文档库 最新最全的文档下载
当前位置:文档库 › 结构动力学大作业

结构动力学大作业

结构动力学大作业
结构动力学大作业

姓名:

学号:

习题1

用缩法减进行瞬态结构动力学分析以确定对有限上升时间得恒定力的动力学响应。实际结构是一根钢梁支撑着集中质量并承受一个动态荷载。

钢梁长L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为t τ,最大值为F1的动态荷载F(t)。梁的质量可以忽略,需确定产生最大位移响应时间max t 及响应max y 。同时要确定梁中的最大弯曲应力bend σ。

已知:材料特性:25x E E MPa =,质量M =0.03t ,质量阻尼ALPHAD=8; 几何尺寸:L =450mm I=800.64

mm h=18mm; 荷载为:F1=20N t τ=0.075s

提示:缩减法需定义主自由度。荷载需三个荷载步(0至加质量,再至0.075s , 最后至1s )

ANSYS 命令如下: FINISH

/CLE$/CONFIG,NRES,2000 /prep7

L=450$H=18 ET,1,BEAM3 ET,2,MASS21,,,4 R,1,1,800.6,18

R,2,30 !MASS21的实常数顺序MASSX, MASSY, MASSZ, IXX, IYY, IZZ MP,EX,1,2E5$MP,NUXY ,1,0.3 N,1,0,0,0 N,2,450/2,0,0 N,3,450,0,0

E,1,2$E,2,3 !创建单元 TYPE,2$REAL,2 E,2 M,2,UY FINISH

/SOLU !进入求解层 ANTYPE,TRANS

TRNOPT,REDUC

OUTRES,ALL,ALL$DELTIM,0.004 !定义时间积分步长

ALPHAD,8 !质量阻尼为8

D,1,UY$D,3,UX,,,,,UY !节点1Y方向,约束节点3X、Y方向约束

F,2,FY,0

LSWRITE,1 !生成荷载步文件1

TIME,0.075

FDELE,ALL,ALL

F,2,FY,20

LSWRITE,2 !生成荷载步文件2

TIME,1

LSWRITE,3 !生成荷载步文件3

LSSOLVE,1,3,1 !求解荷载文件1,2,3

FINISH

/SOLU

EXPASS,ON$EXPSOL,,,0.10000 !扩展处理

SOLVE

FINISH

/POST26

NUMV AR,0

FILE,fdy,rdsp !注意,建立的项目名称为fdy,否则超出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL

PLV AR,2 !时间位移曲线

PRV AR,2 !得出在0.10000该时间点上跨中位移最大

/POST1 !查看某个时刻的计算结果

SET,FIRST

PLDISP,1 !系统在0.10000秒时总变形图

ETABLE,Imoment,SMISC,6 !单元I点弯矩

ETABLE,Jmoment,SMISC,12 !单元J点弯矩

ETABLE,Ishear,SMISC,2 !单元I点剪力

ETABLE,Jshear,SMISC,8 !单元J点剪力

PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图

PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力图

结果如下;

随着时间位移的大小:

可知系统在0.10000秒时总变形最大。系统在0.10000秒时总变形图:

由图中可知最大挠度为0.001204

弯矩图如下:

在t=0.10000s时最大弯矩为11.4218MPa,下部受拉。剪力图如下:

在t=0.10000s时最大剪力为0.050763N。

习题2

一辆汽车匀速通过一单跨桥,要求用有限元法分析桥的动态响应。对于汽车施加于桥的荷载给出两种简化假设:一是讲移动汽车简化成无质量的匀速移动常量力;二是考虑到路面的不平整,汽车的重量可以简化成简谐作用力。同时讲单跨桥简化成简支梁。

已知:材料特性:梁的弹性模量 2.0711x E e MPa =,泊松比为0.3,密度Density =2000; 几何尺寸:梁长L =32m ,A =0.1, I =0.0001/12, h=0.1, 车轮间距=2.56;

荷载为:mg=1000,则简谐力1cos()1000cos(10)F F t t ω==,移动速度v=120公里/小时。

提示:简谐力的系数部分即为常量力; 讲整个简支梁划分为100个单元,则车子的前后轮之间讲包含2.56/(32/100)=8个单元。

一、不带静力分析ANSYS 命令: FINISH

/CLE$/CONFIG,NRES,2000 /prep7 LB=32

NE=100$NN=NE+1

P=1000$V=120*1000/3600 !120km/h 转换为m/s DELTL=LB/NE !单元长度

DELTT=DELTL/V !移动一个单元所需要的时间

EM=2.07E11$AREA=0.1$IM=0.001/12 !IM 为惯性矩 DENG=2000 !密度

GRA=9.8 !重力加速度

F1=ACOS(-1)/2/LB/LB*SQRT(EM*IM/(AREA*DENG)) !弹性体的自振频率 ET,1,BEAM3 MP,EX,1,EM MP,NUXY,1,0.3 MP,DENS,1,DENG R,1,AREA,IM,1.0

*DO,I,1,NN$N,I,(I-1)*DELTL$*ENDDO !创建节点

*DO,I,1,NE$E,I,I+1$*ENDDO !I 和I+1节点连接并赋予前面已经定义的单元 D,1,UX,,,,,UY D,NN,UY FINISH

!瞬态分析过程(不考虑静力的情况)

/SOLU

ANTYPE,TRANS$SSTIF,ON

TIMINF,ON !TIMINF,key,lab

OUTRES,ALL,ALL

DELTIM,DELTT/10 !定义的时间步长

KBC,1$AUTOTS,ON

*DO,I,1,NN

TIME,I*DELTT

FDELE,ALL,ALL !删除以前施加的力

F,I,FY,-P !施加当前力

SOLVE

*ENDDO

FDELE,ALL,ALL !删除所有的力

/POST26

NSOL,2,51,U,Y NSOL,NV AR,NODE,Item,Comp,Name(U,Y代表桥梁跨中节点Y方向的位移,若考察速度的话,将U改为V即可)

PLV AR,2

PRV AR,2

FINISH

结果如下:

***** ANSYS POST26 VARIABLE LISTING *****部分时间位移

TIME 51 UY

UY

0.96000E-03 0.00000

0.19200E-02 0.00000

0.28800E-02 0.00000

0.38400E-02 0.00000

0.48000E-02 0.00000

0.57600E-02 0.00000

0.67200E-02 0.00000

0.76800E-02 0.00000

0.86400E-02 0.00000

0.96000E-02 0.00000

0.10560E-01 0.221145E-18

0.11520E-01 0.766059E-17

0.12480E-01 0.323835E-16

0.13440E-01 -0.174140E-14

0.14400E-01 -0.317168E-13

0.15360E-01 -0.224147E-12

0.16320E-01 -0.352947E-12

0.17280E-01 0.598971E-11

0.18240E-01 0.508955E-10

0.19200E-01 0.171688E-09

可知在t=1s时桥梁跨中位移最大为0.056mm

二、带静力分析ANSYS命令:

FINISH

/CLE$/CONFIG,NRES,2000

/prep7

LB=32

NE=100$NN=NE+1 !单元数为100个,节点数为101个

P=1000$V=120*1000/3600 !定义荷载和移动速度,并将移动速度转换为m/s DELTL=LB/NE !单元长度

DELTT=DELTL/V !移动一个单元所需要的时间

EM=2.07E11$AREA=0.1$IM=0.001/12 !IM为惯性矩

DENG=2000 !密度

GRA=9.8 !重力加速度

F1=ACOS(-1)/2/LB/LB*SQRT(EM*IM/(AREA*DENG)) !弹性体的自振频率ET,1,BEAM3

MP,EX,1,EM

MP,NUXY,1,0.3

MP,DENS,1,DENG

R,1,AREA,IM,1.0

*DO,I,1,NN$N,I,(I-1)*DELTL$*ENDDO !创建节点

*DO,I,1,NE$E,I,I+1$*ENDDO !I和I+1节点连接并赋予前面已经定义的单元

D,1,UX,,,,,UY

D,NN,UY

FINISH

!瞬态分析过程

!静力分析

/SOLU

ANTYPE,TRANS$SSTIF,ON !对于于梁和壳元,在大挠度分析中通常应该使用应力刚化。TIMINF,OFF !关闭时间积分效应,进行静力分析

ACEL,,GRA !ACEL,ACELX,ACEL Y,ACELZ

TIME,1E-5$NSUBST,2 !2为当前荷载步的子步数,上述几步的意思是将静力作用看做是预应力进行处理。

KBC,1 !阶跃荷载

SOLVE

TIMINF,ON !TIMINF,key,lab

OUTRES,ALL,ALL

DELTIM,DELTT/10 !定义的时间步长

KBC,1$AUTOTS,ON !定义荷载作用方式,打开自动时间步。

*DO,I,1,NN

TIME,I*DELTT

FDELE,ALL,ALL !删除以前施加的力

F,I,FY,-P !施加当前力

SOLVE

*ENDDO

FDELE,ALL,ALL !删除所有的力

/POST26

NSOL,2,51,U,Y !NSOL,NV AR,NODE,Item,Comp,Name(U,Y代表桥梁跨中节点Y方向的位移,若考察速度的话,将U改为V即可)

PLV AR,2

PRV AR,2

FINISH

输出结果如下:部分时间位移

TIME 51 UY

UY

0.40320 -1.56081

0.40416 -1.56087

0.40512 -1.56093

0.40608 -1.56100

0.40704 -1.56106

0.40800 -1.56112

0.40896 -1.56119

0.40992 -1.56125

0.41088 -1.56132

0.41184 -1.56138

0.41280 -1.56145

0.41376 -1.56151

0.41472 -1.56158

0.41568 -1.56164

0.41664 -1.56171

0.41760 -1.56177

0.41856 -1.56184

0.41952 -1.56191

0.42048 -1.56198

0.42144 -1.56204

T=1s时跨中位移最大为1.608mm

三、简谐荷载不带静力分析ANSYS命令流:FINISH

/CLE$/CONFIG,NRES,2000

/prep7

LB=32

NE=100$NN=NE+1

P=1000$V=120*1000/3600 !120km/h转换为m/s

DELTL=LB/NE !单元长度

DELTT=DELTL/V !移动一个单元所需要的时间

EM=2.07E11$AREA=0.1$IM=0.001/12 !IM为惯性矩

DENG=2000 !密度

GRA=9.8 !重力加速度

F1=ACOS(-1)/2/LB/LB*SQRT(EM*IM/(AREA*DENG)) !弹性体的自振频率

ET,1,BEAM3

MP,EX,1,EM

MP,NUXY,1,0.3

MP,DENS,1,DENG

R,1,AREA,IM,1.0

*DO,I,1,NN$N,I,(I-1)*DELTL$*ENDDO !创建节点

*DO,I,1,NE$E,I,I+1$*ENDDO !i和i+1节点连接并赋予前面已经定义的单元

D,1,UX,,,,,UY

D,NN,UY

FINISH

!瞬态分析过程(不考虑静力的情况)

/SOLU

ANTYPE,TRANS$SSTIF,ON !对于于梁和壳元,在大挠度分析中通常应该使用应力刚化。TIMINF,ON !TIMINF,key,lab

OUTRES,ALL,ALL

DELTIM,DELTT/10 !定义的时间步长

KBC,1$AUTOTS,ON

*DO,I,1,NN

TIME,I*DELTT

FDELE,ALL,ALL !删除以前施加的力

F,I,FY,-P*cos(10*I*DELTT) !施加当前力,cos(wt),t用I表示就可以近似表达简谐力SOLVE

*ENDDO

FDELE,ALL,ALL !删除所有的力

/POST26

NSOL,2,51,U,Y !NSOL,NV AR,NODE,Item,Comp,Name(U,Y代表桥梁跨中节点Y方向的位移,若考察速度的话,将U改为V即可)

PLV AR,2

PRV AR,2

FINISH

输出结果如下; ***** ANSYS POST26 VARIABLE LISTING *****部分时间位移

TIME 51 UY

UY

0.96000E-03 0.00000

0.19200E-02 0.00000

0.28800E-02 0.00000

0.38400E-02 0.00000

0.48000E-02 0.00000

0.57600E-02 0.00000

0.67200E-02 0.00000

0.76800E-02 0.00000

0.86400E-02 0.00000

0.96000E-02 0.00000

0.10560E-01 0.217081E-18

0.11520E-01 0.751982E-17

0.12480E-01 0.317884E-16

0.13440E-01 -0.170940E-14

0.14400E-01 -0.311340E-13

0.15360E-01 -0.220029E-12

0.16320E-01 -0.346461E-12

0.17280E-01 0.587965E-11

0.18240E-01 0.499603E-10

0.19200E-01 0.168533E-09

由图可知在t=0.25s时跨中位移-0.125mm,当t=0.67s时跨中位移为1.06mm

结论:本题采用了理论分析和ANSYS模拟计算结合的研究方法,对移动荷载作用下桥梁的动态响应做了分析,通过ANSYS软件对车桥系统的动态模拟,得到在不同时间不同荷载作用下的梁的响应,并进行了比较分析,反应出了它的振动特性,主要有以下结论:

1,现在理论借助计算机分析和有限元法,更加真实的模拟了车辆和桥梁的状态,荷载质量和运行时间对车—桥系统的相互影响;

2,无论车的荷载多少,整个桥梁的最大动挠度都发生在跨中附近,移动荷载的激振效果只对桥梁的一阶频率起显著作用,高阶成分的影响不明显,对桥梁最大挠度的研究只需对跨中最大挠度分析即可;

3,最大挠度并不是总是发生在移动荷载位于跨中时,而是发生在移动荷载进过在跨中位置的前后时刻;

4,本题对桥梁简化为简支梁进行研究,具有一定的局限性,如何实现三维状态下桥梁在移动荷载作用下的动态响应的研究,还需做深入的研究。

《结构力学》作业答案

[0729]《结构力学》 1、桁架计算的结点法所选分离体包含几个结点 A. 单个 2、固定铰支座有几个约束反力分量 B. 2个 3、从一个无多余约束的几何不变体系上去除二元体后得到的新体系是 A. 无多余约束的几何不变体系 4、两刚片用三根延长线交于一点的链杆相连组成 A. 瞬变体系 5、定向滑动支座有几个约束反力分量 B. 2个 6、结构的刚度是指 C. 结构抵抗变形的能力 7、桁架计算的截面法所选分离体包含几个结点 B. 最少两个 8、对结构进行强度计算的目的,是为了保证结构 A. 既经济又安全 9、可动铰支座有几个约束反力分量 A. 1个 10、固定支座(固定端)有几个约束反力分量 C. 3个 11、改变荷载值的大小,三铰拱的合理拱轴线不变。 A.√ 12、多余约束是体系中不需要的约束。 B.× 13、复铰是连接三个或三个以上刚片的铰 A.√ 14、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 B.×

15、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 A.√ 16、一根连杆相当于一个约束。 A.√ 17、单铰是联接两个刚片的铰。 A.√ 18、连接四个刚片的复铰相当于四个约束。 B.× 19、虚功原理中的力状态和位移状态都是虚设的。 B.× 20、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 A.√ 21、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 A.√ 22、一个无铰封闭框有三个多余约束。 A.√ 23、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 B.× 24、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 A.√ 25、两根链杆的约束作用相当于一个单铰。 B.× 26、不能用图乘法求三铰拱的位移。 A.√ 27、零杆不受力,所以它是桁架中不需要的杆,可以撤除。 B.× 28、用图乘法可以求等刚度直杆体系的位移。 A.√ 29、连接四个刚片的复铰相当于四个约束。

哈工大结构动力学大作业2012春

结构动力学大作业 对于如下结构,是研究质量块的质量变化和在简支梁上位置的变化对整个系统模态的影响。 1 以上为一个简支梁结构。集中质量块放于梁上,质量块距简支梁的左端点距离为L. 将该简支梁简化为欧拉伯努利梁,并离散为N 个单元。每个单元有两个节点,四个自由度。 单元的节点位移可表示为: ]1122,,,e v v δθθ?=? 则单元内一点的挠度可计作: 带入边界条件: 1 3 32210)(x a x a x a a x v +++=0 1)0(a v x v ===3 322102)(L a L a L a a v L x v +++===1 10 d d a x v x ===θ2 321232d d L a L a a x v L x ++===θ1 0v a =

[]12 3 4N N N N N = 建立了单元位移模式后,其动能势能均可用节点位移表示。单元的动能为: 00111()222 l l T T T ke e e e e y E dx q N Ndxq q mq t ρρ?===??? 其中m 为单元质量阵,并有: l T m N Ndx ρ=? 带入公式后积分可得: 222215622541322413354 1315622420133224l l l l l l l m l l l l l l ρ-?? ??-??= ?? -?? ---? ? 单元势能可表示为 22 200 11()()22 2 T l l T T e pe e e e q y E EI dx EI N N dxq q Kq x ?''''== =??? 其中K 为单元刚度矩阵,并有 ()l T K EI N N dx ''''=? 2 23 2212 612664621261266264l l l l l l EI k l l l l l l l -????-??=??---??-?? 以上为单元类型矩阵,通过定义全局位移矩阵,可以得到系统刚度矩阵和系统质量矩 1 1θ=a )2(1)(3211222θθ+--=L v v L a )(1)(22122133θθ++-= L v v L a 1232133222231)(θ???? ??+-+???? ??+-=L x L x x v L x L x x v 2 2232332223θ??? ? ??-+???? ??-+L x L x v L x L x 2 4231211)()()()()(θθx N v x N x N v x N x v +++=

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

结构动力学作业1

2012学年《结构动力学》作业1 发布日期:3月9日上交日期:3月16日 1.采用牛顿第二定律推导复合摆的 运动方程,该复合摆由一根长L, 单位长度的质量为m的均质棒以 及半径为R质量为M的圆盘组成 (见图1)。 图1:复合摆示意图 2.推导图2中系统的等效弹簧常数。 图2:由弹簧通过刚性连杆支持的系统 3.承受弯曲的悬臂梁是由2个均匀段 组成,如图3所示。求对应于自由 端x=L处施加垂直力时的等效弹 簧常数。 图3:非均匀梁作为弹簧 4.如图4,比重计质量为0.0115 kg, 用于测定某液体的密度。比重计伸 出液面部分的玻璃管直径为0.8 cm,液体比重为1.02 (即是水的 密度的1.02倍)。现将比重计轻轻 地向下按一下,比重计将作上下自 由振动,求振动周期。 图4 5.如下图所示,重量为P的小车从斜面上高h处滑下,与缓冲弹簧相撞后,随同弹簧一起做自由振动。弹簧刚度为K,斜面倾角为 ,小车与斜面间摩擦不计。求小车的振动周期和振幅。(注意:振幅为相对于弹簧静平衡位置) 6.教材习题2-1 7.教材习题2-2

8. 如教材图2-7所示单自由度系统,假设m =1kg ,K =100N/m ,初始条件x(0)=0.1m , 0)0(=x ,a) 绘制 c =1 N ·s/m ,5N ·s/m ,10N ·s/m 条件下,t =0~10s 的响应;b )绘制 c =20 N ·s/m ,30N ·s/m ,40N ·s/m 条件下, t =0~10s 的响应。要求用Matlab 编程计算并绘图。对结果进行分析。 9. 教材习题2-4 10. 教材习题2-5 11. 一个有粘性阻尼的弹簧质量系统,作自由振动时测得振动周期为1.8s ,相邻两振幅之比 为4.2:1。求此系统的固有频率。 12. 列出下图系统的振动微分方程。已知m =98 N ,K =9800 N/m ,r =9800 N s/m ,a =L/3, b=2L/3。(1)求系统振动时的频率(注意:不是固有频率),并与无阻尼时的固有频率作比较;(2)求系统振动时振幅的对数衰减率。 13. 一质量弹簧系统的质量块重W =19.6 kN ,弹簧刚度系数K =48.02 kN/m ,今需在此系统 中配置一粘性阻尼,使系统的相对阻尼系数1.0=?,问阻尼器的粘性阻尼系数c 应为多少?系统自由振动时的频率为多少?

哈工大结构风工程课后习题答案

结构风工程课后思考题参考答案 二、大气边界层风特性 1 对地表粗糙度的两种描述方式:指数律和对数律(将公式写上)。 2 非标准地貌下的风速换算原则(P)和方法(P公式)。1514 3 脉动风的生成: 近地风在流动过程中由于受到地表因素的干扰,产生大小不同的涡旋,这些涡旋的迭加作用在宏观上表现为速度的随机脉动。在接近地面时,由于受到地表阻力的影响,导致风速减慢并逐步发展为混乱无规则的湍流。 脉动风的能量及耗散机制:而湍流运动可以看做是能量由低频脉动向高频脉动过渡,并最终被流体粘性所耗散的过程。在低频区漩涡尺度较大,向中频区(惯性子区)、高频区(耗散区)漩涡尺度逐渐减小,小尺度涡吸收由惯性子区传递过来的能量,能量最终被流体粘性所耗散。 4 Davenport谱的特点:先写出公式 通过不同水平脉动风速谱的比较: (1)D谱不随高度变化,而其他谱(如Kaimal谱、Solari谱、Karman谱)则考虑了近地湍流随高度变化的特点;(D谱不随高度变化,在高频区符合-5/3律,没有考虑近地湍流随高度变化的特点;) (2)D谱的谱值比其它谱值偏大,会高估结构的动力反应,计算结果偏于保守。(3)S(0)=0,意味着L=0,与实际不符。uu5 湍流度随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而增大,随高度的增加而减小。 积分尺度随高度及地面粗糙程度的变化规律:大量观测结果表明,大气边界层中的湍流积分尺度是地面粗糙度的减函数,而且随着高度的增加而增加。 功率谱随高度及地面粗糙程度的变化规律:随着高度增大和粗糙度的减小,能量在频率上的分布趋于集中,谱形显得高瘦;随着高度减小和粗糙度的增大,能量在频率上的分布趋于分散,谱形显得扁平。 相干函数随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而减小,随高度的增加而增大。 6 阵风因子与峰值因子的区别:阵风因子G=U'/U,是最大风速与平均风速的比/ σ是最大脉动风速与脉动风速均方根的比值。g=u 值;峰值因子umax联系:二者可以相互换算:G=(U'+gσ)/U'=1+gσ/U'=1+gI。Uuu 三、钝体空气动力学理论 1 钝体绕流的主要特征有: )粘性效应:气体粘性随温度升高而增大,液体粘性随温度升高而减小。1((2)边界层的形成:由于粘性效应,使靠近物体表面的空气流动速度减慢,形 成气流速度从表面等于零逐渐增大到与外层气流速度相等,形成近壁面流动现象。 (3)边界层分离:如果边界层内的流体微粒速度因惯性力减小到使靠近表面的气流倒流,便出现了边界层分离。 (4)再附:在一定条件下,自建筑物前缘分离的边界层会偶然再附到建筑物表面,这时附面层下会形成不通气的空腔,即分离泡。每隔一段时间分离泡破裂产生较大的风吸值,产生一个风压脉冲。 (5)钝体尾流:对于细长钝体,漩涡脱落是在其两侧交替形成的。漩涡脱落时导致建筑物出现横向振动的主要原因。

高等结构动力学大作业

Advanced Structural Dynamics Project The dynamic response and stability analysis of the beam under vertical excitation Instructor:Dr. Li Wei Name: Student ID:

1.Problem description and thepurpose of the project 1.1 calculation model An Eular beam subjected to an axial force. Please build thedifferential equation of motion and use a proper difference method to solve this differentialequation. Study the dynamic stability of the beam related to the frequency and amplitude of the force. As shown in the Fig 1.1. Fig1.1 1.2 purpose and process arrangement a.learninghow to create mathematical model of thecontinuous system and select proper calculation method to solve it. b.learning how to build beam vibration equation and solve Mathieu equation. https://www.wendangku.net/doc/369120596.html,ing Floquet theory to judgevibration system’s stability and analyze the relationship among the frequency and amplitude of the force and dynamic response. This project will introduce the establishment of the mathematical model of the continuous system in section 2, the movement equation and the numerical solution of using MATLAB in section 3,Applying Floquent theory to study the dynamic stability of the beam related to the frequency and amplitude of the force in section 4. In the last of the project, we get some conclusions in section 5.

结构力学作业86036

西南交《结构力学E》离线作业 一、单项选择题(只有一个选项正确,共13道小题) 1. 瞬变体系在一般荷载作用下( C) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 2. 图示体系为:B (A) 几何不变无多余约束 (B) 几何不变有多余约束; (C) 常变体系; (D) 瞬变体系。 3. 图示某结构中的AB杆的隔离体受力图,则其弯矩图的形状为( B)

(A) 图a (B) 图b (C) 图c (D) 图d 4. 图示结构:B (A) ABC段有内力; (B) ABC段无内力; (C) CDE段无内力; (D) 全梁无内力。 5. 常变体系在一般荷载作用下(D) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 6. 图示体系的几何组成为D

(A) 几何不变,无多余联系; (B) 几何不变,有多余联系; (C) 瞬变; (D) 常变。 7. 在弯矩图的拐折处作用的外力是(B)。 (A) 轴向外力 (B) 横向集中力 (C) 集中力偶 (D) 无外力 8. 对于图示结构,下面哪个结论是正确的。(B) (A) 该结构为桁架结构; (B) 该结构是组合结构,其中只有57杆是受拉或受压杆(二力杆); (C) 只有杆34的内力有弯矩; (D) 除杆123外,其余各杆均为二力杆。

9. 在径向均布荷载作用下,三铰拱的合理轴线为:( A) (A) 圆弧线; (B) 抛物线; (C) 悬链线; (D) 正弦曲线。 : 10. 如图示各结构弯矩图的形状正确的是( B) (A) 如图a (B) 如图b (C) 如图c (D) 如图d 11. 静定结构在支座移动时,会产生:( C) (A) 内力; (B) 应力; (C) 刚体位移; (D) 变形。 12. 图示桁架,各杆EA为常数,除支座链杆外,零杆数为:(A )

哈工大结构力学题库七篇(I)

第七章影响线 一判断题 1. 图示梁AB与A0B0,其截面C与C0弯矩影响线和剪力影响线完全相同。(X) 题1图题2图 2. 图示结构Q E影响线的AC段纵标不为零。(X) 3. 图示梁K截面的M K影响线、Q K影响线形状如图a、b所示。 4. 图示梁的M C影响线、Q C影响线形状如图a、b所示。 5. 图示梁的M C影响线、M B影响线形状如图a、b所示。 6. 图示结构M B影响线的AB段纵标为零。 7. 图示梁跨中C截面弯矩影响线的物理意义是荷载P=1作用在截面C的弯矩图形。(X) 8. 用静力法作静定结构某量值的影响线与用机动法作该结构同一量值的影响线是不等价 的。(X) 9. 求某量值影响线方程的方法,与恒载作用下计算该量值的方法在原理上是相同的。(√) 10. 影响线是用于解决活载作用下结构的计算问题,它不能用于恒载作用下的计算。(X) 11. 移动荷载是指大小,指向不变,作用位置不断变化的荷载,所以不是静力荷载。(X) 12. 用静力法作影响线,影响线方程中的变量x代表截面位置的横坐标。(X) 13. 表示单位移动荷载作用下某指定截面的内力变化规律的图形称为内力影响线。(√) 14. 简支梁跨中截面弯矩的影响线与跨中有集中力P时的M图相同。(X) 15. 简支梁跨中C截面剪力影响线在C截面处有突变。(√) 16. 绝对最大弯矩是移动荷载下梁的各截面上最大的弯矩。(√) 17. 静定结构及超静定结构的内力影响线都是由直线组成。(X) 18. 图示结构Q C影响线的CD段为斜直线。 19. 图示结构K断面的剪力影响线如图b所示。(√) 题19图 20. 用机动法作得图a所示Q B左结构影响线如图b。 题20图题21图 21. 图示结构a杆的内力影响线如图b所示 22. 荷载处于某一最不利位置时,按梁内各截面得弯矩值竖标画出得图形,称为简支梁的弯

结构动力学哈工大版课后习题集解答

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θ θ??-???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= , 因为ζ较小, 所以有 π δζ2= 。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

结构动力学

结构动力学试题 2016年4月 重庆交通大学结构工程硕士研究生考试 1.试述结构动力问题和静力问题的主要区别(10分) 答:结构静力学相比,动力学的复杂性表现在: (1)动力问题具有随时间而变化的性质; (2)数学解答不是单一的数值,而是时间的函数; (3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分; (4)引入惯性力后涉及到二阶微分方程的求解; (5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。 2.什么是结构动力系统的阻尼?一般结构系统的阻尼有何特性?在结构分析中 阻尼问题的处理方法有哪些?(20分) 答:(1)结构在震动过程中的能量耗散作用称为阻尼; (2)阻尼的特性:a、阻尼耗能与质量(反映附属部分大小)和刚度(反映位移大小)有关。b、难以采用精确的理论分析方法; (3)对于多自由度体系:在结构动力分析中,通常从系统响应这个角度来考虑阻尼,而且能量的损耗是由外界激励来平衡的。一个振动系统可能存在多种不同类型的阻尼,一般来说,要用数学的方法来精确描述阻尼目前是比较困难的。因此,人们根据经验提出了一些简化模型,常用的阻尼模型有黏性阻尼和结构阻尼。黏性阻尼系统:黏性阻尼的特点是阻尼力和运动速度成真封闭。 在用振型叠加法进行分析时,能否将联立的运动方程化为解耦的一系列单自由度运动方程,将取决于阻尼矩阵的性质,即结构的振型是否关于阻尼阵满足正交条件。如果满足阻尼阵的正交条件,则采用振型叠加法分析时,就可以把多自由度体系的动力反应问题化为一系列单自由度问题求解;如果不满足阻尼阵的正交条件,则对位移向量用振型展开后,关于振型坐标的运动方程成为耦联的,必须联立求解,与解耦方程相比,增加了难度和计算量。 3.试述多自由度体系振型矩阵关于质量矩阵和刚度矩阵的正交性的意义,并写出广义正交性的表达式且加以证明。(20分) 答:(1)由振型关于质量、刚度正交性公式可知,i振型上的惯性力在j振型上作的虚功为0。由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕. (2)振型正交性的证明在Clough书中应用的是Betti互易定理,就像D’Alember 原理一样考虑了惯性力,是运动学中功的互等定理。实际振型正交性的证明可

结构力学大作业

结构力学大作业——五层三跨框架结构内力计算 专业班级:土木工程XXXX班 姓名 XXXXX 学号:XXXXX 指导教师:XX

目录 一、题目 (3) 二、任务 (5) 三、结构的基本数据 (5) 1.构件尺寸: (5) 2.荷载: (5) 3.材料性质: (5) 四、水平荷载作用下的计算 (5) 1.反弯点法 (6) 2.D值法 (8) 3.求解器法 (12) 五、竖直荷载作用下的计算 (15) 1.分层法 (16) 2.求解器法 (21) 六、感想 (24)

二、题目 结构(一) 1、计算简图如图1所示。 4 . 2 m 3 . 6 m 3 . 6 m 3 . 6 m 3 . 6 m 图1

’ 图2 q’ 图3

二、任务 1、计算多层多跨框架结构在荷载作用下的内力,画出内力图。 2、计算方法: (1) 水平荷载: D 值法、反弯点法、求解器,计算水平荷载作用下的框架 弯矩; (2) 竖向荷载:迭代法、分层法、求解器,计算竖向荷载作用下框架弯矩。 3、对各种方法的计算结果进行对比,分析近似法的误差。 4、把计算过程写成计算书的形式。 三、结构的基本数据 E h =3.0×107kN/m 2 柱尺寸:400×400,梁尺寸(边梁):250×600,(中间梁)300×400 竖向荷载:q '=17kN/m 水平荷载:F P '=15kN 构件线刚度:)12 (,3 bh I l EI i == 柱子:43-3 10133.212 400400m I ?=?= 柱 第一层:m kN i ?=???= -152382.410133.2100.33 71 第二--五层:m kN i ?=???= -177786.310133.2100.33 72 梁: 边梁:43-3105.412 600250m I ?=?=边梁 m kN i ?=???=-225006105.4100.3373 中间梁:43-3106.112 400300m I ?=?=中间梁 m kN i ?=???=-228571 .2106.1100.3374 四、水平荷载作用下的计算 水平荷载: F P =16kN ,F p '=15kN

哈工大结构动力学作业_威尔逊_θ法

结构动力学大作业(威尔逊- 法) : 学号: 班级: 专业:

威尔逊-θ法原理及应用 【摘要】在求解单自由度体系振动方程时我们用了常加速度法及线加速度法等数值分析方法。在多自由度体系中,也有类似求解方法,即中心差分法及威尔逊-θ法。实际上后两种方法也能求解单自由度体系振动方程。对于数值方法,有三个重要要求:收敛性、稳定性及精度。本文推导了威尔逊-θ法的公式,并利用MATLAB 编程来研究单自由度体系的动力特性。 【关键词】威尔逊-θ法 冲击荷载 阻尼比 【正文】威尔逊-θ法可以很方便的求解任意荷载作用下单自由度体系振动问题。实际上,当 1.37θ>时,威尔逊-θ法是无条件收敛的。 一、威尔逊-θ法的原理 威尔逊-θ法是线性加速度法的一种拓展(当1θ=时,两者相同),其基本思路和实现方法是求出在时间段[],t t t θ+?时刻的运动,其中1θ≥,然后通过插得到i t t +?时刻的运动(见图 1.1)。 图 1.1 1、公式推导 推导由t 时刻的状态求t t θ+?时刻的状态的递推公式: 对τ积分

{}{}{}{}{}{})(623 2 t t t t t t t y y t y y y y &&&&&&&-?+++=?++θτ θτττ {}{}{}{}{})2(6)(2t t t t t t t y y t y t y y &&&&&+?+?+=?+?+θθθθ {}{}{}{}{}t t t t t t t y y t y y t y &&&&&26 )()(62-?--?=?+?+θθθθ []{}{} {}[]{}{}{}[]{}{}{})223()26)(6( )(2t t t t t t t t t t y t y y t c y y t y t m P P P R &&&&&&?++?++?+?+-+=?+θθθθθ 2、MA TLAB 源程序: clc;clear; K=input('请输入结构刚度k(N/m)'); M=input('请输入质量(kg)'); C=input('请输入阻尼(N*s/m)'); t=sym('t');%产生符号对象t Pt=input('请输入荷载); Tp=input('请输入荷载加载时长(s)'); Tu=input('请输入需要计算的时间长度(s) '); dt=input('请输入积分步长(s)'); Sita=input('请输入θ'); uds=0:dt:Tu;%确定各积分步时刻 pds=0:dt:Tp; Lu=length(uds); Lp=length(pds); if isa(Pt,'sym')%荷载为函数 P=subs(Pt,t,uds); %将荷载在各时间步离散 if Lu>Lp P(Lp+1:Lu)=0; end elseif isnumeric(Pt)%荷载为散点 if Lu<=Lp

2018西南大学[0729]《结构力学》大作业答案

1、结构的刚度是指 1. C. 结构抵抗变形的能力 2、 图7中图A~图所示结构均可作为图7(a)所示结构的力法基本结构,使得力法计算最为简便的 C 3、图5所示梁受外力偶作用,其正确的弯矩图形状应为()C 4、对结构进行强度计算的目的,是为了保证结构 1. A. 既经济又安全 5、改变荷载值的大小,三铰拱的合理拱轴线不变。 1. A.√ 6、多余约束是体系中不需要的约束。 1. B.×

7、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 1. B.× 8、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 1. A.√ 9、一根连杆相当于一个约束。 1. A.√ 10、单铰是联接两个刚片的铰。 1. A.√ 11、虚功原理中的力状态和位移状态都是虚设的。 1. B.× 12、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 1. A.√ 13、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 1. A.√ 14、虚位移原理中的虚功方程等价于静力平衡方程,虚力原理中虚功方程等价于变形协调方程。 1. A.√ 15、体系的多余约束对体系的计算自由度、自由度及受力状态都没有影响,故称多余约束。 1. B.× 16、力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。 1. A.√ 17、当上部体系只用不交于一点也不全平行的三根链杆与大地相连时,只需分析上部体系的几何组成,就能确1. A.√ 18、用力法计算超静定结构时,其基本未知量是未知结点位移。

B.× 19、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。 1. A.√ 20、力法和位移法既能用于求超静定结构的内力,又能用于求静定结构的内力。() 1. B.× 21、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。()1. A.√ 22、位移法和力矩分配法只能用于求超静定结构的内力,不能用于求静定结构的内力。( ) 1. B.× 23、 图2所示体系是一个静定结构。() 1. B.× 24、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。 1. B.× 25、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 1. B.× 26、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 1. A.√ 27、两根链杆的约束作用相当于一个单铰。 B.× 28、不能用图乘法求三铰拱的位移。

结构动力学大作业

目录 一、结构特性矩阵 1.1框架设计 (2) 1.2截面尺寸 (2) 1.3动力自由度 (2) 1.4结构的一致质量矩阵 (3) 1.5结构的一致刚度矩阵 (13) 二、频率与振型 2.1简化的质量矩阵 (25) 2.2简化的刚度矩阵 (25) 2.3行列式法求频率与振型 (27) 2.4Stodola法求频率与振型 (27) 三、时程分析 3.1框架资料 (31) 3.2地震波波形图 (31) 3.2瑞利阻尼 (32) 3.4操作步骤 (33) 3.5各楼层位移时程反应图 (37)

一、结构特性矩阵 1.1框架设计 框架平面图如图1所示,跨度均为6.0m,层高均为3.6m,混凝土采用C30。 图1 框架平面图 1.2截面尺寸 梁均为300mm600mm ? ?,柱均为500mm500mm 1.3动力自由度 框架结构可以理想化为在节点处相互连接的梁柱单元的集合。设梁、柱的轴向变形均忽略不计,只考虑横向平面位移,则该框架有3个平动自由度和12个角自由度,共15个自由度,并对梁柱单元分别编号,如图2所示: 图2 单元编号及自由度

将结构分成在有限个节点处相互连接的○1~○21个离散单元体系,通过计算各个单元的一致质量矩阵、一致刚度矩阵,并将相关的单元叠加求得整个单元结构的一致质量矩阵、一致刚度矩阵。 1.4结构的一致质量矩阵 在节点位移作用下框架梁和柱上所引起的变形形状采用三次Hermite 多项式,因此均布质量梁的一致质量矩阵为: ??? ???? ???????4 3 2 1 I I I I f f f f =420L m ?? ? ?? ???????------222 2432213341322221315654132254156 L L L L L L L L L L L L ???? ????????? ????? (4) .. 3 2 1 v v v v 梁:m =250060.030.0??=450kg/m, L=6m;

结构动力学大作业

结 构 动 力 学 大 作 业 姓名: 学号:

习题1 用缩法减进行瞬态结构动力学分析以确定对有限上升时间得恒定力的动力学响应。实际结构是一根钢梁支撑着集中质量并承受一个动态荷载。 钢梁长L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为t τ,最大值为F1的动态荷载F(t)。梁的质量可以忽略,需确定产生最大位移响应时间max t 及响应max y 。同时要确定梁中的最大弯曲应力bend σ。 已知:材料特性:25x E E MPa =,质量M =0.03t ,质量阻尼ALPHAD=8; 几何尺寸:L =450mm I=800.64 mm h=18mm; 荷载为:F1=20N t τ=0.075s 提示:缩减法需定义主自由度。荷载需三个荷载步(0至加质量,再至0.075s , 最后至1s ) ANSYS 命令如下: FINISH /CLE$/CONFIG,NRES,2000 /prep7 L=450$H=18 ET,1,BEAM3 ET,2,MASS21,,,4 R,1,1,800.6,18 R,2,30 !MASS21的实常数顺序MASSX, MASSY, MASSZ, IXX, IYY, IZZ MP,EX,1,2E5$MP,NUXY ,1,0.3 N,1,0,0,0 N,2,450/2,0,0 N,3,450,0,0 E,1,2$E,2,3 !创建单元 TYPE,2$REAL,2 E,2 M,2,UY FINISH /SOLU !进入求解层 ANTYPE,TRANS

TRNOPT,REDUC OUTRES,ALL,ALL$DELTIM,0.004 !定义时间积分步长 ALPHAD,8 !质量阻尼为8 D,1,UY$D,3,UX,,,,,UY !节点1Y方向,约束节点3X、Y方向约束 F,2,FY,0 LSWRITE,1 !生成荷载步文件1 TIME,0.075 FDELE,ALL,ALL F,2,FY,20 LSWRITE,2 !生成荷载步文件2 TIME,1 LSWRITE,3 !生成荷载步文件3 LSSOLVE,1,3,1 !求解荷载文件1,2,3 FINISH /SOLU EXPASS,ON$EXPSOL,,,0.10000 !扩展处理 SOLVE FINISH /POST26 NUMV AR,0 FILE,fdy,rdsp !注意,建立的项目名称为fdy,否则超出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL PLV AR,2 !时间位移曲线 PRV AR,2 !得出在0.10000该时间点上跨中位移最大 /POST1 !查看某个时刻的计算结果 SET,FIRST PLDISP,1 !系统在0.10000秒时总变形图 ETABLE,Imoment,SMISC,6 !单元I点弯矩 ETABLE,Jmoment,SMISC,12 !单元J点弯矩 ETABLE,Ishear,SMISC,2 !单元I点剪力 ETABLE,Jshear,SMISC,8 !单元J点剪力 PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图 PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力图 结果如下; 随着时间位移的大小:

结构力学全部作业答案 (2)

1:[论述题] 1、(本题10分)作图示结构的弯矩图。各杆EI相同,为常数。图 参考答案: 先对右下铰支座取整体矩平衡方程求得左上活动铰支座反力为0,再对整体竖向投影平衡求得右下铰支座竖向反力为0;再取右下直杆作为隔离体可求出右下铰支座水平反力为m/l(向右),回到整体水平投影平衡求出左下活动铰支座反力为m/l(向左)。反力求出后,即可绘出弯矩图如图所示。图 2:[填空题]2、(本题3分)力矩分配法适用于计算无结点超静定刚架。 参考答案:线位移 3:[单选题] 7、(本题3分)对称结构在对称荷载作用下,内力图为反对称的是 A:弯矩图B:剪力图C:轴力图D:弯矩图和剪力图

参考答案:B 4:[填空题]1、(本题5分)图示梁截面C的弯矩M C = (以下侧受拉为正)图 参考答案:F P a 5:[判断题]4、(本小题2分)静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。 参考答案:错误 6:[判断题]3、(本小题 2分)在温度变化与支座移动因素作用下静定与超静定结构都有内力。 参考答案:错误 7:[判断题]1、(本小题2分)在竖向均布荷载作用下,三铰拱的合理轴线为圆弧线。 参考答案:错误 8:[论述题]2、(本小题10分)试对下图所示体系进行几何组成分析。 参考答案:结论:无多余约束的几何不变体系。 9:[单选题]1、(本小题3分)力法的基本未知量是 A:结点角位移和线位移B:多余约束力C:广义位移D:广义力 参考答案:B 10:[单选题]2、(本小题3分)静定结构有温度变化时 A:无变形,无位移,无内力B:有变形,有位移.无内力 C:有变形.有位移,有内力D:无变形.有位移,无内力 参考答案:B 11:[判断题]2、(本小题2分)几何可变体系在任何荷载作用下都不能平衡。 参考答案:错误 12:[判断题]5、(本小题2分) 按虚荷载原理所建立的虚功方程等价于几何方程。 参考答案:正确 13:[单选题]3、(本小题3分)变形体虚功原理 A:只适用于静定结构B:只适用于线弹性体C:只适用于超静定结构

哈工大结构力学题库一章

第一章平面体系的几何组成分析 一判断题 1. 图示体系是几何不变体系。() 题1图题2图题3图题4图 2. 图示体系为几何可变体系。() 3. 图示体系是几何不变体系。() 4. 图示体系是几何不变体系。() 5. 图示体系是几何不变体系。() 题5图题6图题19图题20图 6. 图示体系为几何不变有多余约束。() 7. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结 构。() 8. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了 这些约束必需满足的条件。() 9. 在任意荷载下,仅用静力平衡方程即可确定全不反力和内力的体系是几何不变体系。 () 10. 计算自由度W小于等于零是体系几何不变的充要条件。( ) 11. 几何可变体系在任何荷载作用下都不能平衡。( ) 12. 三个刚片由三个铰相联的体系一定是静定结构。( ) 13. 有多余约束的体系一定是超静定结构。( ) 14. 有些体系为几何可变体系但却有多余约束存在。() 15. 平面几何不变体系的三个基本组成规则是可以相互沟通的。() 16. 三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。() 17. 两刚片用汇交于一点的三根链杆相联,可组成几何不变体系。() 18. 若体系计算自由度W<0,则它一定是几何可变体系。() 19. 在图示体系中,去掉其中任意两根支座链杆后,所余下都是几何不变的。() 20. 图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。() 21. 有多余约束的体系一定是几何不变体系。() 22. 几何不变体系的计算自由度一定等于零。() 23. 几何瞬变体系的计算自由度一定等于零。() 24. 图中链杆1和2的交点O可视为虚铰。() 题24图 二选择题

结构动力学作业

结构动力学在建筑结构中的抗震分析及应用 学号:1108150912 水利水电学院 研1118班 姜琦昇 摘要:结构动力学在建筑结构设计中起着重要作用,在抗震结构设计在抗震结构设计中两者是相互依存、缺一不可的整体。本文针对结构动力学在建筑结构设计中的应用,分析建筑结构设计中不但要考虑建筑结构的使用功能、建筑结构的安全度、建筑使用年限等。在建筑结构设计中要考虑到,当地震来临时使建筑物遵循小震不坏、中震可修、大震不倒的抗震原则为结构设计提供理论依据。根据地震中的动力学原理,提出了防震、减振的措施并对其工作机理进行了分析。 1、 动力学中的结构动力特性 (1)结构动力特性与结构的刚度及结构 的质量有关。对于多自由度体系结构的自振频率表达式为: n n n M K w = 其中: {}[]{}n T n n K K φφ=;{}[]{}n T n n M M φφ= n K :称为阵型刚度 n M :称为阵型质量 {}n φ:多自由度体系的阵型 结构动力学在建筑结构中反映抗震性质主要体现在有阻尼体系的简谐振动中,分析如下: 根据运动方程: t p ku u c u m ωsin 0=++ 根据初始条件: ()00u u t == ()00u u t == 同时利用ζωn m c 2= 解得运动方程的:| 通解 ()()t B t A e t u D D t c n ωωζωsin cos +=- 特解 ()t D t C t u p ωωc o s s i n += 通过求解可得: ()()[]()[]222211n n n st u C ωωζωωωω+--= ()[]()[]22 2212n n n st u D ωωζωωωωζ+--= 因此运动方程的全解:()t c u u t u +=

相关文档
相关文档 最新文档