文档库 最新最全的文档下载
当前位置:文档库 › 提高锅炉热效率的新技术_富氧燃烧

提高锅炉热效率的新技术_富氧燃烧

提高锅炉热效率的新技术_富氧燃烧
提高锅炉热效率的新技术_富氧燃烧

锅炉效率计算

单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。锅炉的热效率的测定和计算通常有以下两种方法: 1.正平衡法 用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示: 热效率=有效利用热量/燃料所能放出的全部热量*100% =锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100% 式中锅炉蒸发量——实际测定,kg/h; 蒸汽焓——由表焓熵图查得,kJ/kg; 给水焓——由焓熵图查得,kJ/kg; 燃料消耗量——实际测出,kg/h; 燃料低位发热量——实际测出,kJ/kg。 上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。 从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。 2.反平衡法 通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。反平衡热效率可用下列公式计算。 热效率=100%-各项热损失的百分比之和 =100%-q2-q3-q4-q5-q6 式中q2——排烟热损失,%; q3——气体未完全燃烧热损失,%; q4——固体未完全燃烧热损失,%; q5——散热损失,%; q6——灰渣物理热损失,%。 大多时候采用反平衡计算,找出影响热效率的主因,予以解决。

提高运行锅炉热效率的几点建议

提高运行锅炉热效率的几点建议 目前,运行中的锅炉一般以煤为燃料,由于对其管理、操作水平的限制,以及设备本身存在的问题,致其运行的热效率极大地低于《工业锅炉最低热效率标准》的规定,造成能源大量浪费。显然,提高运行锅炉的热效率,降低产汽成本,成为一个相当的现实问题。 锅炉热效率即有效利用燃料燃烧放出总热量的百分数。根据热平衡原理,热损失小了,有效利用热就多,效率便会提高。因此,如何提高锅炉热效率就成为研究如何降低热损失。 热损失主要包括:排烟热损失、固体未完全燃烧热损失、气体未完全燃烧热损失、锅炉散热损失、灰渣物理损失等。由于前两项热损失对效率影响很大,一般占总热量的 15~30%,有时可高达50%。因此,这里将重点讨论它们。 一、排烟热损失: 排烟热损失是锅炉的一项主要热损失。影响排烟热损失的主要因素是:排烟温度和过量空气系数。即:要降低排烟热损失就是降低排烟温度和保持一定的过量空气系数。 1.排烟温度: 排烟温度对锅炉热效率有直接的影响,因为排烟温度愈高,排烟热损失愈大,相应锅炉热效率就愈低。按照要求,这项热损失随着锅炉容量的不同一般在8%左右,但是很多锅炉达不到这个要求,有的高达15%左右,降低这项热损失成为锅炉节能的一个重要方面。锅炉在实际运行中,设备一定时,排烟温度的高低主要由烟气短路、受热面积灰与结垢以及运行负荷等因素而影响。 (1)烟气短路:煤在炉膛中燃烧,高温烟气离开炉膛后,应流经所有对流受热面进行热交换,但由于施工质量、检修不及时或用户私自进行不合理的结构改造等原因,使对流受热面的隔墙不严或损坏,造成烟气短路,只能和部分对流受热面进行热交换。显然,烟气流程变短,锅炉的排烟温度一定会相应提高。 (2)受热面积灰:据有关资料可知,烟灰的导热系数为0.07~0.12kW/m·℃,锅炉钢材的导热系数为35.6~50.6kW/m·℃,后者大约是前者的463倍,这样一来,假如锅炉在运行中,受热面积灰不及时清理,传热阻力将大大增加。通常,受热面积灰1mm厚,热损失将增加4~5%左右,同时多浪费燃料10%,所以,锅炉在运行当中应及时吹灰,以便降低排烟温度。实际中,不少用户将锅炉吹灰系统甩掉,显然,这是极大的错误。 (3)受热面结水垢:据资料可知,水垢的导热系数为1.28~3.14 kw/m·℃,比钢材的导热系数平均小19.5倍,显然,如果受热面结了水垢,其传热效果将会骤降,造成燃

锅炉热效率的计算与分析

薛正举 (河北金牛旭阳热电车间) 摘要:锅炉的热效率表明锅炉设备的完善程度和运行管理的水平。通过计算公司1#锅炉“煤改气”后的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法。 关键词:燃气锅炉、热效率 锅炉的热效率是指燃料送入的热量中锅炉有效利用的热量所占的百分数。它是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理的水平。通过计算本公司1#锅炉的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法,同时,也简单论述了其他减少热损失的措施。 一、燃气锅炉热效率的计算 在燃气锅炉相对燃煤锅炉,燃料燃烧程度要高很多,热损失相对比较少,燃气锅炉比燃煤锅炉的热效率要高。以下取公司1#燃气锅炉(煤改气锅炉)在2011年9月15日至17日的运行数据。通过正平衡法来计算1#锅炉的热效率。 正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示:热效率 = 锅炉蒸发量X(蒸汽焓-给水焓) 燃料消耗量X燃料低位发热量 吨蒸汽耗气量 33 注明:煤气量是由生产部提供,蒸汽产量是锅炉统计。 煤气热值计算

注明:煤气成分明细是由质管部气象色谱仪分析得出,每天分析6次,取平均值。焦炉煤气热值计算公式如下: Qd(KJ/m3) = (Q 1×A 1 + Q 2 ×A 2 + Q 3 ×A 3 + Q 4 ×A 4 )/100 式中: Q 1、Q 2 、Q 3 、Q 4 ——各可燃成份的发热值,千焦/米3。 即,H 2 = 12797, CH 4 = 36533, CO = 12640, CmHn = 71180 A 1、A 2 、A 3 、A 4 ——各可燃成分在煤气中的百分数。 过热蒸汽热值计算 过热蒸汽热值从熵焓图上查出。 锅炉给水的热值 现在锅炉用除盐水水温平均44℃,是由锅炉自备蒸汽加热除氧。自备蒸汽未统计在锅炉产气量内。 水44℃时的热值是 kJ/kg 锅炉效率 锅炉效率={蒸汽热值(kJ/kg)-给水的热值(kJ/kg)}X1000 煤气热值(kJ/m3)X吨蒸汽耗气量(m3/t)

锅炉热效率测试方案

锅炉热效率测试方案 为了解毛铺酒厂锅炉运行热效率和为确定下步锅炉改造方向,根据《锅炉节能技术监督管理规程》和按照《工业锅炉能效测试与评价规则》对毛铺酒厂3台锅炉进行能效测试。 一、测试方法 锅炉运行工况热效率简单测试采用反平衡法,相关测量要求按照GB/T 10180要求的方法进行测量。 二、测试要求 1.热效率测试应当不少于2次; 2.两次反平衡测试测得的效率之差均应当不大于2%。 三、测试条件 1.锅炉在额定参数下处于安全、热工况稳定的运行状态; 2.辅机与锅炉出力相匹配并运行正常,系统不存在跑、冒、滴现象; 3.测试所用燃料符合设计燃料的要求; 4.锅炉及辅机系统各测点布置满足测试大纲要求。 四、测试项目 1.排烟温度t py,℃; 2.排烟处过量空气系数; 3.排烟处CO含量,%(ppm); 4.入炉冷空气温度t lk,℃; 5.飞灰可燃物含量C fh,%; 6.漏煤可燃物含量C lm,%; 7.炉渣可燃物含量C lz,%; 8.燃料收到基低位发热量Q net.v.ar,kJ/kg;收到基灰分A ar,%; 9.测试开始和结束的时间。 五、正式测试时间 1、锅炉正常燃烧1小时后开始测试; 2、测试时间内至少包括一个完整的燃料添加和出渣周期(分厂应先

将煤斗填平正常燃烧后添加燃煤时必须填平并计量); 3、烟气测量次数不少于5次,每次间隔时间均匀,测试开始、结束各一次(对于排烟温度、排烟处过量空气系数、排烟处CO 含量按测量数据算术平均值作为计算值)。 六、测试项目 1. 排烟热损失(q 2) 2. 气体未完全燃烧热损失(q 3) 3. 固体未完全燃烧热损失(q 4) 4. 散热损失(q 5) 5. 灰渣物理热损失(q 6) 6. 热效率;()65432j 100q q q q q ++++-=η 七、测试报告 1. 锅炉能效测试综合报告 2. 锅炉能效测试项目 3. 锅炉能效测试测点布置及测试仪表说明 4. 能效测试结果汇总表 八、测试小组成员及分工 名称 人员 职责 组长 刘怀臣 测试、督察、分析总协调;为小组工作申请资源保障 综合分析 组 生产技术科设 备组 1、 测试前组织对小组人员进行系统培训; 2、 对测试细节进行全面监督; 3、 对测试数据进行统计分析,并出具相关报告; 4、 对照国家相关规定,寻找不合格项目,并制定锅炉下步改造计划。 检测组 质量科 检验人 员 1、负责飞灰、煤渣、漏煤的取样工作; 2、负责过程中试样的检测工作,并及时反馈至生产技术科设备组 操作、维护 保障组 分厂动力部门 1、 按照操作规程进行规范操作; 2、 按照测试要求对锅炉及其辅机进行全面检修,并保证系统满足测验要求; 生产技术科 二〇一二年二月八日

燃煤锅炉低氮燃烧器改造浅谈

燃煤锅炉低氮燃烧 器改造浅谈ABSTRACT:To reduce the running costs of SCR De NOx, Zhangjiakou Power Plant No. 3 boiler burner for transformation after transformation, the burner will reduce the coal combustion process in the furnace of NOx generation. This article focuses on the boiler burners with low nitrogen transformation programs, combined with the 3rd Zhangjiakou Power Plant boiler burner and effect the transformation of the actual situation, On the mechanism of coal-fired units generate NOx boilers and burners for NOx generated control. KEY WORD:Retrofit NOx Boiler 摘要:为降低脱硝SCR的运行费用,张家口发电厂对3号锅炉燃烧器进行改造,改造后的燃烧器将降低燃煤在炉膛燃烧过程中NOx的生成量。本文重点介绍锅炉低氮燃烧器改造的方案,并结合张家口发电厂3号锅炉燃烧器改造的实际情况及效果,浅谈燃煤机组锅炉NOx生成机理和燃烧器对NOx生成的控制。 关键词:锅炉燃烧器改造 NOx 1 概况 1.1 脱硝的必要性 在国家“十二五”规划中,对火电发电企业大气污染物排放作出了严格的规定。其中,京津唐地区要求NOx排放量小于100mg/Nm3。机组烟气脱硝改造在降低烟气NOx含量的同时,高昂的脱硝运行费用又使发电企业不堪重负。于是,为了减少SCR入口处NOx含量,降低脱硝运行费用,低氮燃烧器的改造已逐渐成为火力发电企业降低烟气NOx含量的重点改造之一。在今后火力发电机组的脱硝改造中,“先降后脱”的方案必然是大势所趋。1.2 氮氧化物的形成 煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等燃烧条件有关。研究表明,在煤的燃烧过程中生成NOx的主要途径有三个: a 热力型NO x是空气中的氧(O2)和氮(N2)在燃料燃烧时所形成的高温环境下生成的NO和NO2的总和,其总反应式为: N2+O2←→2NO NO+O2←→NO2 当燃烧区域的温度低于1000℃时,NO 的生成量很小,而温度在1300~1500℃时,NO的浓度大约为500~1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加。因此,温度对热力型NOx的生成具有决定作用。 b 快速型NOx主要是指燃料中的碳氢化合物在燃料浓度较高区域燃烧时所产生的烃与燃烧空气中的N2分子发生反应,形成的CN、HCN,继续氧化而生成的NOx。因此,快速型NOx主要产生于碳氢化合物含量较高、氧浓度较低的富燃料区,多发生在内燃机的燃烧过程。而在燃煤锅炉中,其生成量很小。 c 燃料型NOx是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx。燃煤电厂锅炉中产生的NOx中大约75~90%是燃料型NOx。在一般情况下,燃料型NOx 的主要来源是挥发份N,其占总量的60~80%,其余为焦炭N所形成。在氧化性环境中生成的NOx遇到还原性气氛时,会还原成N2,因此,锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着燃烧条件的改变,生成的NOx可能被还原,或

锅炉热效率计算

1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱 水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦 1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。 用量是70万大卡/H 相当于1.17吨的锅炉 以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。 第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。 把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能, 即:53.9+8=61.9万/千卡时。这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。 天然气热值 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。而1度=1kW*h=3.6*10^6J=3.6*10^3KJ。即每立方燃烧热值相当于9.3—9.88度电产生的热能, 3.83<1.07*9.3 OR 9.88 天然气价格: 天然气的主要成分是甲烷,分子式是CH4,分子量是12+4*1=16. 在1标准大气压下,1mol气体的体积是22.4升,1立方米的气体有

燃煤工业锅炉热效率测试方案(1).doc

目录 1 试验目的 (1) 2 试验依据 (1) 3 试验工况 (1) 4 测试内容和方法 (1) 5 测试所需仪器 (2) 6 试验条件及要求 (3) 7 试验组织与分工 (3) 8 安全注意事项 (4)

※※※※※※公司 工业锅炉热效率测定试验方案 1 试验目的 本次试验为运行试验,目的是确认锅炉热效率是否符合《燃煤锅炉能效限定值及能效等级》的要求。 2 试验依据 2.1 GB/T 10184-1988《电站锅炉性能试验规程》 2.2 DL/T 964-2005《循环流化床锅炉性能试验规程》 2.3 TSG G0002-2010《锅炉节能技术监督管理规程》 3 试验工况 3.1 锅炉在额定负荷下的热效率; 3.2 锅炉在70%负荷下的热效率。 4 测试内容和方法 4.1 排烟处烟气成份测量(O2、CO2、CO)、排烟温度、压力 在出口烟道开1个测量孔,测量3个测点,采用烟气分析仪测量。 4.2环境温度、空气湿度及大气压 用干、湿球温度计测量环境温度及空气湿度,用大气压力表测取大气压,试验时每15分钟测量记录一次,取平均值。 4.3 锅炉外壁温度 红外线测温仪 4.4 燃料特性分析 燃料的元素分析、工业分析、发热量、含水量由热工性能实验室测试。4.5 燃料的消耗量、灰渣量 就地表计和或磅称计量。 4.6 给水温度、给水压力 就地表计读数。 4.7 给水流量

就是表计读数。 4.8 饱和蒸气压力、温度,过热蒸汽压力、温度 就地仪表读数。 4.9 饱和蒸气湿度 蒸汽含盐量和锅水含盐量。 4.10 炉水、给水、蒸汽取样 每隔30分钟取样一次并分析其品质。 4.11 燃料、炉渣、飞灰取样 每隔30分锅炉取样一次,每次不少于1公斤。 5 测试所需仪器 下表给出了试验所需的主要仪器设备。 试验所需的仪器、设备清单

锅炉低氮燃烧器改造后存在的问题与对策(一)

锅炉低氮燃烧器改造后存在的问题与对策(一)河北艺能锅炉有限责任公司

当前,我国雾霾防治形势逼人,尽管雾霾产生的成因尚未完全研究清晰,但在社会舆论的压力和国家日益严格的节能减排政策面前,电力行业节能减排的压力不断增大,而燃煤发电机组在相当长的一段时期内仍然是我国发电行业中的主力,对于环保部最新颁布的《火电厂大气污染物排放标准》(GB13223-2011),即从2014年7月1日起,现有火力发电锅炉要达到标准规定的排放限值,燃煤发电企业纷纷进行环保设施的改造,如锅炉低氮燃烧器的改造,改造后降低NOx的排放取得较好效果,但也给锅炉安全、稳定和经济运行带来了一定的影响。NOx治理现状 国内外已对NOx的危害、燃煤发电燃烧过程中NOx的生成机理和降低NOx技术进行了较为充分的研究,可分为三种[1]:热力型NOx、燃料型NOx和快速型NOx;其中,燃料型NOx约占80-90%,是各种低NOx 技术控制的主要对象;其次是热力型,主要是由于炉内局部高温造成,快速型NOx生成量很少。NOx的控制方法可分为燃烧前处理、燃烧中处理和燃烧后处理。燃烧前脱氮主要是在燃烧前将燃料转化为低氮燃料,技术复杂,难度大,成本高,目前仅限于研究阶段;燃烧中脱氮主要有:一是抑制燃烧中NOx的形成,二是还原已形成的NOx;燃烧后脱氮主要是指烟气脱硝:包括选择性催化还原法、选择性非催化还原法等。 目前被大家公认,并已在各燃煤机组锅炉上广为应用的降NOx方法,主要是燃烧中脱氮的低氮燃烧技术加燃烧后脱氮的烟气脱硝技术;燃烧中脱氮是根据NOx的生成机理采取的低氮燃烧技术主要是:低氧燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环等,该技术的主要机理就是将燃烧器通过纵向布置形成氧化还原、主还原、燃尽三区,对于四角切圆燃烧锅炉还可通过横向双区布置形成近壁区和中心区两个区域,从而实现燃料与配风在炉膛内分区、分级、低温、低氧燃烧,降低煤粉燃烧过程中NOx生成量。从2011年至今,该低氮燃烧技术在全国的燃煤锅炉上大范围应用,通过改造和运行优化,NOx减排量可达30%—70%,对于四角切圆燃烧锅炉NOx的排放浓度可由原来的400-600mg/m3降为200mg/m3以内,对冲燃烧锅炉NOx的排放浓度可由原来的500-700mg/m3降为370mg/m3以内,“W”火焰燃烧锅炉NOx的排放浓度[3]可由原来1100-1300mg/m3降为800mg/m3以内。目前,局限于低氮燃烧技术研究和发展,且该技术很短时期内再在运锅炉上快速、集中、大量的应用后,其技术尚未来得及进行消化吸收、优化改进等。

锅炉热效率计算

一、锅炉热效率计算 10.1 正平衡效率计算 10.1.1输入热量计算公式: Qr=Qnet,v,ar+Qwl+Qrx+Qzy 式中: Qr__——输入热量; Qnet,v,ar ——燃料收到基低位发热量; Qwl ——加热燃料或外热量; Qrx——燃料物理热; Qzy——自用蒸汽带入热量。 在计算时,一般以燃料收到基低位发热量作为输入热量。如有外来热量、自用蒸汽或燃料经过加热(例: 重油)等,此时应加上另外几个热量。 10.1.2饱和蒸汽锅炉正平衡效率计算公式: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); B——燃料消耗量; Qr_——输入热量。 10.1.3过热蒸汽锅炉正平衡效率计算公式: a. 测量给水流量时: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hgq——过热蒸汽焓; hg——给水焓; γ——汽化潜热; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 b. 测量过热蒸汽流量时: 式中:η1——锅炉正平衡效率; Dsc——输出蒸汽量; Gq——蒸汽取样量; hgq——过热蒸汽焓; hgs——给水焓; Dzy——自用蒸汽量;

hzy——自用蒸汽焓; hbq——饱和蒸汽焓; γ——汽化潜热; ω——蒸汽湿度; hbq——饱和蒸汽焓; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr——输入热量。 10.1.5电加热锅炉正平衡效率计算公式 10.1.5.1电加热锅炉输-出饱和蒸汽时公式为: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); N——耗电量。 10.1.5.2电加热锅炉输-出热水(油)时公式为: 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr_——输入热量 二、锅炉结焦的危害、原因及预防方法是什么? 在炉子的燃烧中心,火焰温度高达1450~1600℃,因此煤灰基本上处于溶化状态。当与受热面碰撞后,溶渣就会粘附在管道或炉墙上,这就叫结焦。 如果炉内结了焦,炉膛部分的吸热量就要减少,到过热器部分的烟温就会增高,而造成个别管子的外壁温度超过它的允许范围,引起爆管,同时还会使主汽温度超温。结焦严重时,会使吸热量的减少而减负荷,甚至停炉。结焦还会使排烟热损失q2和机械热损失q4及风机耗电增加。

火电厂锅炉低氮燃烧改造及运行优化调整 孙光奇

火电厂锅炉低氮燃烧改造及运行优化调整孙光奇 发表时间:2020-01-14T11:29:06.207Z 来源:《基层建设》2019年第28期作者:孙光奇朱少春 [导读] 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。 济南锅炉集团有限公司 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。就以当前我国的科技水平来说,其火力发电还是主要产电方式。虽然其火力发电产出的电力资源相当可观,但是该类产电方式对环境的污染较为严重,有时会达到一个无法接受的程度。对此,为满足国家的可持续发展道路,就要相应的实施火电厂锅炉低氮燃烧改造,从根本上解决火电厂的污染问题。本文就以火电厂锅炉低氮燃烧改造和运行优化进行探讨。 关键词:火电厂;锅炉;低氮改造;运行优化 1火电厂锅炉低氮改造重要性 目前,我国的主要发电类型就是火力发电,其它的发电方式产出效率较为低下,还不足以满足我国如此庞大的人口用电所需,而核能发电则是因为科技还不够完善,目前还存在些许的问题。因此,火力发电仍然是我国现阶段的主要供电来源。但是其火力发电的污染较为严重,需要相应的引入新技术,在这种情况下,低氮燃烧改造技术应势而生,将低氮燃烧技术良好的应用于火电厂锅炉发电进程中,可以有效的减少锅炉的烟气排放量,加强烟气净化系统,降低循环流化床锅炉的烟气产生量,极大的解决烟气排放所导致的一系列环境污染问题。为顺应当代可持续发展观念,同时还要满足我国十几亿人口的用电所需,就要对低氮燃烧改造技术的应用重视起来,并相应的加大对该技术的研究力度。 2火电厂锅炉运行优化的重要性和影响因素 2.1锅炉运行优化的重要性 作为火电厂的重要组成部分,锅炉运行的好坏直接影响着火电厂的整体运行效果。进行锅炉系统的全面优化可以帮助火电厂解决多种问题,主要表现为:降低了氮氧化物、飞灰含碳量等;在一定程度上改进了减温水量、热效率、煤耗等;有利于过热器与再热器超温和受热面结焦结渣的控制。另外,锅炉运行的优化可以实现锅炉各组成部分的协调控制,并可以发现和挖掘锅炉更多的空间。 2.2影响锅炉运行优化的因素 在锅炉运行过程中存在很多影响因素,为了提高锅炉的利用率和运行效率,应对锅炉的运行方式进行调整,有效减少各种损失,同时还应在一定程度上提高蒸汽的参数,从而降低锅炉的排污量与减温水量。对于运行中的锅炉来说,其热损失主要来自未充分燃烧和排烟两方面。其中,未充分燃烧是指燃料在锅炉内没有完全燃烧,没有发挥全部的热能而造成热损失。而排烟热损失的影响因素有很多,主要包括:受热面积积灰和结渣,其原因是锅炉在运行过程中,预热器、炉膛和烟道等处的受热面容易出现积灰,从而影响排烟造成热损失;漏风问题,其主要出现在制粉系统、炉膛、烟道等处,当发生漏风时会直接增加排烟热损失,另外,排烟温度会随着炉膛漏风系数的增大而升高,进而造成排烟热损失增加;外界因素影响,即入炉煤的成分、空气预热器入口的温度等因素的影响,煤成分的大小影响着炉膛内燃烧程度,如果煤质不好导致燃烧不充分,会增加烟气量,导致排烟热损失增大。 3火电厂锅炉低氮燃烧改造优化 3.1火电厂锅炉燃烧改造 因为目前的中国科技技术还达不到全面实现核能产电,因此,其主要发电方式仍为火电厂发电,为解决其环境污染问题,就要相应的应用低氮化燃烧改造技术,使得我国的火电厂发电走向可持续发展道路。其低氮化燃烧改造的核心就是使用垂直煤粉超浓缩分离技术,将传统的燃烧方式升级为立体分级燃烧方式。在实际的改造过程当中,需要将原锅炉中的燃烧器进行重新改进和布局,全面更换为低氮燃烧器、其煤粉喷嘴换为上下摆动结构并且垂直浓淡分离,以达到提升低氮燃烧器的烧热效率和降低NOx排放量的目的。 3.2火电厂低氮燃烧运行优化 将传统燃烧器全面更换为低氮燃烧器后,需要进行相应的优化工作,以达到全面保证锅炉的正常运作的同时提高其电能产出率,扩大火电厂经济效益,减小汽温和两侧烟温的差距。目前我国所常用到的火电厂低氮燃烧运行优化措施大致分为调整摆角和燃尽风;调整一次风、二次风、周界风;调整炉膛氧量;调整煤粉细度等几个措施。 调整摆角和燃尽风指在汽温较高的情况下,适当的降低燃烧器摆角并且优化燃尽风,可以有效降低含氧量,适当上部燃烧率升高,明显提高其低氮燃烧效率。 调整一次风、二次风、周界风指通过实现二次风组合适当将主燃烧区实现低氧燃烧,结合相应的参数进行实际调整,通过实际的低氮燃烧情况进行更加适合的调整二次风工作。调整炉膛氧量指将炉膛中的含氧量控制在2.5%-3.5%之间,可以明显达到降低NOx排放量的作用,还可以保证锅炉长期维持一个良好的工作效率状况。 调整煤粉细度则是对分离器挡板进行适当调整,使得其变小,降低煤粉细度,最终使得煤粉燃烧更加充分,可以有效防止由于低氧环境而导致温度超标使得受热面超温的情况发生,可以提高其锅炉运作的安全稳定性。 4探析锅炉运行的优化措施 4.1关于优化锅炉设备本体 近些年以来,很多电厂锅炉逐渐增大了异常运行的概率,其中根源就在于较长的锅炉投产年限。在现有的锅炉异常现象中,较为典型的就是磨煤机出现卡涩、过热器脱落氧化皮、较高的脱硫风机能耗以及其他运行故障。经过全方位的燃烧技术转型与技术优化后,锅炉本体设备将会达到更好的运行性能指标。火力发电厂具体在改造现有的锅炉设备时,关键措施在于同步控制锅炉系统目前的耗电量以及系统运行阻力,确保实现显著降低的系统耗电比例,提升锅炉装置现有的系统阻力。并且针对挡板频繁出现卡涩的情况来讲,重点应当关注优化现有的磨煤机系统,以便于灵活调节分离器。 4.2关于优化现有的锅炉运行方式 实质上,锅炉运行方式决定于较多的锅炉燃烧因素,其中典型因素就在于煤质因素。锅炉燃烧效率在根本上决定于煤质的改变,并且

影响加热炉热效率的因素及对策

影响加热炉热效率的因素及对策 摘要:21世纪随着石油开采工程的不断深入,全国的各大油田也得到了不断的发展。由于新疆冬季的特殊气候条件,气温低,持续时间长,在原油的输送过程中需要进行中间加热,这就需要大量的加热炉。笔者通过分析加热炉在运行中存在的一系列问题和影响加热炉热效率的因素,提出了提高加热炉运行热效率的技术对策,并介绍了几种提高运行热效率的途径和具体措施,指出了影响热效率的关键因素以及提高热效率的可行性,并在此基础上就进一步提高加热炉热效率提出了建议和改进措施。 关键词:加热炉热效率对策 引言:众所周知,原油在运输和加工过程中,必须要使用加热炉加工。因此,加热炉成为了石油领域中无法取代的重要能源机器,但是由于加热炉在加热原油的过程中很大一部分的热能都散发了出去,并没有应用于加热原油上。所以,找到提高加热炉热效率的方法成为了整个热能领域亟待解决的问题,考虑到加热炉是将原油运输中不可或缺的一道工序,也是至关重要的一项设备,找到影响加热炉热效率的因素,提出解决问题的方法,是整个石油行业需要解决的问题。 一、影响加热炉效率的主要因素 1.加热炉受热面积灰结垢一直是困扰加热炉运行的主要因素,受热面积灰结垢一旦形成,它所造成的负面影响将是持久的及递增的。同时应保证燃料燃烧充分。因为,排烟热损失主要由排烟温度和烟气量决定,烟气量取决于加热炉的过剩空气系数,提高热效率的途径主要是通过降低过剩空气系数或排烟温度来实现。所以,在过剩空气系数和排烟温度增高时,加热炉热效率都将降低。 2.加热炉运行控制中由于多种原因致使运行工况控制不好,包括风门调节不当,供风过大;运行负荷低于设计值;燃料品质不好造成腐蚀和积灰;供风系统操作不当;燃烧器选型问题等,这些问题导致的直接结果是加热炉排烟气氧含量和过剩空气系数普遍偏高。通过调查发现,企业中加热炉烟气中的平均氧含量普遍都高于标准的指标,平均排烟温度也高于标准温度。过高的烟气氧含量导致炉内的过剩空气较多,这样会造成排烟温度偏高,烟气带走的热量越多,对热效率的影响也就越大。过大的过量空气系数还会加速炉管的氧化,促使氮氧化物增加,给环境造成不利的影响,影响炉管使用寿命 3.余热回收系统设备状况的好坏也会影响加热炉的热效率。时刻了解设备的腐蚀状况,加以预防。余热回收系统设备腐蚀主要是硫酸露点腐蚀造成,在该系统低温烟气段普遍存在,系统中的蒸馏装置前置空气预热器因为腐蚀容易泄漏,造成热损失。 4.炉壁散热损失超标仍然是一个不可忽视的因素。通过观察炉膛内部发现,部分炉子炉膛衬里脱落严重,炉壁表面温度普遍高于规定的标准温度,造成这种

锅炉性能测试方案精编版

锅炉性能测试方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锅炉性能测试方案 1.目的 为进一步推进锅炉系统精益管理能效提升工作,对锅炉系统运行工况进行测试,试验锅炉经济运行工况及参数,提高锅炉运行效率。 2 测试依据 GB/T 10184-88 《电站锅炉性能试验规程》 》 GB/T 10180-2003《工业锅炉热工性能试验规程》山东 GB/T17954-2007《工业锅炉经济运行》 TSG0002-2010《锅炉节能技术监督管理规程》 TSG0003-2010《工业锅炉能效测试与评价规则》 DB37/T 842-2007《电站锅炉节能监测方法》 DB37/T 100-2007《工业锅炉节能运行管理》 DB37/T 116-2007《工业锅炉热能利用监测规范》 3试验前的准备工作 测点完好可用;试验仪器及测试系统安装调试结束;试验人员就位。 机组主辅设备及系统无重大缺陷,确保机组能安全、稳定运行。 主要运行表计(蒸汽流量、煤气流量、给水流量、减温水量、主汽温度、主汽压力、引送风机电流、电量等表计)经过校验,投运正常,指示正确有效;经过仪表维护人员前期检查确认。 阀门控制系统运行可靠,具备条件的提前2-3天进行试运。

运行参数历史趋势记录存盘正常运行。 试验稳定负荷期间,锅炉主要运行参数必须在规定波动范围。 试验前锅炉定排完毕,关闭锅炉定排、连排阀门,隔离非生产系统用汽,确保锅炉汽水系统无外漏现象。 风烟系统严密无泄漏。 煤气系统压力与品质成分稳定,无大幅波动,确保锅炉热工况稳定。 正式试验前由各单位组织岗位进行预备试验。 试验过程中司炉等操作人员经验丰富,责任心强。 4测试内容及要求 60%、80%、100%额定负荷下的热效率。 60%、80%、100%额定负荷下的漏风率、漏风系数。 燃料成分及热值测试。 各负荷下的烟气成分检测(含氧量、一氧化碳等); 各负荷下的运行参数测试,风燃比变化情况下的燃烧效率。 试验器材(在线仪表、测温仪、热电偶、烟气分析仪、气压表、u型管、湿度计、对讲机等;应急器材:CO报警仪、氧气报警仪、空气呼吸器等) 5 试验测试项目及方法(测试点的选取) 锅炉反平衡效率、漏风率 5.1.1 排烟温度测量 测量方法:利用现有温度测点测量锅炉排烟温度,两个温度测点测试结果在误差允许范围内。测试期间数据记录周期为每5分钟一次。

燃气锅炉低氮改造方案培训课件

燃气锅炉低氮改造方案 燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。 远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。 远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器; 压力、水位多重安全防护;PLC触摸屏智能化控制技术。 远大锅炉低氮技术研发历程: 保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。 2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m 3排放标准。 NOx成分分析及产生机理: 在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。

燃料燃烧过程生成的NOx,按其形成分类,可分为三种: 1、热力型NOx (Thermal NOx),它是空气中的氮气在高温下氧化而生成的NOx; 2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx; 3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx; 燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。实际上除了这些反应外,NO 还可以与各种含氮化合物生成NO2。在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。 降低NOx的燃烧技术: NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下: 1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料; 2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度; 3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”; 4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。 减少NOx的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。 目前低氮改造方案 1、FGR技术: 即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法即FGR技术,

怎样提高锅炉热效率

提高锅炉热效率有以下方法:低压锅炉在厂家设计时已经考虑过锅炉热效率的问题,要从更改设备或烟气方面来节能可能性不大,所以节能最好从操作上入手(这里不谈蒸汽冷凝水回收的方法)。 目前国内低压锅炉的设计热效率一般在70~90%,一般实际运行热效率在60~80%左右,有些甚至在50%以下,小型低压工业只要操作、维护得当,完全可以达到厂家的设计热效率。小编认为管理及操作要注意以下几点: 一、监测锅炉排烟温度。通常最大的热损失是排烟损失,所以控制好的排烟温度很重要,一般燃煤低压锅炉(主要指10吨以下及压力小于1.6MPa的,以下同)的排烟温度为150~180℃,燃油的锅炉排烟温度为210~240℃,所以当锅炉排烟温度过高时要查找原因并及时消除。 燃煤锅炉排烟温度过高的原因有: 1 、炉膛负压太高 2、烟气短路 3、受热管道上烟垢太厚 4 、锅内水垢太厚等 燃油排烟温度过高的原因有: 1 、风油调节不好,使油不能完全燃烧到烟囱尾部发生二次燃烧 2 、烟灰太多,需要及时清灰 3 、烟气短路 4 、水垢太厚等

二、控制排污率。一般工业的排污率控制在5~10%,在保证锅水合格(主要是总碱度和pH值)的前提下,排污率越低越好,排污要坚持“勤排、少排、均匀排”的原则。清灰剂 三、保养好的炉墙、保温层的散热损失也是一项比较大的热损失,现在的厂家在制造和设计时已经考虑周全,所以无需我们去改变,我们只要维护好就行了。一般外包表面的温度不超过50℃,如过高则要查找原因,及时消除。锅炉保温层要经常保持干燥,对于燃煤,不得长时间正压运行,否则容易损坏炉墙及煤闸板等。 四、调整好燃料和风量的比例,使燃料尽量完全燃烧。一般小型不具备风量测试等仪器,所以只能凭经验去调节。对于燃油,正常燃烧时火焰呈黄白色,不刺眼,火焰稳定,烟囱无明显可见烟气;对于燃煤,正常燃烧时火焰呈淡黄色,烟囱无明显可见烟气,煤渣基本烧完,煤的颗粒尽量均匀。 五、要有完善的水处理。完善的水处理及水质化验可以最大限度的防止结垢及正确指导排污,而这一点很多小型都没有做到,企业也通常都不重视。

影响锅炉效率的因素及处理

影响锅炉效率的因素及处理 一、锅炉热效率(%) 1、可能存在问题的原因 1.1排烟温度高。1.2吹灰器投入率低。1.3灰渣可燃物大。1.4锅炉氧量过大或过小。1.5散热损失大。1.6空气预热器漏风率大。1.7煤粉粗。1.8汽水品质差。1.9设备存在缺陷,被迫降参数运行。…… 2、解决问题的措施 2.1降低排烟温度。2.2及时消除吹灰器缺陷,提高吹灰器投入率。2.3降低飞灰可燃物、炉渣可燃物。2.4控制锅炉氧量。2.5降低散热损失。2.6降低空气预热器漏风率。2.7控制煤粉细度合格。2.8提高汽水品质。2.9根据情况,调整锅炉受热面的布置。2.10必要时改造燃烧器,使之适合燃烧煤种。…… 二、锅炉排烟温度(℃) 1、可能存在问题的原因 1.1炉膛火焰中心位置上移,排烟温度升高 1.1.1投入上层燃烧器多,层间配风不合理。 1.1.2上层给煤机给煤量过大。 1.1.3燃烧器摆角位置发生偏移,造成火焰中心位置上移。 1.1.4燃烧器辅助风门开度与指令有偏差,氧气不足,煤粉燃烧推迟。 1.1.5一次风机出口风压高,风速过大,进入炉膛的煤粉燃烧位置上移。 1.1.6锅炉本体漏风,炉膛出口过剩空气系数大。 1.1.7煤粉过粗,着火及燃烧反应速度慢。 1.1.8煤质挥发分低、灰分高、水分高,着火困难,燃

烧推迟。 1.1.9磨煤机出口温度低,使进入炉膛的风粉混合物温度降低,燃烧延迟。 1.2因锅炉“四管泄漏”进行堵管,造成过热器、再热器或省煤器传热面积减少。 1.3送风温度高。1.4烟气露点温度高。1.5吹灰设备投入不正常。1.6受热面结焦、积灰。1.7空气预热器堵灰,换热效率下降。1.8水质控制不严,受热面内部结垢。1.9给水温度低。…… 2、解决问题的措施 2.1运行措施 2.1.1机组负荷变化,及时调整风量和制粉系统运行方式,保持最合适的炉内过剩空气系数。 2.1.2及时调整炉底水封槽进水阀,保证水封槽合适的水位。 2.1.3煤质发生变化,及时调整燃烧,保证燃烧完全和炉膛火焰中心适当。 2.1.4定期进行受热面吹灰和除渣,保持受热面清洁。 2.1.5保持合适的烟气流速,减少尾部受热面积灰。 2.1.6每班检查燃烧器辅助风门开度情况,保证燃烧有足够氧气。 2.1.7提高给水温度。 2.2日常维护及试验 2.2.1进行燃烧优化调整试验,确定不同煤质下经济煤粉细度。 2.2.2定期测试煤粉细度,发现异常及时调整处理。 2.2.3定期进行空气预热器漏风试验,及时消除空气预热器漏风。 2.2.4经常检查炉膛看火孔、炉墙、炉底水封,发现问题及时封堵,减少锅炉本体漏风。 2.2.5加强吹灰器的日常维护,严密监视吹灰器电动机电流,对吹灰器枪管弯曲及经常卡在炉内等缺陷及时进行处理,保证吹灰器投入率在95%以上。

锅炉性能测试方案

锅炉性能测试方案 1.目的 为进一步推进锅炉系统精益管理能效提升工作,对锅炉系统运行工况进行测试,试验锅炉经济运行工况及参数,提高锅炉运行效率。 2 测试依据 GB/T 10184-88 《电站锅炉性能试验规程》 DL/T 469-2004 《电站锅炉风机现场性能试验》 GB/T 10180-2003《工业锅炉热工性能试验规程》山东 GB/T17954-2007《工业锅炉经济运行》 TSG0002-2010《锅炉节能技术监督管理规程》 TSG0003-2010《工业锅炉能效测试与评价规则》 DB37/T 842-2007《电站锅炉节能监测方法》 DB37/T 100-2007《工业锅炉节能运行管理》 DB37/T 116-2007《工业锅炉热能利用监测规范》 3试验前的准备工作 3.1测点完好可用;试验仪器及测试系统安装调试结束;试验人员就位。 3.2机组主辅设备及系统无重大缺陷,确保机组能安全、稳定运行。 3.3主要运行表计(蒸汽流量、煤气流量、给水流量、减温水量、主汽温度、主汽压力、引送风机电流、电量等表计)经过校验,投运正常,指示正确有效;经过仪表维护人员前期检查确认。 3.4阀门控制系统运行可靠,具备条件的提前2-3天进行试运。 3.5运行参数历史趋势记录存盘正常运行。

3.6试验稳定负荷期间,锅炉主要运行参数必须在规定波动范围。 3.7试验前锅炉定排完毕,关闭锅炉定排、连排阀门,隔离非生产系统用汽,确保锅炉汽水系统无外漏现象。 3.8风烟系统严密无泄漏。 3.9煤气系统压力与品质成分稳定,无大幅波动,确保锅炉热工况稳定。 3.10正式试验前由各单位组织岗位进行预备试验。 3.11试验过程中司炉等操作人员经验丰富,责任心强。 4测试内容及要求 4.1 60%、80%、100%额定负荷下的热效率。 4.2 60%、80%、100%额定负荷下的漏风率、漏风系数。 4.3 燃料成分及热值测试。 4.4 各负荷下的烟气成分检测(含氧量、一氧化碳等); 4.5 各负荷下的运行参数测试,风燃比变化情况下的燃烧效率。 4.6 试验器材(在线仪表、测温仪、热电偶、烟气分析仪、气压表、u型管、湿度计、对讲机等;应急器材:CO报警仪、氧气报警仪、空气呼吸器等) 5 试验测试项目及方法(测试点的选取) 5.1 锅炉反平衡效率、漏风率 5.1.1 排烟温度测量 测量方法:利用现有温度测点测量锅炉排烟温度,两个温度测点测试结果在误差允许范围内。测试期间数据记录周期为每5分钟一次。 测点位置:空气预热器出口烟道

相关文档
相关文档 最新文档