文档库 最新最全的文档下载
当前位置:文档库 › 2015必修五2.6.2 分组与错位相减求和 2015.04.10

2015必修五2.6.2 分组与错位相减求和 2015.04.10

2015必修五2.6.2 分组与错位相减求和  2015.04.10
2015必修五2.6.2 分组与错位相减求和  2015.04.10

2.6.2 分组与错位相减求和 2015.04.10 命题人——王峰

班级 姓名 学号

1.[2014·福建高考] 在等比数列{a n }中,a 2=3,a 5=81.

(1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .

2.[2010·重庆高考] 已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.

(1)求S n ; (2)设{b n -a n }是首项为1,公比为3的等比数列,求b n 及数列{b n }前n 项和T n .

3.[2014·山东高考] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.

(1)求通项a n ; (2)设b n =(1)2

n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .

4.[2014·湖南高考] 已知数列{a n }的前n 项和S n =n 2+n 2

,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.

5.[2014·新课标高考] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.

(1)求{a n }的通项公式; (2)求数列????

??a n 2n 的前n 项和.

6.[2014·安徽高考] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.

(1)证明:数列????

??a n n 是等差数列; (2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .

1.[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.

(1)求a n ;

(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .

1.解:(1)设{a n }的公比为q ,依题意得

?????a 1q =3,a 1q 4=81,解得?????a 1=1,q =3.

因此,a n =3n -1. (2)因为b n =log 3a n =n -1,

所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2

. 2.[2010高考重庆]已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.

(1)求通项a n 及S n ; (2)设{b n -a n }是首项为1,公比为3的等比数列, 求数列{b n }的通项公式及前n 项和n T .

3.[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.

(1)求数列{a n }的通项公式;

(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .

3.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2.

故数列{a n }的通项公式为a n =2n .

(2)由题意知,b n =a n (n +1)2

=n (n +1),

所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1),

所以当n 为偶数时,

T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )

=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2

, 当n 为奇数时,

T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22

.

所以T n =?

??-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.

4.[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n 2

,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.

4.解:(1)当n =1时,a 1=S 1=1;

当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2

=n . 故数列{a n }的通项公式为a n =n .

(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).

记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,

则A =2(1-22n )1-2

=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .

故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.

5.[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.

(1)求{a n }的通项公式; (2)求数列????

??a n 2n 的前n 项和.

5.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.

设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32

. 所以{a n }的通项公式为a n =12

n +1. (2)设????

??a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1, 则S n =322+423+…+n +12n +n +22

n +1, 12S n =323+424+…+n +12n +1+n +22

n +2, 两式相减得:

12S n =34+????123+…+12n +1-n +22n +2=34+14????1-12n -1-n +22n +2,所以S n =2-n +42

n +1.

6.[2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.

(1)证明:数列????

??a n n 是等差数列; (2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . 6.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n

=1,所以??????a n n 是以a 11=1为首项,1

为公差的等差数列.

(2)由(1)得a n n

=1+(n -1)·1=n ,所以a n =n 2, 从而可得b n =n ·3n .

S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ,①

3S n =1×32+2×33+…+(n -1)3n +n ×3n +1.②

①-②得-2S n =31+32+…+3n -n ·3n +1

=3·(1-3n )1-3

-n ·3n +1

=(1-2n )·3n +

1-32, 所以S n =(2n -1)·3n +1+34

.

错位相减法求和附答案解析

错位相减法求和专项.}{a分别是等差数列和等比数列,在应用过{ab}型数列,其中错位相减法求和适用于nn`nn 程中要注意: 项的对应需正确; 相减后应用等比数列求和部分的项数为(n-1)项; 若等比数列部分的公比为常数,要讨论是否为1 数列的前项已知二次函数的图象经过坐标原点,其导函数,1. 均在函数,点的图象上.和为 )求数列Ⅰ(的通项公式; 是数列的前项和,求.(Ⅱ)设, [解析]考察专题:,,,;难度:一般 [答案] (Ⅰ)由于二次函数的图象经过坐标原点,

,,则设 ∴,∴, 又点均在函数的图象上, ∴. 时,,当∴ 又,适合上式,∴............(7分) ,)知,Ⅰ)由(Ⅱ (. ∴, ∴, 上面两式相减得:

. 整理得..............(14分) 是数列的前n2.项和,且已知数列的各项均为正数, . )求数列的通项公式;1 ( )的值.(2][答案查看解析 时,解出an = 1 = 3,] [解析(1)当12-①34S又= a + 2a nnn = + 2a-4s3 ②当时n-1n1- 即,, -①② , ∴. (),

是以3为首项,2为公差的等差数列,6分 . )2③ ( 又④ ③④- = 12分 设函数,19,12分)(2013年四川成都市高新区高三4月月考,3. ,数列前数列.项和,满足, )求数列的通项公式;(Ⅰ

,证明:的前,数列.项和为(Ⅱ)设数列的前项和为 ,得由Ⅰ[答案] () 为公比的等比数列,故.是以 )由(Ⅱ得, …, …+,记

用错位相减法可求得: (注:此题用到了不等式:进行放大. . ) 与的等比中项.4.已知等差数列是中,; )求数列的通项公式:(Ⅰ 项和Ⅱ)若的前.求数列 ( 的等比中项.所以,是([解析]Ⅰ)因为数列与是等差数列,

数列求和方法-错位相减法-分组求和

错位相减法求和 如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 例1. 已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。 例2 求和S n = n n n n 2 12232252321132-+-++++- 例3:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。 例4设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 1(1)21n a n d n =+-=-,112n n n b q --==.求数列n n a b ?????? 的前n 项和n S .

例5.设数列{a n }满足a 1+3a 2+32a 3+…+3 n-1a n = 3n ,n ∈N *. (1)求数列{a n }的通项; (2)设n n a n b = ,求数列{b n }的前n 项和S n . 分组求和 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1:S n =-1+3-5+7-…+(-1)n (2n-1) 例2已知数列{}n a 的前五项是111111,2,3,4,5,392781243 (1)写出该数列的一个通项公式; (2)求该数列的前n 项和n S . 例3 求下面数列的前n 项和: 1147(3n 2)+,+,+,…,+-,…11121a a a n -

例4 求数列:1223 131311,,31311,311,1n +++++++ 的前n 项的和. 例5求2222121234(1)n S n -=-+-+ +-(n N +∈) 例6、求和:??? ? ??+++???? ??++???? ?? +n n y x y x y x 11122 ()1,1,0≠≠≠y x x 例7 求数列{n(n+1)(2n+1)}的前n 项和.

错位相减法-(含答案)

— 1. 设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足 *12 12 1 1,2 n n n b b b n N a a a +++ =-∈ ,求{}n b 的前n 项和n T 2. (2012年天津市文13分) 已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1122=++ +n n n T a b a b a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。 … 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。

由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,()23225282132n n T n =?+?+?+-?+ ①; ∴()234+12225282132n n T n =?+?+?+?+- ②; 由②-①得, : ()()234+1122232323+2332n n n T n =-?-?+?+?-+??+ ()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142 =8+3=+8 n n n n n n n n n n n n a b ----?+++??---? --?----- ∴1+18=n n n T a b --+ (2)n N n >∈,。 3.(2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++ +n n n n T a b a b a b -,+n N ∈,证明:+12=2+10n n n T a b -+()n N ∈. 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 & 由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,231212222n n n n n T a a a a --=+++?+ ①;[

错位相减法求和附答案

错位相减法求和专项 错位相减法求和适用于{a n'b n}型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意: 项的对应需正确; 相减后应用等比数列求和部分的项数为(n-1)项; 若等比数列部分的公比为常数,要讨论是否为1 1.已知二次函数的图象经过坐标原点,其导函数/■]■:I “亠],数列?的前 项和为,点均在函数:=y:/.::的图象上? (I)求数列的通项公式; (n)设,,■是数列的前」项和,求?’? [解析]考察专题:2.1 , 2.2 , 3.1 , 6.1 ;难度:一般 [答案](I)由于二次函数-的图象经过坐标原点, 则设, 又点「均在函数的图象上, 二当心时,?、、= J ;:? ;?■■■ L] 5 T

又忙:=.:「=乜,适合上式,

I ............................................... (7 分) (n)由(i)知 - 2 - :' 2 - :......................................... |;■:■: 2 ? ? :' - 'I+(2?+ l)^"kl,上面两式相减得 =3 21 +2 (21 +23十…4『r)-(2打+ 】 卜2* 4屮一才丨, , : ■ . 1=2 整理得:,?................. 2.已知数列’的各项均为正数,是数列’ (14 分)的前n项和,且 (1)求数列’的通项公式; (2)二知二一- [答案]查看解析 解出a i = 3, [解 析] 又4S n = a n? + 2a n —3 ①

累加数列错位相减取大差法案例详解

累加数列错位相减取大差法 在非节奏流水施工中,通常采用累加数列错位相减取大差法计算流水步距。由于这种方法是由潘特考夫斯基首先提出的,故又称为潘特考夫斯基法。 基本步骤: 1. 对每一个施工过程在各施工段上的流水节拍依次累加,求得各施工过程流水节拍的累加数列; 2. 将相邻施工过程流水节拍累加数列中的后者错后一位,相减后求得一个差数列; 3. 在差数列中取最大值,即为这两个相邻施工过程的流水步距。 例题1: 某工程由3个施工过程组成,分为4个施工段进行流水施工,其流水节拍见表2-1,试确定流水步距。 解:(1)求各施工过程流水节拍的累加数列(从第一个施工段开始累加至最后一个施工段): 施工过程Ⅰ:2,5,7,8 施工过程Ⅱ:3,5,9,11 施工过程Ⅲ:3,7,9,11

(2)错位相减求得差数列: 施工过程Ⅰ: 2,5,7,8 施工过程Ⅱ: 3,5,9,11 相减,得: 2,2,2,-1,-11 施工过程Ⅱ: 3,5,9,11 施工过程Ⅲ: 3,7,9,11 相减,得: 3,2,2,2,-11 (3)在求得的数列中取最大值求得流水步距: K1=max{2,2,2,-1,-11}=2 K2=max{3,2,2,2,-11}=3 表示:工序Ⅰ与工序Ⅱ之间的流水步距为2天,工序Ⅱ与工序Ⅲ之间的流水步距为3天。 例题2: 某工程有5座通道,每座通道工序流水节拍如下:挖基2D,清基2D,浇基4D,台身8D,盖板4D,回填6D。浇基后等4D才能施工台身,台身完成后要等2天才能进行盖板施工。 问题: (1)计算不窝工的流水工期; (2)计算无多余间歇流水工期; (3)有窝工且有多余间歇流水时的工期是多少?

数列练习题(裂项相消法、错位相减法)

数列练习题 一、单选题 1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( ) A .15 B .16 C .49 D .64 二、填空题 2.已知公差不为0的等差数列{}n a ,其前n 项和为n S ,首项12a =,且1a ,2a ,4a 成等比数列,则7S 的值为___________. 三、解答题 3.正项等比数列{}n a 的前n 项和为n S ,且12461,4a S S S =+=. (1)求{}n a 的通项公式; (2)求数列{}n a n +的前n 项和n T . 4.已知公差不为零的等差数列{}n a 满足132a a =,是1a 与7a 的等比中项. (1)求{}n a 的通项公式; (2)是否存在n 值,使得{}n a 的前n 项和27n S =?

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 5.已知在递增等差数列{a n }中,a 1=1,a 3是a 1和a 9的等比中项. (1)求数列{a n }的通项公式; (2)若112 n a n n n b a a +=+?,求数列{b n }的前n 项和S n . 6.已知n S 为{}n a 的前n 项和,{}n b 是等比数列且各项均为正数,且23122n S n n =+,12b =,2332 b b +=. (1)求{}n a 和{}n b 的通项公式; (2)记()41n n n a c b += ,求数列{}n c 的前n 项和n T .

7.已知数列{}n a 的前n 项和243n S n n =-+,求: (1)数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 的最小值. 8.已知等差数列{}n a 满足23a =,4822a a +=. (1)求数列{}n a 的通项公式; (2)设1 1n n n b a a += ,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的前n 项的和235n S n n =+. (1)求{}n a 的通项公式; (2)设1 3n n n b a a +=,求数列{}n b 的前n 项和.

数列求和之错位相减法练习

数列求和之错位相减法专项练习 一、解答题 1.已知正项数列{a a}是递增的等差数列,且a2?a4=6,a6=4. (1)求数列{a a}的通项公式; }的前n项和. (2)求数列{a a 2a?1 2.在数列{a a}中,前n项和为a a,a a+a a=a,a1=a1,a a=a a? a a?1(a≥2). 3.(1)设a a=a a?1,求证:{a a}为等比数列. 4.(2)求{(a+1)a a}的前n项和a a. 5. 6. 7. 8. 9. 10. 11. 12.设数列{a a}的前n项和为a a,且a a=2(a a?1)

(1)求数列{a a}的通项公式; (2)若a a=a(a a?1),求数列{a a}的前n项和a a. 13.已知等差数列{a a}的公差是1,且a1,a3,a9成等比数列. (1)求数列{a a}的通项公式; (2)求数列{a a 2a a }的前n项和a a . 14.已知{a a}是公差不为零的等差数列,满足a2+a4+a5=19,且a2是a1与a5的 等比中项,a a为{a a}的前n项和. (1)求a a及a a; (2)若a a=a a+1?3a a,求数列{a a}的前n项和.

15.已知数列{a a}是首项为1的等差数列,数列{a a}是首项a1=1的等比数列,且 a a>0,又a3+a5=21,a5+a3=13.(Ⅰ)求数列{a a}和{a a}的通项公 式; 16.(Ⅱ)求数列{2a a a a}的前n项和a a. 17. 18. 19. 20. 21. 22. 23. 24.已知数列{a a}的前n项和a a=3a2+8a,{a a}是等差数列,且a a=a a+ a a+1. (1)求数列{a a}的通项公式; (2)令a a=(a a+1) (a a+2)a a+1 ,求数列{a a}的前n项和.

错位相减法数列求和法

特定数列求和法一错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归 纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求 和的方法一一错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学 习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过 程: 数列a n 是由第一项为a i ,且公比为q 的等比数列,它的前n 项和是 由已知有 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简 化了,从而得到等比数列的求和公式, 这种方法叫错位相减法,那我们是不是遇 到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过 程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的 复杂数列的。可以归纳数学模型如下: S n a i a i q a i q 2 a i q n i ,求S n 的通项公式。 两端同乘以 q ,有 i 时, i 时, 于是 S n a i a i q a i q 2 ... qs n aiq 2 aiq 3 a i q n ... (1 q)s n a i n a i q 由①可得 由③可得 S n s n S n n a i (q i)或者 na i i)

已知数列4是以a i 为首项,d 为公差的等差数列,数列 0是以b i 为首 项,q(q 1)为公比的等比数列,数列C n a n b n ,求数列C n 的前n 项和. 解 由已知可知 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接 地写明所求数列是一个等比数列乘以一个等差数列的形式, 通过对最近几年高考 中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差 数列,则只要证明或者求出另一个是等比数列, 那么就可以用错位相减法来求解 该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解, 得另 找他法了 ■ 例1.(2013湖南文)设S n 为数列{a n }的前n 项和,已知: a 1 0,2a n a 1 S 1 S n , n N (1)求a 1,并求数列{a n }的通项公式 (2)求数列{na n }的前n 项和. 两端同乘以q 可得 qC n a1?q :a 1b 2 a 2 b 2q a ? b 3 asdq 83 匕4 .. . ...a n 1 b n 1 q a n b n q a n 1b n a n b n q 由①-②得 (1 q)C n a 1 b 1 d(b 2 b 3 ...b n 1 b n ) a n b n q 化简得 C n Cd d(b 2 b 3 ... b n 1 b n ) a n b n q / (q C n a i b 1 a 2b 2 a 3b 3 ■■- i q

错位相减法数列求和法(供参考)

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 ○ 1-○2得 当1q =时,由○ 1可得 当1q ≠时,由○ 3可得 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 两端同乘以q 可得 = 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

(word完整版)错位相减法13年间的高考题

专项训练:错位相减法 目录 1.(2003北京理16) (2) 2.(2005全国卷Ⅰ) (2) 4.(2005湖北卷) (2) 5.(2006安徽卷) (2) 6.(2007山东理17) (2) 7.2007全国1文21) (2) 8.(2007江西文21) (2) 9.(2007福建文21) (2) 10.(2007安徽理21) (3) 11.(2008全国Ⅰ19) (3) 12.(2008陕西20) (3) 13.(2009全国卷Ⅰ理) (3) 14.(2009山东卷文) (3) 15.(2009江西卷文) (3) 16.(2010年全国宁夏卷17) (3) 17.(2011辽宁理17) (4) 18.(2012天津理) (4) 19.2012年江西省理 (4) 20.2012年江西省文 (4) 21.2012年浙江省文 (4) 22.(2013山东数学理) (4) 23.(2014四川) (4) 24.(2014江西理17) (5) 25.(2014安徽卷文18) (5) 26.(2014全国1文17) (5) 27.(2014四川文19) (5) 28.(2015山东理18) (5) 29.(2015天津理18) (5) 30.(2015湖北,理18) (5) 31.(2015山东文19) (5) 32.(2015天津文18) (6) 33.(2015浙江文17) (6) 专项训练错位相减法答案 (7)

已知数列{}n a 是等差数列且12a =,12312a a a ++= (1)求数列{}n a 的通项公式; (2)令()n b a x x R =?∈ 数列{}b 的前n 项和的公式 在等差数列{}n a 中,11a =,前n 项和n S 满足条件 242 ,1,2,1 n n S n n S n +==+L , (1)求数列{}n a 的通项公式; (2)记(0)n a n n b a p p =>,求数列 b 的前n 项和n T ? 设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n n n T a a a a = -+--L . 9.(2007福建文21) 数列{}n a 的前n 项和为n S ,11a =,* 12()n n a S n +=∈N . (1)求数列{}n a 的通项n a ; (2)求数列{}n na 的前n 项和n T .

【易错点16】数列错位相减法求和

【芝罘区数学】 【芝罘区数学】 1 【易错点16】在数列求和中对求一等差数列与一等比数列的积构成的数列的前n 项和不会采用错项相减法或解答结果不到位。 例16、已知数列{}n a 是等差数列,且11232,12a a a a =++= (1)求数列{}n a 的通项公式(2)令()n n n b a x x R =∈求数列{}n b 前项和的公式。 【思维分析】本题根据条件确定数列{}n a 的通项公式再由数列{}n b 的通项公式分析可知数列{}n b 是一个等差数列和一个等比数列构成的“差比数列”,可用错项相减的方法求和。 解析:(1)易求得2n a n = (2)由(1)得2n n b nx =令n s =232462n x x x nx ++++ (Ⅰ)则 ()23124212n n n xs x x n x nx +=+++-+ (Ⅱ)用(Ⅰ)减去(Ⅱ)(注意错过一位再相减)得()231122222n n n x s x x x x nx +-=++++- 当1x ≠()11211n n n x x s nx x x +??-??=---???? 当1x =时()24621n s n n n =++++=+ 综上可得: 当1x ≠()11211n n n x x s nx x x +??-??=---???? 当1x =时()24621n s n n n =++++=+ 【知识点归类点拔】一般情况下对于数列{}n c 有n n n c a b =其中数列{}n a 和{}n b 分别为等差数列和等比数列,则其前n 项和可通过在原数列的每一项的基础上都乘上等比数列的公比再错过一项相减的方法来求解,实际上课本上等比数列的求和公式就是这种情况的特例。 【练16】已知1221n n n n n n u a a b a b ab b ---=+++++ () ,0,0n N a b +∈>>当a b =时,求数列{}n a 的前n 项和n s 答案:1a ≠时()()()21221221n n n n a n a a a s a +++-+-+=-当1a =时() 32n n n s +=.

数列题型(错位相减法)

数列专练(裂项相消法) 1. 已知数列{}n a 的前项和2 2n S n n =+; (1)求数列的通项公式n a ;(2)设1234 1 23111 1 n n n T a a a a a a a a +=++++ ,求n T . 2. 已知数列{}n a 的前项和为n S ,且满足213 (1,) 22n S n n n n N *=+≥∈ (1)求数列{}n a 的通项公式; (2)设n T 为数列? ?? ??? +11n n a a 的前n 项和,求使不等式20121005>n T 成立的n 的最小值. 2. 已知数列{}n a 的前n 项和为n S ,且11a =,()11 1,2,3, 2 n n a S n +==. (1)求数列{}n a 的通项公式; (2)当()312 log 3n n b a +=时,求证:数列11n n b b +??? ??? 的前n 项和1n n T n = +. 3. 已知数列{}n a 的前n 项和为n S ,点), (n s n n 在直线2 1121+=x y 上,数列{}n b 满足0212=+-++n n n b b b ,() *N n ∈,113=b ,且其前9项和为153. (1)求数列{}n a ,{}n b 的通项公式; (2)设) 12)(112(3 --=n n n b a c ,求数列{}n c 前n 项的和n T . 4. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-,(1,2,3)n =???;数列{}n b 中,11,b = 点 1(,)n n P b b +在直线20x y -+=上.

高中数学数列求和-错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可. 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列. 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 编辑本段错位相减法解题 错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n

(完整word版)数列求和之错位相减法、倒序相加法

数列求和之错位相减法、倒序相加法 1、错位相减法适用于c n =a n ×b n ,其中a n {}是等差数列,b n {}是等比数列。 步骤:此时可把式子 的两边同乘以公比 q (q 10且 q 11),得到 ,两式错位相减整理即可求出 S n . 2、倒序相加法适用于数列首尾项的和为定值。 【例1】已知数列2 1 1,3,5,,(21)(0)n a a n a a --≠L ,求前n 项和. 【例2】已知 a n { } 是一个公差大于0的等差数列,且满足 a 3a 6 =55,a 2+a 7=16 (Ⅰ)求数列 a n {}的通项公式: (Ⅱ)若数列 a n { } 和数列 b n { } 满足等式:2 n n n a b =,求数列 b n {} 的前n 项和S n . 【例3】求和:22 2 2 sin 1sin 2sin 3sin 89++++o o o o L L

【例4】已知函数()()R x x f x ∈+= 2 41,点()111,y x P ,()222,y x P 是函数()x f 图像上 的两个点,且线段21P P 的中点P 的横坐标为2 1. (Ⅰ)求证:点P 的纵坐标是定值; (Ⅱ)若数列{}n a 的通项公式为()m n N m m n f a n ,,2,1,Λ=∈?? ? ??=,求数列{}n a 的前m 项的和m S ; 【变式训练】 1、已知数列26a --,14a --,2-,0,2a ,24a ,...,(-8+2n )3 n a -求前n 项和. 2、若数列 {}n a 的通项公式为23n a n =+,数列 b n { } 满足等式:2n n n b a =,求数列 b n { } 的 前n 项和S n

高中数学数列_错位相减法求和专题训练含答案

错位相减法求和专题训练 1.已知数列{}n a 满足22,{ 2,n n n a n a a n ++=为奇数为偶数 ,且*12,1,2n N a a ∈==. (1)求 {}n a 的通项公式; (2)设* 1,n n n b a a n N +=?∈,求数列{}n b 的前2n 项和2n S ; (3)设()2121n n n n c a a -=?+-,证明: 123 111154 n c c c c ++++ < 2.设正项数列{}n a 的前n 项和为n S ,且满足37a =, 2 1691n n a S n +=++, *n N ∈. (1)求数列{}n a 的通项公式; (2)若正项等比数列{}n b 满足1132,b a b a ==,且n n n c a b =?,数列{}n c 的前n 项和为n T . ①求n T ; ②若对任意2n ≥, *n N ∈,均有()2 563135n T m n n -≥-+恒成立,求实数m 的取值范 围. 3.已知*n N ∈,设n S 是单调递减的等比数列{}n a 的前n 项和, 112 a = 且224433,,S a S a S a +++成等差数列. (1)求数列{}n a 的通项公式; (2)记数列{}n na 的前n 项和为n T ,求证:对于任意正整数n , 1 22 n T ≤<. 4.递增的等比数列{}n a 的前n 项和为n S ,且26S =, 430S =. (1)求数列{}n a 的通项公式; (2)若12 log n n n b a a =,数列{}n b 的前n 项和为n T ,求1 250n n T n ++?>成立的正整数n 的 最小值. 5.已知数列{}n a 及()2 12n n n f x a x a x a x =++ +,且()()11?n n f n -=-, 1,2,3, n =. (1)求123a a a ,,的值; (2)求数列{}n a 的通项公式;

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

错位相减法的运用

错位相减法的运用 错位相减法是一种常用的数列求和方法, 形如{}n n b a 的数列,其中{n a }为等差数列,{}n b 为等比数列;分别列出n S ,再把所有式子同时乘以等比数列的公比q ,即n qS ;然后错一位,两式相减即可。适用于一个等差数列和一个等比数列对应项相乘构成的数列求和。 典型例题: 例 1. (2012年四川省文12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且 11n n a a S S λ=+对一切正整数n 都成立。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设10a >,100λ=,当n 为何值时,数列1 {lg }n a 的前n 项和最大? 【解析】(I )由题意,n=1时,由已知可知11(2)0a a λ-=,分类讨论:由1a =0及1a 0≠,结合数列的和与项的递推公式可求。 (II )由10a >且100λ=时,令1 lg n n b a =,则2lg 2n b n =-,结合数列的单调性可 求和的最大项 。 【答案】解:(Ⅰ)取n=1,得2 1112=2a S a λ=,∴11(2)0a a λ-=。 若1a =0,则1S =0, 当n 2≥时,1=0n n n a S S --=。 若1a 0≠,则12 a λ = , 当n 2≥时,22n n a S λ=+,112 2n n a S λ --=+, 两个相减得:12n n a a -=,∴n 2n a λ = 。∴数列{}n a 公比是2的等比数列。 综上所述,若1a =0, 则 n 0a =;若1a 0≠,则n 2n a λ =。 (Ⅱ)当10a >且100λ=时,令1 lg n n b a =,则2lg 2n b n =-。 ∴{}n b 是单调递减的等差数列(公差为-lg2) 则 b 1>b 2>b 3>…>b 6=01lg 64100 lg 2 100lg 6 =>=; 当n≥7时,b n ≤b 7=01lg 128100 lg 2 100lg 7=<=。 ∴数列{lg n a 1}的前6项的和最大,即当n =6时,数列1 {lg }n a 的前n 项和最大。 【考点】等差数列、等比数列、对数等基础知识,分类与整合、化归与转化等数学思想的应 用。 例2. (2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=+++n n n n T a b a b a b -L ,+ n N ∈,证明+12=2+10n n n T a b -+()n N ∈.

有答案 数列综合练习(错位相减法、裂项相消法)

数列综合练习(一) 1.等比数列前n 项和公式: (1)公式:S n =???? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1) na 1 (q =1) . (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 1 1-q (1-q n )=A (q n -1).其中 A =a 1 q -1 . 3.推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和. 4.拆项成差求和经常用到下列拆项公式: (1)1n (n +1)=1n -1n +1 ; 一、选择题 1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5 S 2 等于( ) A .11 B .5 C .-8 D .-11 答案 D 解析 由8a 2+a 5=0得8a 1q +a 1q 4=0, ∴q =-2,则S 5S 2=a 1(1+25 ) a 1(1-22) =-11. 2.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10 S 5 等于( ) A .-3 B .5 C .-31 D .33 答案 D 解析 由题意知公比q ≠1,S 6 S 3=a 1(1-q 6)1-q a 1(1-q 3) 1-q =1+q 3=9, ∴q =2,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5) 1-q =1+q 5 =1+25=33. 3.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4 a 2 等于( ) A .2 B .4 C.152 D.172

错位相减法(万能模板法)

1 数列求和之错位相减法 用“错位相减法”求和的数列特征:即如果一个数列的各项是由一个等差数列和一个等比数列的对应项乘积构成的,那么这个数列的前n 项和则采用“错位相减法” 求和 高考数列用错位相减的几个步骤: 第一步:判断通项公式是否满足一下关系式: 第二步:写出求和的展开式: 第三步:在第二步的基础上等式两边同时乘上该等比数列的公比q 第四步:①——②化简得:n s 例题1:[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列???? ?? a n 2n 的前n 项和. 例题2:已知数列{a n }的前n 项和为S n ,且S n =2a n -1;数列{b n }满足b n -1-b n =b n b n -1(n ≥2,n ∈N *),b 1=1. (1)求数列{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和T n . 课后练习: 已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若b n =na n ,求数列{b n }的前n 项和T n 。 (15年天津)已知 {}n a 是各项均为正数的等比数列,{}n b 是等差数列,且 112331,2a b b b a ==+=,5237a b -=. (I )求{}n a 和{}n b 的通项公式; (II )设c n =n a b n 求数列{}n c 的前n 项和. 已知等比数列{}n a 的公比1q >, 1a 和4a 的一个等比中项,2a 和3a 的等差中项为6,若数列{}n b 满足2log n n b a =(n ∈*N ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n S . (全国)已知数列{}n a 的首项32 1=a ,1 21+=+n n n a a a , 3,2,1=n (1)证明:数列??? ?? ?-11n a 是等比数列; (2)求数列? ?? ???n a n 的前n 项和n S 。 121122=+++=+++n n n n S c c c a b a b a b ……① 升高一次右边式子每一项的指数=n qS ……② c n n n n q B An b a c ++==).(即形如:n n n b a c =

(完整版)错位相减法数列求和十题

错位相减法数列求和十题 1.设正项等比数列{a n}的前n项和为S n,且a3=4,S2=3. (1)求数列{a n}的通项公式; (2)令b n=(2n-1)a n(n∈N*),求数列{b n}的前n项和为T n. 2.已知函数f(x)=x2+2x,数列{a n}的前n项和为S n,对一切正整数n,点P n(n,S n) 都在函数f(x)的图象上,且过点P n(n,S n)的切线的斜率为k n. (1)求数列{a n}的通项公式;(2)若b n=2kn?a n,求数列{b n}的前n项和T n. 3.数列的前项和为,且是和的等差中项,等差数列满足 (1)求数列、的通项公式 (2)设=,求数列的前项和. 4.(本小题满分12分)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数 列{b n}中,b1=1,点P(b n,b n+1)在直线上。 (1)求a1和a2的值; (2)求数列{a n},{b n}的通项a n和b n; (3)设c n=a n·b n,求数列{c n}的前n项和T n. 5.已知数列{a n}的前n项和为S n,点(a n+2,S n+1)在直线y=4x-5上,其中n∈N*.令 b n=a n+1-2a n.且a1=1.求数列{b n}的通项公式;若f(x)=b1x+b2x2+b3x3+…+b n x n, 计算f′(1)的结果. 6.已知数列的前项和,数列满足 (1)求数列的通项公式;(2)求数列的前项和;

(3)求证:不论取何正整数,不等式恒成立 7.已知等差数列{a n}的前n项和为S n,满足a1=1,S6=36,数列{b n}是等比数列且满足 b1+b2=3,b4+b5=24。 (1)求数列{a n}和{b n}的通项公式; (2)设c n=1+a n·b n,求c n的前n项和T n。 8.已知等差数列{a n}的公差d不为0,设S n=a1+a2q+…+a n q n-1,T n=a1-a2q+…+(-1) n-1a n q n-1,q≠0,n∈N*, (1)若q=1,a1=1,S3=15,求数列{a n}的通项公式; (2)若a1=d,且S1,S2,S3成等比数列,求q的值; (3)若q≠±1,证明(1-q)S2n-(1+q)T2n=,n∈N*。 9.(1)已知:等差数列{a n}的首项a1,公差d,证明数列前n项和; (2)已知:等比数列{a n}的首项a1,公比q,则证明数列前n项和 . 10.设数列{an}的前n项和为Sn,且Sn=(1+λ)-λan,其中λ≠-1,0; (I)证明:数列{an}是等比数列. (II)设数列{an}的公比q=f(λ),数列{bn}满足b1= 1/2,bn=f(bn-1)(n∈N*,n≥2)求数列{bn}的通项公式; (III)记λ=1,记Cn=an( 1/bn -1),求数列{Cn}的前n项和为Tn.

相关文档
相关文档 最新文档