往来/固定资产自用品定额确定 合同会审存货/成本/费用 票据管理收银员管理

税务合同会审 档案管理税务 预算预算 评价评价 考核考核 各岗位职责说明 职务:财务副经理 姓名: 岗位职责: 1、管理、协调、督促、指导各财务人员做好各项会计核算和财务管理工作;对财务人员培训、考核; 2、公司会计制度、内部控制程序的设计、建立、健全; 3、对公司原始凭证、记帐凭证进行审核; 4、资金计划编制,资金筹措,现金流量分析;督促财务主管做好资金管理工作; 5、汇总编制公司财务预算、决算及财务状况分析,审定公司每月财务状况说明书; 6、督促财务主管及时、准确编制各种会计报表,审定公司会计报表; 7、督促财务主管及时、准确进行纳税申报;

8、组织、督促财务主管及时按要求开展财产清查、盘点工作; 9、督促财务主管做好公司会计档案、财产权证的管理工作; 10、督促相关财务人员做好重要票据管理工作; 11、指导收银主管做好收银员管理工作; 12、指导财务主管做好营运高峰期间收款工作; 13、指导系统维护人员做好会计电算化系统、收银系统硬件、软件的维护工作; 14、协助有关部门做好项目可行性研究分析工作; 15、协调银行、税务、物价、财政、审计、合作局、外管局、司法、会计师事务所、律师事物所等部 门做好相关工作; 职务:财务副经理 姓名: 岗位职责: 1、管理、协调、督促、指导公司本部财务人员做好各项财务管理和会计核算工作;对本部财务人员 的培训及考核; 2、对公司本部相关原始凭证、记帐凭证进行审核;

公司的组织结构和岗位职责说明

总经理 职责:? 1)主持公司全面经营管理工作; 2)主持公司党委工作; 3)负责公司的财务管理工作; 4)负责公司人力资源管理工作; 5)负责工程建设的管理工作。 分管部门:? 财务部; 人力资源部。 (经营)副总经理 职责:? 1) 负责公司的制度建设和标准化管理工作; 2) 负责公司的战略规划及经营计划的制定与落实,并负责公司的全面预算管理; 3) 负责公司对标管理工作; 4) 负责公司的招投标及合同管理等商务管理工作; 5) 负责公司的采购管理工作; 6) 负责公司的信息化工作; 7) 协助总经理抓好公司财务管理工作; 8) 协助总经理抓好公司人力资源管理工作; 9) 完成总经理交办的其它工作。 分管部门:? 1) 计划经营部; 2) 信息中心。 总经理助理 职责:? 1) 负责公司生产业务的市场拓展工作; 2) 负责公司的生产管理工作; 3) 负责公司与生产相关商务及货运管理工作。 4) 完成总经理交办的其它工作。 分管部门:? 1) 生产业务部; 部门职能 部门名称:财务部直接上级:总经理 下辖岗位:经理、主管会计、会计、出纳 部门本职:负责公司的财务管理工作。 主要职能: 一、根据国家及其相关部门颁布的财务会计法规政策,拟定公司会计政策及财务管理制度 二、财务管理 1、财务预算的编制,预算执行中的财务审核;

2、资金合理安排,资金成本控制; 3、定期对现金流情况进行系统分析,为决策提供依据; 4、各种成本费用的核算归集分析; 5、定期进行财务分析,编制财务分析报告,并按时上报; 6、有计划地筹措资金,开辟资金来源; 7、参与制定或审查重要经济合同、协议及其它经济文件。 三、会计 1、针对经济事项所对应的原始凭证的合规性、完整性进行审核; 2、根据会计准则准确填制记账凭证; 3、审核记账凭证,严格按照会计内部控制程序进行记账、对帐、结账; 4、编制会计报表; 5、各种应收、应付款项的清理; 6、编制银行调节表; 7、工资奖金的核算、发放; 8、企业年金、住房公积金的财务会计管理。 四、资产管理 1、办理资产报废审批工作; 2、负责财产(车辆除外)保险的索赔; 3、组织进行动产和不动产的盘点清查。 五、出纳 1、根据审核后的会计凭证填制付款票据,办理支付业务; 2、办理银行签证; 六、税务管理 1、负责税务筹划与执行; 2、税金核算、申报、交纳; 七、事务工作 1、公司内部财务稽查; 2、组织配合外部审计。 与其它部门接口: 1、对各部门的费用预算进行审核; 2、严格按制度办理各部门有关人员的借款、报销等手续。 部门职能 部门名称:人力资源部直接上级:总经理 下辖岗位:经理、薪酬考核管理、人事管理、培训管理 部门本职:组织公司的人力资源开发与管理工作,为公司提供和培养合格的人才。 主要职能: 一、人力资源发展规划和计划 1. 根据公司发展战略,制定人力资源规划; 2. 制定年度劳动用工、工资、员工培训、人事工作等计划,并组织实施。 二、人力资源制度管理 制定薪酬管理、绩效管理、员工聘用、劳动合同、员工奖惩、人事工作等项管理制度。 三、人员招聘与任用 1. 制定人力资源招聘计划,选定适宜的招聘方式,实施招聘工作;

关于确定公司组织架构及工作职责的通知

渝德泰建发[2014]005号 重庆德泰建设工程有限公司 关于确定公司组织架构及工作职责的通知 公司各部门、项目部: 为理顺公司管理关系,规范工作管理行为。经公司决定,现将公司的组织架构、领导组成及分工、办事机构及人员定位、工作职责等有关事项通知如下。 一、公司组织架构如下图

二、公司领导组成及分工 董事长(兼总经理) 陈波:主持公司全面工作。 直接下级:副总经理、总工程师、行政财务总监、项目负责人。 总工程师程地聪:协助总经理负责公司技术工作和南川农业综合开发公司事务管理。组织项目前期技术准备工作,审定项目施工组织设计、技术方案。参与项目验收工作,指导、审查项目竣工验收资料。参与合同谈判。参加质量、安全事故的处理。配合生产经理和经营经理涉及技术的管理工作。指导工程部和项目部的技术工作。关键时行使质量、安全的否决权。 副总经理汪城:协助总经理分管项目生产。负责项目部的组建、人材机资源配置。负责质量、安全、进度控制,负责项目的组织协调和检查督促、组织合同谈判,对项目的成本控制审核把关。分管工程部,项目部。 岗位名称:生产副总经理

直接上级:总经理 直接下级:工程部经理、项目经理、项目技术负责人 工作目标:行使对公司生产管理工作的指挥、指导、协调、监督、管理的权力,组织制定生产管理制度,承担执行公司规章及工作指令义务,对其所分管工作负全面责任。 副总经理潘炯:协助总经理分管公司生产经营。负责公司对外业务的开展,招投标工作;负责合同、造价、项目经营和人材机的计划控制。参与合同谈判,负责合同支付及工程结算审核。分管经营部。配合生产经理管理项目部的合同工作。 岗位名称:经营副总经理 直接上级:总经理 直接下级:经营部经理 关联下级:经营部员工 工作目标:行使对公司经营工作的指挥、指导、协调、监督、管理的权力,组织制定经营管理制度,承担执行公司规章及工作指令义务,对其所分管工作负全面责任。 行政财务总监孔庆宇:协助总经理分管行政人事部、财务部日常工作。 三、部门设置及人员定位 公司设置工程管理部、经营管理部、财务管理部、行政人事部,为公司的常设办事机构。根据项目单独设立项目部,为公司派出机构。 (一)工程管理部 经理:张靖副经理(技术):余正路 直接上级:生产副总经理 部门本职:指导、检查设计文件及规范的执行情况,检查、监督公司的规章制度及决定的落实,收集整理汇总各项目部的报表、来文;检查考

相关文档
相关文档 最新文档