文档库 最新最全的文档下载
当前位置:文档库 › 概率论1至7章课后答案

概率论1至7章课后答案

概率论1至7章课后答案
概率论1至7章课后答案

一、习题详解:

1.1 写出下列随机试验的样本空间:

(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;

解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;

(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{

;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;

解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;

(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{

2

16,T y x T y x ≤≤=Ω ;

(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{

207 x x =Ω;

(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{

l y x y x y x =+=Ω,0,0,8 ;

1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ;

(2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C B A ??; (5) A,B,C 中至少有两个发生; BC AC AB ??;

(6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ; 注意:此类题目答案一般不唯一,有不同的表示方式。

1.3 设样本空间}{20≤≤=Ωx x , 事件A =}{15.0≤≤x x ,}{

6.18.0≤=x x B 具体写出下列各事件:

(1) AB ; (2) B A - ; (3) B A -; (4) B A ? (1)AB }{

18.0≤=x x ; (2) B A -=}{

8.05.0≤≤x x ;

(3) B A -=}{

28.05.00≤?≤≤x x x ; (4) B A ?=}{

26.15.00≤?≤≤x x x

1.4 用作图法说明下列各命题成立: 略

1.5 用作图法说明下列各命题成立: 略

1.6 按从小到大次序排列)()(),(),(),(B P A P AB P B A P A P +?, 并说明理由.

解:由于),(,B A A A AB ???故)()()(B A P A P AB P ?≤≤,而由加法公式,有:

)()()(B P A P B A P +≤?

1.7 若W 表示昆虫出现残翅, E 表示有退化性眼睛, 且P(W) = 0.125; P(E) = 0.075, P(WE) = 0.025, 求下列事件的概率: (1) 昆虫出现残翅或退化性眼睛;

(2) 昆虫出现残翅, 但没有退化性眼睛; (3) 昆虫未出现残翅, 也无退化性眼睛.

解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:

175.0)()()()(=-+=?WE P E P W P E W P

(2) 由于事件W 可以分解为互斥事件E W WE ,,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:1.0)()()(=-=W E P W P E W P

(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:825.0)(1)(=?-=E W P E W P . 1.8 设A 与B 是两个事件, P(A) = 0.6; P(B) = 0.8。试问: (1) 在什么条件下P(AB) 取到最大值? 最大值是多少? (2) 在什么条件下P(AB) 取到最小值? 最小值是多少?

解:(1) 由于B AB A AB ??,,故),()(),()(B P AB P A P AB P ≤≤显然当B A ?时P(AB)

取到最大值。 最大值是0.6.

(2) 由于)()()()(B A P B P A P AB P ?-+=。显然当1)(=?B A P 时P(AB) 取到最小值,最小值是0.4.

1.9 设P(A) = 0.2, P(B) = 0.3, P(C) = 0.5, P(AB) = 0, P(AC) = 0.1, P(BC) = 0.2, 求事件 A,B,C 中至少有一个发生的概率.

解:因为 P(AB) = 0,故 P(ABC) = 0.C B A ,,至少有一个发生的概率为:

7

.0)()()()()()()()(=+---++=??ABC P AC P BC P AB P C P B P A P C B A P

1.10 计算下列各题:

(1) 设P(A) = 0.5, P(B) = 0.3, P(A ?B) = 0.6, 求P(AB); (2) 设P(A) = 0.8, P(A ?B) = 0.4, 求P(AB); (3) 设P(AB) = P(A B); P(A) = 0.3, 求P(B)。 解:

(1)通过作图,可以知道,3.0)()()(=-?=B P B A P B A P (2)6.0))()((1)(1)(=---=-=B A P A P AB P AB P

7

.0)(1)()

()()(1))()()((1)(1)()()3(=-=+--=-+-=?-==A P B P AB P B P A P AB P B P A P B A P B A P AB P 由于

1.11 把3个球随机地放入4个杯子中,求有球最多的杯子中球数是1,2,3 概率各为多少? 解:用i A 表示事件“杯中球的最大个数为i 个” i =1,2,3。三只球放入四只杯中,放法有

44464??=种,每种放法等可能。

对事件1A :必须三球放入三杯中,每杯只放一球。放法4×3×2种,故8

3)(1=A P

(选排列:好比3个球在4个位置做排列)。

对事件3A :必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种),故161)(3=

A P 。16

9

161831)(2=--=A P

1.12 掷一颗匀称的骰子两次, 求前后两次出现的点数之和为3; 4; 5 的概率各是多少?

解:此题为典型的古典概型,掷一颗匀称的骰子两次基本事件总数为36。.出现点数和为“3”对应两个基本事件(1,2),(2,1)。故前后两次出现的点数之和为3的概率为

18

1

同理可以求得前后两次出现的点数之和为4,5 的概率各是9

1,121。 1.13 在整数9,2,1,0 中任取三个数, 求下列事件的概率: (1) 三个数中最小的一个是5; (2) 三个数中最大的一个是5.

解:从10个数中任取三个数,共有1203

10=C 种取法,亦即基本事件总数为120。

(1) 若要三个数中最小的一个是5,先要保证取得5,再从大于5的四个数里取两个,取法有

624=C 种,故所求概率为

201

。 (2) 若要三个数中最大的一个是5,先要保证取得5,再从小于5的五个数里取两个,取法

有1025=C 种,故所求概率为

12

1。

1.14 12只乒乓球中有4 只是白色球, 8 只是黄色球。现从这12 只乒乓球中随机地取出两 只, 求下列事件的概率:

(1) 取到两只黄球; (2) 取到两只白球; (3) 取到一只白球, 一只黄球. 解:分别用321,,A A A 表示事件:

(1) 取到两只黄球; (2) 取到两只白球; (3) 取到一只白球, 一只黄球.则

,11

1

666)(,33146628)(2122

42212281======C C A P C C A P 3316)()(1)(213=--=A P A P A P 。

1.15 已知4.0)(,7.0)(==B P A P ,5.0)(=B A P , 求).)((B B A P ? 解:)

())

()(()())(())((B P B B AB P B P B B A P B B A P ?=

??=

? 由于0)(=B B P ,故5.0)

()

()()()())((=-==?B P B A P A P B P AB P B B A P

1.16 已知4.0)(,6.0)(==B P A P ,5.0)(=B A P 。 计算下列二式: (1) );(B A P ?(2));(B A P ?

解:(1);8.05.04.01)()(1)()()()(=?-=-=-+=?B A P B P AB P B P A P B A P (2);6.05.04.01)()(1)()()()(=?-=-=-+=?B A P B P B A P B P A P B A P 注意:因为5.0)(=B A P ,所以5.0)(1)(=-=B A P B A P 。

1.17 一批产品共20 件, 其中有5 件是次品, 其余为正品。现从这20 件产品中不放回地任 意抽取三次, 每次只取一件, 求下列事件的概率:

(1) 在第一、第二次取到正品的条件下, 第三次取到次品; (2) 第三次才取到次品; (3) 第三次取到次品.

解:用i A 表示事件“第i 次取到的是正品”(3,2,1=i ),则i A 表示事件“第i 次取到的是次

品”(3,2,1=i )。112121

15331421

(),()()()204

41938

PA PA A PA PA A =

===?=

(1) 事件“在第一、第二次取到正品的条件下, 第三次取到次品”的概率为:

3125()18

P A A A =

(2) 事件“第三次才取到次品”的概率为:

1231213121514535

()()()()201918228P A A A P A P A A P A A A ==

??= (3)事件“第三次取到次品”的概率为:41

此题要注意区分事件(1)、(2)的区别,一个是求条件概率,一个是一般的概率。再例如,设有两个产品,一个为正品,一个为次品。用i A 表示事件“第i 次取到的是正品”(2,1=i ), 则事件“在第一次取到正品的条件下, 第二次取到次品”的概率为:1)(12=A A P ;而事件“第二次才取到次品”的概率为:2

1

)()()(12121=

=A A P A P A A P 。区别是显然的。

1.18 有两批相同的产品, 第一批产品共14 件, 其中有两件为次品, 装在第一个箱中; 第二批有10 件, 其中有一件是次品, 装在第二个箱中。今在第一箱中任意取出两件混入到第二箱中, 然后再从第二箱中任取一件, 求从第二箱中取到的是次品的概率。

解:用)2,1,0(=i A i 表示事件“在第一箱中取出两件产品的次品数i ”。用B 表示事件“从第

二箱中取到的是次品”。则2112

121222012222

14141466241

(),(),(),919191

C C C C P A P A P A C C C ?====== 01()12P B A =

,12()12P B A =,2

3

()12P B A =,

根据全概率公式,有:

283

)()()()()()()(221100=

++=A B P A P A B P A P A B P A P B P

1.19 一等小麦种子中混有5%的二等种子和3%的三等种子。已知一、二、三等种子将来长出的穗有50 颗以上麦粒的概率分别为50%, 15% 和10%。假设一、二、三等种子的发芽率相同,求用上述的小麦种子播种后, 这批种子所结的穗有50 颗以上麦粒的概率. 解:设)3,2,1(=i A i 表示事件“所用小麦种子为i 等种子”,

B 表示事件“种子所结的穗有50 颗以上麦粒”

。 则123()0.92,()0.05,()0.03,P A P A P A ===1()0.5P B A =,2()0.15P B A =,

3()0.1P B A =,根据全概率公式,有:

4705

.0)()()()()()()(332211=++=A B P A P A B P A P A B P A P B P

1.20 设男女两性人口之比为51 : 49, 男性中的5% 是色盲患者, 女性中的

2.5% 是色盲患者.今从人群中随机地抽取一人, 恰好是色盲患者, 求此人为男性的概率。 解:用B 表示色盲,A 表示男性,则A 表示女性,由已知条件,显然有:

,025.0)(,05.0)(,49.0)(,51.0)(====A B P A B P A P A P 因此:

根据贝叶斯公式,所求概率为:

151

102

)()()()()()()()()()()()(=

+=+==

A B P A P A B P A P A B P A P B A P AB P AB P B P AB P B A P

1.21 根据以往的临床记录, 知道癌症患者对某种试验呈阳性反应的概率为0.95, 非癌症患者因对这试验呈阳性反应的概率为0.01, 被试验者患有癌症的概率为0.005。若某人对试验呈阳性反应, 求此人患有癌症的概率

解:用B 表示对试验呈阳性反应,A 表示癌症患者,则A 表示非癌症患者,显然有:

,01.0)(,95.0)(,995.0)(,005.0)(====A B P A B P A P A P

因此根据贝叶斯公式,所求概率为:

294

95

)()()()()()()()()()()()(=

+=+==

A B P A P A B P A P A B P A P B A P AB P AB P B P AB P B A P

1.22 仓库中有10 箱同一规格的产品, 其中2 箱由甲厂生产, 3 箱由乙厂生产, 5 箱由丙厂生产, 三厂产品的合格率分别为95%; 90% 和96%. (1) 求该批产品的合格率;

(2) 从该10 箱中任取一箱, 再从这箱中任取一件, 若此件产品为合格品, 问此件产品由甲、 乙、丙三厂生产的概率各是多少?

解:设,},{},{},{321产品为丙厂生产产品为乙厂生产产品为甲厂生产===B B B

}{产品为合格品=A ,则

(1)根据全概率公式,94.0)()()()()()()(332211=++=B A P B P B A P B P B A P B P A P ,该批产品的合格率为0.94.

(2)根据贝叶斯公式,94

19

)()()()()()()()()(332211111=

++=B A P B P B A P B P B A P B P B A P B P A B P 同理可以求得47

24

)(,9427)(32=

=

A B P A B P ,因此,从该10 箱中任取一箱, 再从这箱中任取一件, 若此件产品为合格品, 此件产品由甲、乙、丙三厂生产的概率分别为:47

24

,9427,9419。

1.23 甲、乙、丙三人独立地向同一目标各射击一次, 他们击中目标的概率分别为0.7, 0.8 和 0.9,求目标被击中的概率。

解:记A ={目标被击中},则994.0)7.01)(8.01)(9.01(1)(1)(=----=-=A P A P

1.24 在四次独立试验中, 事件A 至少发生一次的概率为0.5904, 求在三次独立试验中, 事件A 发生一次的概率.

解:记4A ={四次独立试验,事件A 至少发生一次},4A ={四次独立试验,事件A 一次也不发生}。而5904.0)(4=A P ,因此4096.0)()()(1)(444===-=A P A A A A P A P A P 。所以

2.08.01)(,8.0)(1=-==A P A P

三次独立试验中, 事件A 发生一次的概率为:384.064.02.03))(1)((21

3=??=-A P A P C 。

二、第一章定义、定理、公式、公理小结及补充:

(1)

排列组合公式

)!

(!

n m m P n

m -=

从m 个人中挑出n 个人进行排列的可能数。

)!

(!!

n m n m C n m -=

从m 个人中挑出n 个人进行组合的可能数。

(2)加法和乘法原理

加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m ×n

某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 (3)一些常见排列

重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题

(4)随机试验和随机事件

如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,φ为不可能事件。

不可能事件φ的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B

A?

如果同时有B

A?,A

B?,则称事件A与事件B等价,或称A等于B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为B

A-,也可表示为AB

A-或者B

A,它表示A发生而B不发生的事件。

B

A、同时发生:B

A ,或者AB。φ

=

?B

A,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

A

-

Ω称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。

②运算:

结合律:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配律:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

对偶律:B

A

B

A

=,B

A

B

A

=

(7)概率的公理化定义

设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω) =1

3° 对于两两互不相容的事件1A,2A,…有

∑∞

=

=

=

??

?

?

?

?

1

1

)

(

i

i

i

i A

P

A

P

常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1°{}nω

ω

ω

2

1

,

=

Ω,

n

P

P

P

n

1

)

(

)

(

)

(

2

1

=

=

ω

ω 。

设任一事件A,它是由m

ω

ω

ω

2

1

,组成的,则有

P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++

n m =

基本事件总数

所包含的基本事件数A = (9)几何概型

若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A ,

)

()

()(Ω=

L A L A P 。其中L 为几何度量(长度、面积、体积)。 (10)加法公式

P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B) (11)减法公式

P(A-B)=P(A)-P(AB)

当B ?A 时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B )=1- P(B)

(12)条件概率 定义 设A 、B 是两个事件,且P(A)>0,则称

)

()

(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )

()

(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1?P(B /A)=1-P(B/A) (13)乘法公式

乘法公式:)/()()(A B P A P AB P =

更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有

21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …

)1-n A 。

(14)独立性

①两个事件的独立性

设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的。 若事件A 、B 相互独立,且0)(>A P ,则有

)()()

()()()()|(B P A P B P A P A P AB P A B P ===

若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互

独立。

必然事件Ω和不可能事件?与任何事件都相互独立。 φ与任何事件都互斥。

②多个事件的独立性

设ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A 、B 、C 相互独立。 对于n 个事件类似。

(15)全概公式

设事件n B B B ,,,21 满足

1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>, 2° n

i i

B A 1

=?,

则有

)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

(16)贝叶斯公式

设事件1B ,2B ,…,n B 及A 满足

1° 1B ,2B ,…,n B 两两互不相容,Ω=?>i i B B P ,0)(,i=1,2,…,n ,

2° 0)(>A P ,则

∑==

n

j j

j

i i i B A P B P B A P B P A B P 1

)

/()()

/()()/(,i=1,2,…n 。

此公式即为贝叶斯公式。

)(i B P ,

(1=i ,2,…,n ),通常叫先验概率。)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利

概型

我们作了n 次试验,且满足

◆ 每次试验只有两种可能结果,A 发生或A 不发生; ◆ n 次试验是重复进行的,即A 发生的概率每次均一样;

◆ 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与

否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为p q -=1,用)(k P n 表示

n 重伯努利试验中A 出现k 次的概率,

k

n k k

n n q p k P C -=)(,n k ,,2,1,0 =。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

概率论重点课后题答案

第2章条件概率与独立性 一、大纲要求 <1)理解条件概率的定义. <2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. <3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. <4)了解独立重复实验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 为2这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,, ,n A A A 为任意n 个事件<2n ≥),且121()0n P A A A ->,则有 12112131212 1()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列<有限或无限个)两两互不相容的事件,有

1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列<有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、<或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、; 、 中有一对是相互独立的,则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立.定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤成 立: ()()()i j i j P A A P A P A =<共2n C 个) ()()()()i j k i j k P A A A P A P A P A =<共3n C 个) 1212()()()()n n P A A A P A P A P A =<共n n C 个) 则称12,,n A A A 相互独立. 定理设n 个事件12,, n A A A 相互独立,那么,把其中任意m <1m n ≤≤)个事件相应换成它们的对立事件,则所得的n 个事件仍然相互独立. 6. 重复独立实验,而且这些重复实验具备:<1)每次实验条件都相同,因此各次实验中同一个事件的出现概率相同;<2)各次实验结果相互独立;满足这两

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

概率论 第二版 杨振明 课后题答案

.习题 1.设随机变量ξ的分布函数为)(x F ,证明ξηe =也是随 机变量,并求η的分布函数. 证明:由定理2.1.3随机变量的Borel 函数仍为随机变量, 故ξ η e =也是随机变量. η的分布函数为 }{}{)(y e P y P y F <=<=ξηη 当0≤y 时,φξ=<}{y e ,故0)(=y F η; 当 >y 时 , ) (ln }ln {}{}{)(y F y P y e P y P y F ξξηξη=<=<=<= 因此,η的分布函数为 ???≤>=00 ),(ln )(y y y F y F ξ η. 3.假定一硬币抛出正面的概率为 (01)p p <<,反复抛这 枚硬币直至正面与反面都出现过为止,试求:(1)抛掷次数ξ的密度阵;(2)恰好抛偶数次的概率. 解:(1)}{k =ξ 表示前1k -次都出现正(反)面,第k 次出 现反(正)面,据题意知, p p p p k P k k 11)1()1(}{---+-==ξ,Λ ,4,3,2=k 所以,抛掷次数ξ的密度阵为 22112322(1)(1)k k k p p p p p p p p --?? ? ?---+-? ? L L K K (2) 恰好抛掷偶数次的概率为: Λ Λ+=++=+=+=}2{}6{}4{}2{n P P P P ξξξξ Λ++++++++ =--p q q p p q q p p q q p qp pq n n 12125533 ) 1()1(4242ΛΛ+++++++=q q qp p p pq 2 211 11q qp p pq -? +-?= ) 1(1 )1(1q p qp q p pq +? ++? = q q p p +++= 11 4.在半径为R 的圆内任取一点(二维几何概型),试求此点到圆心之距离ξ的分布函数及}3 2{R P > ξ .解:此点到圆心之距离ξ的分布函数为 }{)(x P x F <=ξ 当0x ≤时,φξ =<}{x ,()0F x =; 当0x R <<时,22 2 2}{)(R x R x x P x F ==<=ππξ; 当x R ≥ 时, ()1F x = 故ξ的分布函数为 ???????≥<<≤=R x R x R x x x F , 10,0, 0)(22. 95 941)3/2(1)32(1}32{2 2=-=-=-=>R R R F R P ξ. 5.在半径为1的车轮边缘上有一裂纹,求随机停车后裂纹距地面高度ξ的分布函数. 解:当0x ≤时,φξ=<}{x ,()0F x =; 当裂纹距离地面高度为1时,分布函数为 ()(){}{}1arccos(1,1122R x F x F P R ππξππ --=-∞=<= ==; 当裂纹距离地面高度为x ()01x <<时,分布函数为 1 = 1x = R

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计统计课后习题答案

概率论与数理统计统计课后习题答案

第二章习题解答 1. 设)(1x F 与)(2 x F 分别是随机变量X 与Y 的分布函数,为使)()(2 1x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ). A . 5 2,53-==b a B . 32,32==b a C . 23,21=-=b a D . 23,21-==b a 2. 解:因为随机变量X ={这4个产品中的次品数} X 的所有可能的取值为:0,1,2,3,4. 且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈; 2215542070{2}0.2167323 C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈; 041554201{4}0.0010969 C C P X C ===≈. 因此所求X 的分布律为: 3.

5. 解:设X ={其中黑桃张数}. 则X 的所有可能的取值为0,1,2,3,4,5. 051339552 2109 {0}0.22159520C C P x C ===≈; 14 133955227417 {1}0.411466640 C C P x C ===≈; 231339552 27417 {2}0.274399960C C P x C ===≈; 32133955216302 {3}0.0815199920 C C P x C ===≈; 4 11339 552429{4}0.010739984 C C P x C ===≈; 50 133955233 {5}0.000566640 C C P x C ===≈. 所以X 的概率分布为: 6.

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

概率论1至7章课后答案

一、习题详解: 1.1 写出下列随机试验的样本空间: (1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数; 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{ ;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格; 解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω; (6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{ 2 16,T y x T y x ≤≤=Ω ; (7) 在单位圆内任取两点, 观察这两点的距离; 解:}{ 207 x x =Ω; (8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{ l y x y x y x =+=Ω,0,0,8 ; 1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ; (2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C B A ??; (5) A,B,C 中至少有两个发生; BC AC AB ??; (6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论重点附课后题答案

第1章随机事件与概率 一、大纲要求 (1)理解随机事件的概率,了解样本空间的概念,掌握事件之间的关系与运算. (2)了解概率的统计定义和公理化定义,掌握概率的基本性质. (3)会计算古典概型的概率和几何概型的概率. 二、重点知识结构图 三、基础知识 1.随机试验的特征 (1)试验可以在相同的条件下重复地进行. (2)试验的可能结果不止一个,但明确知道其所有可能会出现的结果.

(3)在每次试验前,不能确知这次试验的结果,但可以肯定,试验的结果必是所有可能结果中的某一个. 2.样本空间 在讨论一个随机试验时,试验的所有可能结果的集合是明确知道的,称这个集合为该实验的样本空间,常用()S Ω或表示,其元素称为样本点,常用ω记之,它是试验的一个可能结果. 3.随机事件 在实际问题中,面对一个随机试验,人们可能会关心某些特定的事情在重复试验下是否会发生.例如,投资者关心明日收市股价是否上涨,即明日股价>今日收市价,它是样本空间的一部分.因此,称样本空间的一些子集为随机事件,简称事件,通常用大写英文字母A B C 、、记之. 4.事件的关系和运算 一个较为复杂的事件,通过种种关系,可使其与一些较为简单的事件联系起来,这时,我们就可设法利用这种联系,通过简单的事件去研究那些较为复杂的事件,用已知的事件去表示未知的事件. 5.事件的蕴含与包含 若当事件A 发生时B 必发生,则称A 蕴含B ,或者说B 包含A ,记作A B ?. 6.事件的相等 若A 与B 互相蕴含,即A B ?且B A ?,则称事件A 与B 相等,记为A B =. 7.事件的互斥(或称互不相容) 若事件A B 、不能在同一次试验中都发生(但可以都不发生),则称它们是互不相容的或互斥的. 若一些事件中的任意两个事件都互不相容,则称这些事件是两两互不相容的,或简称互不相容的. 8.事件的对立(或称逆) 互不相容的一个重要特例是“对立”.称事件{}B A =不发生为A 的对立事件或逆事件,常记作A . 9.事件的并(或称和)

概率论课后习题答案

习题1解答 1. 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2, ,100}i i n n Ω==. (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12, }.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=. (3)取直角坐标系,则有2 2 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<. 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生.

概率统计课后答案

概率统计课后答案

2 第 一 章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很 重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但 你是幸运的.因为你找到了我,我已经看过九个 病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后 七位, 这个记录保持了1000多年! 以后有人不 断把它算得更精确. 1873年, 英国学者沈克士 公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费 林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 675844625664686762609 876543210出现次数数字 你能说出他产生怀疑的理由吗?

答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习题一 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反 {(,)(,)(,)(,)} (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6} Ω== i j i j (3)调查城市居民(以户为单位)烟、酒的年支出 3

概率论课后习题答案

概率论与数理统计习题及答案 习题 一 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) = 14+14+13-112=34 13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个, 计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥. 21 343 4 233377C C C 184(), ()C 35 C 35 P A P A ==== 故 232322()()()35 P A A P A P A =+= 23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()() ()()()()() P AB P A P AB P B A B P A B P A P B P AB -== +- 0.70.51 0.70.60.54 -= =+- 33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,1 4 ,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则 3 1231231 ()1()1()()()i i P A P A A A P A P A P A ==-=- 423 10.6534 =- ??= 34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人

相关文档