文档库 最新最全的文档下载
当前位置:文档库 › 门座起重机结构与力学分析

门座起重机结构与力学分析

门座起重机结构与力学分析
门座起重机结构与力学分析

1 引言

近年来,国内在门座起重机设计和制造上,已有很大的提高。但在现代的港口中,还有很多服役达十多年的门座式起重机仍承担着港口繁重的吊装业务。在门座式起重机进行生产作业的过程中,由于许许多多无法避免的因素使起重机出现各种破坏及故障,以至降低或失去其预定的功能。由于起重机体积大、造价高,不可能一发生故障就即时更换,因此很多起重机普遍存在严重裂纹但仍服役生产第一线,给安全生产带来了极大隐患,甚至造成严重的以至灾难性的事故,致使生产过程不能正常运行而造成巨大的经济损失。“门座起重机风险评估”的研究已成为是国内许多检验机构正在努力探讨的一个研究课题,而找出主要部件的受力最危险点和应力集中区则是这项课题研究的重要基础。

2 门座起重机的结构模型简化

由于门座起重机结构复杂,对门座起重机金属结构进行建模分析时不可能将所有因素都考虑进去,因此必须对其金属结构进行合理有效的简化,建立一个既能方便分析计算,又尽可能的与实际使用工况相符的有限元模型。基于对门座起重机结构的认识,本文主要对港口门座起重机进行了如下的假设和简化:

(1)门座起重机模型是参照图纸尺寸建立的,为方便建模计算,其中一些加强筋,肋板等细部结构,在不影响分析结果的可靠性的前提下做适当的简化。

(2)鉴于门座起重机结构复杂,在建立臂架模型分析时对电机、钢丝绳、铰轴等结构做适当的简化处理。

(3)臂架上的梯子结构,均匀分布于臂架整体结构,对分析影响不大,在建模分析时不予考虑,最后采用密度补偿法来考虑其自重对臂架结构的影响。

(4)建模分析时,只考虑门座起重机结构的自重及起吊重量,不考虑风载、地震载荷等附加载荷的影响。

3 门座起重机结构参数

本文以某单位一台45t-60m港口门座起重机为研究对象,对其进行有限元建模、有限元模

门座起重机结构与力学分析

Analysns of structure and mechanics of prortale crane

张 健

(福建省特种设备检验研究院莆田分院 福建莆田 351100)摘要:如何准确高效的对门座起重机金属结构进行受力分析,进而判断疲劳裂纹等危险隐患的存在,正成为检验检测领域当前迫切需要解决的问题之一。本文以一台门座起重机的主要受力部件受力分析为例,分析计算了臂架结构、筒体和底座行走机构这三个主要受力部件在各种极限工况下最危险状况,为有限元分析计算及“门座起重机风险评估”的研究奠定了基础。

关键词:门座起重机,模型简化,危险工况,力学分析

中国分类号:TS213.4

4 臂架系统载荷确定

臂架系统主要有两种工作状态:起升工况和变幅工况。起升工况是臂架的幅角不改变,整个臂架约束情况不变,起升机构运转,收缩钢丝绳,重物竖直上升。匀速起升过程考虑其

基本载荷主要有起重载荷和臂架自重载荷,其

表1 门座起重机的主要技术参数

技术参数specificon

起重量Cpacity 45t 35t 30t

工作幅度Radius(m)

25-60m

25-65m 25-70m 起升高度Height

轨面以上Above rail 70m 轨面以下Below rail 15m

主起升Main hoist

1~10m/min,20m/min

110km 变幅Luffing 1.5~20m/min 132km 旋转Slewing 0.3m/min 22km×10行走Gantry

3~30/

11km×10

轨距×基距Rail gauge Wheel Distance 12m×13m 行走轮数×最大轮压Wheel pressure

10×4 32t 轨道型号Rail type QU80使用电源Power 380V/50Hz 装机容量Total power 433KW 整机重量Crant weight

650t

中当加速起升工况、下降制动工况对臂架产生附加动载荷,在施加载荷时必须乘以相应的动载系数(详见第四章)。变幅过程中,重物高度不变,臂架幅角不断改变,变幅支座及起升支座处的受力也随之发生改变。对臂架进行简化,整个变幅工况示意图1如下所示。

对臂架进行简化并受力分析如图2所示:

图中A位置为臂架支座位置;B位置为人字架顶部滑轮位置;C为变幅支座铰轴位置;D起升支座铰轴位置;为臂架的幅角(16°~ 111°)。

经过分析我们知道,臂架受力主要有几种情况:一是当幅角大于90°时,即C、D的高度位置在A之下时,其受力分析如上图2所示;二是当幅角变小至C、D的高度位置介于A、B高度之间,此时C、D位置受力分析方向和图2中方

图1 臂架变幅示意图

图2 臂架受力分析图

态分析和参数化建模,该门座起重机主要技术参数如下表 1 所示:

向不变;四是,当幅角变小至C、D的高度位置均在B高度之上,此时C、D位置的F1y、F2y方向都变为竖直向下。综合以上四种情

况结合受力分析得到如下关系式:

向相同,只是对A点的力矩方向发生了改变;三是,当幅角变小至C的高度位置介于A、B高度之间,D的高度位置处于B高度之上,此时D处位置的受力分析F2y的方向变为向下,其他受力方

(式1)

对臂架受力分析列出平衡方程得:

将(1)式中关系代人到(2)中解得:

根据上式(2),可以计算出臂架任一幅角位置的受力情况,以及臂架支座的受力情况,从而为后续的计算分析奠定基础。5 筒体载荷确定

筒体上端承受整个转台总成,臂架系统,

(式2)

人字架系统,配重系统的载荷,分析并简化,其中配重质量为160吨,转台及人字架总质量为236.4吨,臂架系统质量为42.4吨,为起重重量,将各个载荷简化作用于质心位置,得筒体的受力分析如下图 3所示,:

图3 筒体受力分析简图

根据表 1 中该起重机的技术参数,可知起重机有三个载荷及变幅工况如下:1)臂架起吊重量为45吨,变幅范围为25 ~ 60;2)臂架起吊重量为35吨,变幅范围为25 ~ 65;3)臂架起吊重量为30吨,变幅范围为25 ~ 70;分析可知,当吊重变幅距离为最远位置时,筒体承受的弯矩载荷最大,故需计算其各个工况下的最大弯矩载荷。

将上述三种工况代人,计算筒体所受的弯矩为:

工况一:

解得,筒体所受弯矩为: ;

工况二:

解得,筒体所受弯矩为: ;

工况三:

解得,筒体所受弯矩为: 。

另外筒体除了受到弯矩外,还受筒体以上所有部件的重量引起的竖直载荷,分析上述三种工况,工况一时筒体承受的竖直载荷最大为:

综上,筒体所受最大载荷时为臂架起吊重量为45吨,变幅范围为25 ~ 60时,其所承受的竖直载荷为: ,弯矩为 。

6 行走机构底座载荷的确定

该门座起重机门架两端各有一个底座,连接行走机构,一共有四个门座。起重机转台以上可以绕筒体中心做360°旋转,由5分析可知当臂架起吊重量为45吨,臂架变幅范围为25 ~ 60时,筒体所受载荷最大,同理此时行走机构底座在此工况下承受的载荷也最大。综合分析起重机的运行工况,底座承受的载荷随着转台以上结构的旋转而发生变化,分析可知各个底座承受载荷的极限工况如下图4所

示,

图4 底座受力工况示意图

针对上述三种工况,对模型进行简化,不考虑外界扰动情况下,起重机整体只受竖直方向外力及自身的自重,因此将起重臂系统简化为一根梁,底座支撑看作是梁下铰支座。

工况(1)时,底座支撑a、b连线及底座支

撑c、d连线平行起重臂平面,由于此时臂架两侧底座支撑是对称的,故底座支撑a、c所受载荷相同,b、d所受载荷相同,得该结构的受力分析如图5所示:

根据静力学平衡原理列出平衡方程如下:对a点求力矩平衡得:

代入相应参数得:

解得: ;对系统求力平衡得:

代入参数得:

解得: 。

由于此时臂架两侧底座支撑是对称的,所以此工况下底座a、c所受载荷为: ,底座b、d所受载荷为: 。

工况(2)时,底座支撑a、c连线及底座

支撑b、d连线平行起重臂平面,由于此时臂架两侧底座支撑是对称的,故底座支撑a、c所受载荷相同,b、d所受载荷相同,得该结构的受力

图5 工况1 底座结构受力分析图

分析如图6所示:

图6 工况2 底座结构受力分析图

根据静力学平衡原理列出平衡方程如下:对a点求力矩平衡得:

代入相应参数得:

解得: ;对系统求力平衡得:

代入参数得:

解得: 。

由于此时臂架两侧底座支撑是对称的,所以此工况下底座a、b所受载荷为: ,底座c、d所受载荷为: 。

工况(3)时,底座支撑b、c连线与起重臂所在直线重合,此时臂架两侧底座支撑a、d是对称的,故底座支撑a、d所受载荷相同,得该结构的受力分析如图7所示:

图7 工况3 底座结构受力分析图

此时,结构为超静定结构,无法直接由静力学平衡原理求解,只能由变形协调条件增加方程求解。具体为释放图a(d)处的约束,代替以力,满足在a(d)约束处的绕度为零,a(d)约束处的绕度由三个外伸梁模型集中载荷产生绕度加一个简支梁模型集中载荷产生的绕度之和。根据材料力学知识,对各集中力在该处的绕度进行叠加,绕度以向上为正得如下方程:

解得:

对c点求力矩平衡得:代入相应参数得:

解得: ;对系统求力平衡得:代入参数得:

解得: 。

由于此时臂架两侧底座支撑a、d是对称的,故底座支撑a、d所受载荷相同为: ,底座支撑b所受载荷为: ,底座支撑a所受的载荷为: 。

综上计算可知,底座承受最大载荷工况为工况3时,此时靠近臂架起吊重量一侧底座承受载荷最大,为: ,方向竖直向下。

5 结论

本文通过通过结构模型简化,分析并计算出臂架结构、筒体和底座行走机构这三个主要受力部件在各种极限工况下的最危险状况,为有限元分析计算、参数化建模及“门座起重机风险评估”的研究奠定了基础。

参考文献:

[1]陈玮璋,顾迪民.起重机械金属结构.北京:人民交通出版社,1985:110-113

[2]桂寿平,黄培彦,何秋.港口起重机疲劳破坏成因与修复措施探讨.华南理工大学学报(自然科学版),2001(2)

[3]国家建委建筑机械研究所.上海市建筑施工技术研究所,国外起重机设计规范选编,1979

[4]潘钟林(译).欧洲起重机机械设计规范.上海振华港口机械公司译丛,1998

[5]张质文,刘全德.起重机运输机械.北京:中国铁道出

版社,1988:134-135

[6]吴富民.结构疲劳强度.陕西:西北工业大学出版社,1985:102-110

作者简介:张健,福建省特种设备检验研究院莆田分院,工种师

(收稿日期:2012.2.10)

龙门起重机结构设计(完整版)

龙门起重机计算说明书 一龙门起重机的结构形式、有限元模型及模型信息。 该龙门起重机由万能杆、钢管以及箱形梁组成。上部由万能杆拼成,所有万能杆由三种型号组成,分别为2N1,2N4,2N5,所有最外围的竖杆由2N1组成,其他竖杆由2N4组成,所有斜杆由2N5组成,其他杆均为2N4;龙门起重机两侧下部得支撑架由钢管组成,钢管的型号为φ219?6、φ83?5,其中斜竖的钢管为φ219X6,其他钢管为φ83X5;龙门起重机上部和下支撑架之间由箱型梁连固接而成,下支撑架最下端和箱型梁相固连。所有箱型梁由厚为6mm的钢板焊接而成。 对龙门起重机进行建模时,所选单元类型为Link8、Pipe16、Shell63三种单元类型。有限元单元模型见图1。模型的基本信息见下: 关键点数 988 线数 3544 面数 162 体数 0 节点数 1060 单元数 3526 加约束的节点数 48 加约束的关键点数 0 加约束的线数 0 加约束的面数 12 加载节点数 18 加载关键点数 18 加载的单元数 0 加载的线数 0 加载的面数 0 二结构分析的建模方法和边界条件说明。 应力分析采用有限元的静力学分析原理,其建模方法采用实体建模法,采用体、面、线、点构造有限元实体。其中所有箱形梁用面素建模,其余用线素建模,然后在实体上划分有限元网格,具体见单元图。对于边界条件和约束条件,是在支撑架下的箱型梁的底面两端加X,Y,Z三方向的约束以模拟龙门起重机的实际情况。载荷分布有4种情况:工作时的吊重、小车自重、风载荷、考虑两度偏摆时的水平惯性力,具体见下。 三载荷施加情况。 (1)工作时的吊重 工作时的吊重为40t,此载荷分布在小车压在轨道的4个位置,每个位置为10t。由于小车在轨道上移动,故载荷的分布位置随小车的移动而改变,由于小车移动速度慢,我们只把吊重载荷的施加作两种情况处理:在最左端(或最右

门座起重机钢结构组成部分介绍

门座起重机钢结构组成部分介绍 桥架通过两侧支腿支承在地面轨道或地基上的臂架型起重机。具有沿地面轨道运行,下方可通过铁路车辆或其他地面车辆。可转动的起重装置装在门形座架上的一种臂架型起重机。门形座架的4条腿构成4个“门洞”,可供铁路车辆和其他车辆通过。门座起重机大多沿地面或建筑物上的起重机轨道运行,进行起重装卸作业。门座呈“”字形的起重机称半门座起重机,其运行轨道的一侧设在地面上,另一侧设在高于地面的建筑物上。 门座式起重机、门座起重机的钢结构由交叉门式架、转柱、桁架式人字架与刚性拉杆组合臂架等构件组成。其中,门架、人字架、转柱和臂架是主要受力构件。 人字架:在门座起重机中,为了支承臂架,一般设有人字架。变幅机构的推杆、组合臂架的拉杆及其对重杠杆等都与人字架相连。人字架支承在旋转平台上。人字架的结构型式与起重机的基本参数、所采用的臂架及变幅机构的型式有关。 门架:门架结构支撑着上部旋转部分的全部自重和所有外载荷。因此,门架结构对整个起重机的稳定性和减轻自重有着重要意义。门架结构质量约为整个起重机质量的20%~30%。为保证起重机正常平稳运转,门架必须有足够的强度,尤其要有较大的刚度。门架结构型式,可分为转柱门式架、大轴承门架以及定柱门架。根据门架使用钢材的类型,可分为桁架式门架、板梁式门架及箱型门架。 转柱常被做成棱锥形薄壁箱型结构,刚度大自重轻。由于转柱的断面尺寸大,而臂厚小,因此,为了保证局部稳定性何周边的刚性,常在转柱的内臂用横筋和纵筋加强。 旋转平台和转柱:目前广泛使用平台的金属结构有两根纵向主梁和平板组成。根据受力大小,这些梁可做成箱型断面或工字型断面,臂架和人字架都支承在平台上。此外,还有起升旋转平台和转柱相连接。臂架的两个下支承座焊在平台的主梁端部。

建筑塔式起重机事故分析及其预防示范文本

建筑塔式起重机事故分析及其预防示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

建筑塔式起重机事故分析及其预防示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着城市建设的快速发展和高层建筑物的增 加,塔式起重机(以下简称塔机)的使用越来越普遍,重大伤 害事故的发生率也在不断提高。因此,针对起重机械使用 安全状况包括建筑工程建设工地使用的起重机械安全状 况,各有关单位联合对在用的塔机进行了全面的检验检 查,对存在的问题、隐患和已发生的事故进行全面的总结 和分析,提出相应的补救或预防措施,以供参考。 1 塔式起重机事故或隐患的分类及预防 1.1制造质量的问题 (1)结构的材质质量和焊接质量问题结构件的质量问题 包括构件的材料质量与焊接质量。

①起重机材料质量问题包括材质的正确选用及材料质量保证(材质宏观质量和化学成份微观质量),特别是起重机金属结构的关键件用材,比如:平衡臂架、起重臂架、塔身标准件、拉杆、转台、小车架和底架等。20xx年某台QqZ25型塔式起重机在其塔身主弦杆断裂处取样检验的材料质量分析中,其角钢的厚度测量有多处未达到材料厚度标准的规定,且金相检验表明,其材料存在大量硅酸盐、氧化物夹杂。当这些缺陷遇热影响区、高应变速率及高应力集中等特定因素时,这些因素对内在缺陷的扩展直至材料破坏起到了重要的作用。20xx年某台塔机,从塔身标准件主肢角钢折断的断口分析中,发现角钢的材质存在严重问题:所用材质冶金质量太差,夹杂物多、杂质元素过多、存在夹层和明显的纵向裂纹。由于多次刷涂油漆,安装人员和检验人员在安装、检验的宏观目测过程中很难发现缺陷。

起重机金属结构设计知识点

起重机金属结构设计知识点 第一章 1.由型钢和钢板作为基本元件,按一定的规律用焊接(或铆接、螺栓连接)的方法连接起来,能够承受载荷的结构件称为金属结构。 2. 金属结构的作用(简答) 作为机械的骨架,支承起重机的机构和电气设备,承受各部分重力和各机构的工作力。 将起重机的外载荷和各部分自重传递给基础。 3. 按照组成金属结构基本元件的特点,起重运输机金属结构可分为杆系结构和板结构。 按起重运输机金属结构的外形不同,分为门架结构、臂架结构、车架结构、转柱结构、塔架结构等。 按组成金属结构的连接方式不同,起重运输机金属结构分为铰接结构、刚接结构和混合结构。 起重运输机金属结构,按照作用载荷与结构在空间的相互位置不同,分为平面结构和空间结构。 4按结构件中的应力状态(名义应力谱系数)和应力循坏次数(应力循环等级)金属结构的工作级别分为A1~A8级。 5对起重机金属结构的基本要求:(简答) (1)金属结构必须坚固耐用。即具有足够的强度、刚度和稳定性。(2)自重轻,省材料。(3)设计合理,结构简单,受力明确,传力直接。(4)便于制造、运输、安装、维修。(5)成本低,外形美观。 第二章 1. 起重运输机金属结构主要构件所用的材料有碳素钢、合金钢。金属结构的支座常用铸钢。 2 起重机金属结构工作的特点及材料的要求: (1)工作繁重、承受动载及冲击载荷、工作环境恶劣。 (2)满足设计要求,同时考虑加工性、可焊性、低温脆断、时效性、防腐性等。 3 结构钢:按冶炼方法的不同,结构钢分为平炉钢、转炉钢和电炉钢。按脱氧程度分类:镇静钢(符号Z,省略);沸腾钢(符号F);半镇静钢(符号b)。 5.如:ZG 230 - 450 铸钢屈服限抗拉强度(MPa)

四连杆式门座起重机工作机构设计

题目介绍、要求以及数据 设计题目: 四连杆式门座起重机工作机构设计 一、设计题目简介 四连杆门座起重机是通用式门座起重机,广泛应用于港口装卸、修造船厂、钢铁公司,主要由钢结构、起升机构、变幅机构、回转机构、大车运行机构、吊具装置(抓斗、简易集装箱吊具、吊钩)、电气设备及其它必要的安全和辅助设备组成。通过四连 杆控制在吊臂前后运动的时候)起吊节点保持水平高度不变。 二、 设计数据与要求 题号 起重量t 工作幅度(米) 起升高度(米) 工作速度m/min 装机容量KW L2 L1 H1 H2 起升 变幅 回转 运行 C 10 25 8 15 9 50 50 1.5 25 330 三、 设计任务 1、依据设计参数绘出机构运动简图,并进行运动分析,确定实现起吊点轨迹的机构类型 2、依据提供的设计数据对四连杆起吊机构进行尺度综合,确定满足使用要求的构件尺寸和运动副位置; 3、用软件(VB 、MATLAB 、ADAMS 或SOLIDWORKS 等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。 4、 编写说明书,其中应包括设计思路、计算及运动模型建立过程以及效果分析等。 5、在机械基础实验室应用机构综合实验装置验证设计方案的可行性。

第一章、概述 第一节、四连杆门座式起重机的参数 起重机的主要参数有: 起重量、幅度、起升高度、各机构的工作速度、工作级别及生产率。此外, 轨距、基距、外形尺寸、最大轮压、自重等也是重要参数。 1.1起重量 起重量是指起重机安全工作时所允许的最大起吊货物的质量,单位为“kg” 或“t”,用“Q”表示。起重量不包括吊钩、吊环之类吊具的质量,但包括抓斗、 料斗、料罐、工属具之类吊具的质量。起重量较大的称为主起升机构或主钩,起 重量较小的称为副起升机构或副钩。副钩的起升速度较快,可以提高轻货的吊运 效率。主、副钩的起重量用一个分数来表示。例如15/3t,表示主钩的起重量为 15t,副钩的起重量为3t。16t门座起重机的标注:16/10-9~22/30。意为在9~ 22m幅度内起重量为16t,在9~30m幅度内起重量为10t。 1.2幅度 幅度是指起重机旋转轴线至取物装置中心线之间的距离,用“R”表示,单位是“m”。当起重臂外伸处于最远极限位置时,从起重机旋转中心到取物装置中心线中间的距离称为最大幅度(Rmax);当起重臂收回处于最近极限位置时,从起重机旋转中心到取物装置中心线之间的距离称为最小幅度(Rmin)。起重机的幅度不是一个孤立的参数,与起重量密切相关。 1.3起升高度 起升高度是指起重机取物装置上下极限位置之间的距离,单位是“m”,用“H”表示。下极限位置通常取为工作场地的场面或运行轨道顶面,吊钩以钩口中心为准, 抓斗以最低点为准。轨面上和轨面下的起升高度,分别用H 上和H 下 表示,H 上 十H 下 =H。在确定起重机的起升高度时,要考虑到下列因素:起吊物品的最大高度、需要越过障碍的高度、吊具所占的高度等。对于港口门座起重机还要考虑船舶在低潮、高潮、空载、满载时的不同情况。

建筑力学-塔吊分析

建筑力学作业 平面一般力系实际工程的应用——塔吊分析 1.塔吊介绍 塔吊,即塔式起重机。机身 很高,像塔,有长臂,轨道上 有小车,可在轨道上移动,工 作面很大,主要用于建筑工地 等处。塔吊一般用于建筑施工、 货物搬运、部分事故现场处理 等场合,主要作为材料、货物 等的高空运输或质量较大物体 的运送的工具。 塔吊一般由外套架、回转轴承、塔冒、平衡臂、平衡臂拉杆、起重臂(吊臂)、起重臂拉杆、电源、支架、变幅小车,起重吊钩、驾驶室等几部分组成。 塔吊一般用于建筑施工、货物搬运、部分事故现场处理等场合,主要作为材料、货物等的高空运输或质量较大物体的运送的工具。

如下图,塔吊可简化为所示主体结构模型 塔吊主体结构模型 塔吊结构图 根据塔吊的组成、用处及发展历程,我们可以对塔吊的结构有一个更加深入的了解。如下图1-2塔吊的主体结构模型图所示,塔吊的各个部分均已经标出在图上。

2.塔吊静力学分析 对塔吊整体为研究对象. 要保证机身满载是平衡而不向右倾倒,则必须 ∑M B=0, W2(a+b)-F A b-W1-W max l max=0; 限制条件F A≥0. 再考虑空载时的情形,这时W=0. 要保证机身空载时平衡而不向左倾倒,则必须满足平衡方程: ∑M A=0, W2 a+F B b-W1(b+e)=0; 限制条件F B≥0.

1)对塔吊的平衡臂,由平衡条件得: ∑F x =0, F 1cos θ=F x ; ∑F y =0, F 1sin θ+F y =W 2+m 1g ; ∑M=0, (F 1sin θ-W 2)l 1=m 1gl 2; 2)如左图塔吊吊臂,由平衡条件得 ∑Fx=0, F x =F 2cos α+F 3cos β; ∑F y =0, F 2sin α+F 2sin β+F `y =m 2g+W ; ∑M=0, F 2sin αl 3+F 3sin βl 4=m 2gl 5+Wl . 3)如右图塔吊吊帽与拉杆的受力情况,则由共点力的平衡条件可得平衡方程如下: ∑Fx=0, F 1cos α= F 2cos β+ F 3cos γ ∑F y =0, F 1sin α+F 2sin β+ F 3sin γ=F L 1

龙门式起重机设计毕业设

更多精彩毕业设计强咨询245250987 1概述 1.1起重机械的发展简史及发展动向 简单的起重运输装置的诞生,可以追溯到公元前5000~4000年的新石器时代末期,为埋葬和纪念死者而修筑石棺和石台,我国古代劳动人民已能开凿和搬运巨石。蒸气机的出现,推动了第一次工业革命,起重机械也因之有了较大发展。1827年,出现了第一台用蒸气机驱动的固定式回转起重机,从此结束了起重机采用人力驱动的历史。在工业发展中,电力驱动的出现是起重机械蓬勃发展的转折点。1880年,出现了第一台电力驱动的载客升降机。1885年,制成了电力驱动的回转起重机,从后制成了电力驱动的桥式起重机和门座起重机等。二次世界大战期间,新产品、新材料、新工艺不断出现。例如:由于自动焊接新技术的出现,箱形结构的桥式起重机越来越受到人们的欢迎;由于计算机技术的推广应用,利用计算机进行辅助设计(CAD)和辅助制造(CAM),使起重机的整机布置更趋优化,基本零部件更加紧凑耐用;由于自控技术和数显技术的广泛普及,使起重机的控制和安全保护装置大为改善,保证了操作的安全性和可靠性。 纵观世界各国起重机械发展的现状,对今后的动向,可归纳如下: 1、大型化 由于石油、化工、冶炼、造船以及电站等的工程规模越来越大,所以吊车起吊物品的重量也越来越大。 2、重视“三化”,逐步采用国际标准 所谓“三化”,是指起重机械的标准化、系列化和通用化。贯彻“三化”可以缩短设计周期,保证产品制造质量,便于管理和提高经济效益。 3、实现产品的机电一体化 机械产品需要更新换代。在当今计算机技术、数控技术及数显技术大发展的年代里,

更新换代的重要标志是实现产品的机电一体化。在起重机械上应用计算机技术,可以提高作业性能,增加安全性,以至实现无人自动操作。 4、人机工程学的应用 起重机械一般应用在沉重和繁忙的、环境比较恶劣的场合。为减少司机的作业强度,保持旺盛的注意力,应根据人机工程学的理论,设计驾驶室,改善振动于噪声的影响,防止废气污染,使其符合健康规范的要求。 1.2起重机械的用途、工作特点及其在经济建设中的地位 起重机械是用来对物料进行起重、运输、装卸、或安装等作业的机械设备。它在国民经济各部门都有广泛的应用,起着减轻体力劳动、节省人力、提高劳动生产率和促进生产过程机械化的作用。例如,一个现代化的大型港口,每年的吞吐量有几千万吨乃至上亿吨,被运送的物料品种繁多,有成件物品,也有散装材料或液态材料。为了尽快地完成如此繁重的装卸任务,如不采用成套的起重运输设备,那是不可想象的。码头边上,吊车林立,成了现代化港口的重要特点。因此说,起重机械在现代化的生产过程中决不是可有可无的辅助工具,而是合理组织生产的必不可少的生产设备。 起重机械在搬运物料时,经历上料、运送、卸料和回到原处的过程,有时运转,有时停转,所以它是一种间歇动作的机械。一个工作循环时间一般从几分钟到二三十分钟,其间各机构在不同时刻有短暂的停歇时间。这一特点决定了电动机的选择和发热计算方法;由于反复运动和制动,各机构和结构将承受强烈的振动和冲击,载荷是正反向交替作用的,许多重要构件承受不稳定变幅应力的作用,这些都将对构件的强度计算产生较大的影响。 起重机属于有危险性作业的设备,它发生事故造成的损失将是巨大的。所以,起重机设计和制造一定要严格按照国家标准和有关规定进行。 1.3起重机械的组成和类型 1.3.1起重机械的组成 起重机由产生运动的机构、承受载荷的金属机构、提供动力和起控制作用的电气设备及各种安全指示装置等四大部分组成。 起重机机构有四类,即:使货物升降的起升机构;作平面运动的运行机构;使起重机旋转的回转机构;改变回转半径的变幅机构。每一机构均由电动机、减速传动系统及执行装置等组成。设计时应尽可能采用标准的零部件加以组合,以利于制造和维修。金属结构则要根据使用要求进行设计制造。电动机和控制设备大多是标准产品,安全指示装置通常从市场购买,特殊的由制造厂设计制造。 1.3.2起重机械的类型 根据使用要求,设计任何合适的起重机形式。但从构造特征看,种类繁多的起重设备可归纳为三大类。 1、单动作起重设备 这类起重设备是使货物作升降运动的起升机构。常见的下列几种:(1)千斤顶一种升降行程很小,举升能力较大的小型起重设备。螺旋千斤顶或齿条千斤顶可用于汽车维修;液压千斤顶可将大型起重机顶起以更换车轮。 (2)滑车(俗称葫芦)一种用链条或钢丝绳与滑轮构成的省力滑轮组,结构紧凑,质量轻,是一种可携带的起重工具,有手动和电动两种。电动葫芦则是 一种电动起升机构,配有运行小车后可在空间布置的工字钢轨上运行,构成

门座起重机结构与力学分析

1 引言 近年来,国内在门座起重机设计和制造上,已有很大的提高。但在现代的港口中,还有很多服役达十多年的门座式起重机仍承担着港口繁重的吊装业务。在门座式起重机进行生产作业的过程中,由于许许多多无法避免的因素使起重机出现各种破坏及故障,以至降低或失去其预定的功能。由于起重机体积大、造价高,不可能一发生故障就即时更换,因此很多起重机普遍存在严重裂纹但仍服役生产第一线,给安全生产带来了极大隐患,甚至造成严重的以至灾难性的事故,致使生产过程不能正常运行而造成巨大的经济损失。“门座起重机风险评估”的研究已成为是国内许多检验机构正在努力探讨的一个研究课题,而找出主要部件的受力最危险点和应力集中区则是这项课题研究的重要基础。 2 门座起重机的结构模型简化 由于门座起重机结构复杂,对门座起重机金属结构进行建模分析时不可能将所有因素都考虑进去,因此必须对其金属结构进行合理有效的简化,建立一个既能方便分析计算,又尽可能的与实际使用工况相符的有限元模型。基于对门座起重机结构的认识,本文主要对港口门座起重机进行了如下的假设和简化: (1)门座起重机模型是参照图纸尺寸建立的,为方便建模计算,其中一些加强筋,肋板等细部结构,在不影响分析结果的可靠性的前提下做适当的简化。 (2)鉴于门座起重机结构复杂,在建立臂架模型分析时对电机、钢丝绳、铰轴等结构做适当的简化处理。 (3)臂架上的梯子结构,均匀分布于臂架整体结构,对分析影响不大,在建模分析时不予考虑,最后采用密度补偿法来考虑其自重对臂架结构的影响。 (4)建模分析时,只考虑门座起重机结构的自重及起吊重量,不考虑风载、地震载荷等附加载荷的影响。 3 门座起重机结构参数 本文以某单位一台45t-60m港口门座起重机为研究对象,对其进行有限元建模、有限元模 门座起重机结构与力学分析 Analysns of structure and mechanics of prortale crane 张 健 (福建省特种设备检验研究院莆田分院 福建莆田 351100)摘要:如何准确高效的对门座起重机金属结构进行受力分析,进而判断疲劳裂纹等危险隐患的存在,正成为检验检测领域当前迫切需要解决的问题之一。本文以一台门座起重机的主要受力部件受力分析为例,分析计算了臂架结构、筒体和底座行走机构这三个主要受力部件在各种极限工况下最危险状况,为有限元分析计算及“门座起重机风险评估”的研究奠定了基础。 关键词:门座起重机,模型简化,危险工况,力学分析 中国分类号:TS213.4

门座式起重机

门座式起重机 一.何为门座式起重机 门座式起重机是以其门形机座而得名的。这种起重机多用于造船厂、码头装卸等场所。在门形机座上装有起重机的回转部分,门形机座实际上是起重机的承重部分。门形机座的下面装有运行机构,可在地面设置的轨道上行走。回转部分上装有臂架和起升、回转、变幅机构。四个机构协同工作,可完成设备或船体分段的安装,或者进行货物的装卸作业 二.门座式起重机的结构 门座式起重机的构造一般分为两大部分,即上旋转部分和下运行部分。 上旋转部分包括:臂架系统、人字架、旋转平台和司机室、机器房。在机器房内安装有起升机构、变幅机构和旋转机构。下运行部分包括:门座和运行结构。 三.门座式起重机四大机构 (1).起升机构 起升机构是起重机提取货物作升降运动的机构,一般是依靠改变电动机的旋转方向来改变取物装置是升、降运动。起升机构由驱动装置、钢丝绳缠绕系统和取物装置组成。(门座式起重机的取物装置一般是吊钩或抓斗) (2).变幅机构 门座式起重机利用变幅机构来改变货物的径向货物以完成

装卸任务。臂架带载进行变幅的称为工作性变幅机构,臂架不带载进行变幅的称为非工作性变幅机构。为提高生产效率,门座式起重机广泛采用工作性变幅机构。 (3).旋转机构 门座式起重机的旋转机构是完成吊物沿圆弧作水平移动的机构。其与起升和变幅机构配合,可将起吊货物移送到变幅范围内的任意位置。旋转机构是由旋转支撑装置及促使转动部分旋转的驱动装置两部分组成的。 (4).运行机构 门座式起重机运行机构是由运行支撑装置、运行驱动装置和安全装置三部分组成。支撑装置包括均横梁、车轮、锁轴;驱动装置包括电动机、制动器和减速机。运行机构的安全装置包括夹轨器、缓冲器以及限位开关、扫轨板等 四.门座式起重机安全操作规程 一、起重机司机安全守责 1、司机必须经过体格检查,身体健康并无妨碍门座起重机操作的疾病及生理缺陷。 2、司机必须进行一定时期的特种设备安全教育和培训,经考试合格取得“国家统一格式的特种作业人员证书”。 3、司机作业前带好随车工具和穿好绝缘鞋,以利安全操作。 4、严禁驾驶员酒后操作起重机。 5、严格遵守“起重机十不吊”的规定

浅析塔式起重机钢结构损坏原因及维修

浅析塔式起重机钢结构损坏原因及维修 [摘要]塔式起重机的现场安全生产管理极其重要,施工过程中发生钢结构损坏应及时修复,平时必须做好塔式起重机钢结构的维护保养工作,发现钢结构受损,必须排除事故隐患,确保安全生产顺利进行。 [关键词]塔式起重机;钢结构;损坏原因;维修 塔式起重机在建筑施工中已成为必不可少的施工机械设备,塔机在建筑施工中的现场安全生产管理工作中极其重要。长期以来,人们在维护塔机时只重视对传动及电气设备的养护,而忽视了对钢结构的检查及修复,给施工带来各种事故隐患。在此我们结合多年来的实际经验,谈谈塔机的钢结构在施工使用中的损坏原因及维修。 1 钢结构的损坏形式及原因 1.1表面锈蚀

塔机的工作环境比较恶劣,经常在含酸碱等腐蚀性气体灰尘下作业,加上运行过程中的碰撞及防锈油漆的自然老化、脱落,使表面失去保护,加上维护保养工作不及时,造成局部腐蚀氧化,不同程度地出现表面锈蚀现象,降低钢结构强度,久而久之使塔机的钢结构变形。 1.2裂纹 实践证明,虽然裂纹不一定导致断裂,发现裂纹不及时修复,塔机长期带患工作,往往是断裂的初期阶段,尤其是过渡性及危险性裂纹,具有进一步扩展的危险,及时发现并处理是很重要的。一般裂纹主要产生在焊接部位及应力集中的地方,如塔身下部、下支座、回转塔身、塔顶联接耳板等,通常在复合受力最大处。 如果机构启动和制动过猛、越级换速、反车作紧急制动,使塔机钢结构增大冲击力,过大的惯性可导致塔机钢结构的焊缝开裂,处理不及时,会引发较大的危险事故。在浙江某工地的qtz31.5塔机,由于司机操作不当,起升机构启动过猛,并且超载工作,使塔

机前后摆动很大,使塔机上支座内的筋板全部开裂,幸亏发现得早,及时处理,未发生重大事故。 1.3变形 包括局部弯曲变形和扭曲、偏心。根据金属结构检验要求,杆 件沿全长纵向轴线的直线度公差为1/750;使用中主弦杆变形量应 不大于3‰~5‰;腹杆变形量不大于2~4mm;杆件连接螺栓孔距误差不超过装配间隙的1/2;且螺孔的圆度误差不超过装配间隙的l /2;当超过上述范围即视为变形。变形原因有:①由于碰撞、敲打 等原因,造成钢结构局部弯曲变形;②由于连接螺栓松动,使得螺 孔磨损成椭圆,造成各节臂、杆件之间偏心产生附加弯曲力矩;③ 误动作造成钢结构意外碰撞变形.如操作机构失灵使吊臂失控后仰,与塔身相撞会引起严重变形;④长期超载使用,使钢结构产生屈服 变形(永久变形)。 如顶升时不注意调整上部结构的平衡,没有将顶起部份的重心 落在顶升油缸上,使顶部结构失去平衡乃至重心偏移较大,爬升架 的导轮对标准节主弦杆的压力太大,使塔身主弦杆发生弯曲变形, 塔机钢结构产生失稳而造成事故。

龙门起重机文献综述

毕业设计(论文) 文献综述 题目轨道式龙门起重机 专业机械设计制造及其自动化 班级06级1班 学生陈成 指导教师周老师 西南交通大学 2010-4-27 年

1、轨道式集装箱龙门起重机国内发展现状 在我国集装箱港口的装卸作业中,通常采用岸边集装箱起重机加轮胎式集装箱龙门起重机的装卸方案,以轮胎式集装箱龙门起重机作为后方堆场的主要装卸机械。几年,随着港口的发展,轨道式集装箱龙门起重机在港口的使用越来越多。其电控系统、管理系统等方面以达到现有的港口机械水平,完全能满足现代港口集装箱的需要。 目前我国已能批量生产具有上个世纪90年代国际先进水平的岸边集装箱起重机和轮胎式集装箱龙门起重机,轨道式集装箱龙门起重机的研究与开发能力也越来越强。 由于大车行走和小车行走属于一般负载,没有特殊要求,因此变频器在V/F模式下即可正常工作,不需要做特殊设置就能投入使用,而主副钩吊属于重型负载,要求起钩和松钩都能保证不溜钩,上下行平稳迅速,要求在直流制动后马上投入制动器进行制动。 2、轨道式集装箱龙门起重机国外发展现状 长期以来,轨道式集装箱龙门起重机仅小车运行机构采用交流驱动,近年来,起升机构和大车运行也相继采用了交流驱动技术,这样减少了维护和修理费,降低了营运成本。日本三井公司最早成功地采用了交流变频调速装置,解决了起升机构位势负载和车轮支承压力变化导致车轮转速变化的关键技术,达到了集装箱堆6层作业的使用要求。派纳公司将其在自动控制领域所拥有的丰富经验成功地应用在大型轨道式集装箱龙门起重机上,满足了现代化集装箱堆场对自动化控制的需要。欧洲联合码头公司应用光缆传输技术,可靠地将轨道式集装箱龙门起重机与港站管理计算机联网,实现了无人装卸作业和堆场全盘自动化。 据统计,欧洲作为传统上的轮胎式集装箱龙门起重机的大订户,1995年订购的轨道式集装箱龙门起重机多达58台,从一个侧面反映出轨道集装箱龙门起重机的市场潜力和应用前景。另一方面,从世界一些著名的港口的发展趋势看,轨道式集装箱龙门起重机将向大型化、高效化、自动化方向发展。 目前,一些先进设计思想逐渐被采用,一些先进设计手段也被引入轨道式集装箱龙门起重机领域。如果有限元分析、结构优化设计、机电液一体化技术、CAD设计模块化技术、可靠性设计方法、机械结构动态设计等。这些方法在轨

简易门式起重机设计

电动葫芦门式起重机设计 一、实验目的 1、掌握简易电动葫芦门式起重机的设计过程。 2、拆装测绘电动葫芦内部结构。 二、实验设备 2吨SHH悬挂式环链电动葫芦,2吨CD型钢丝绳电动葫芦,3.2吨SHA2低建筑钢丝绳电动葫芦,1吨SH3悬挂式钢丝绳电动葫芦和5吨轻型门式起重机门架。 三、实验内容 由驱动装置(如电动机等)、传动装置(减速器)、制动装置(制动器)和取物缠绕装置(如吊钩、滑轮、钢丝绳、链条、卷筒、链轮等)紧凑地组装为一体的起重设备,称为起重葫芦(英文称为Hoist)。用电力驱动称为电动葫芦,用人力驱动称为手动葫芦,用气力驱动称为气动葫芦。 以起重葫芦作为起升机构的起重机,统称为葫芦式起重机。葫芦式起重机作为桥式和门式起重机的一个重要分支,已成为一种独特的起重机体系,量大而面广。国外统称为Hoist cranes。 起重机有四大基本机构:起升机构、运行机构、旋转机构和变幅机构。葫芦起重机一般只有两种机构,起升机构和运行机构,起升机构为电动葫芦;运行机构主要就是葫芦运行小车和起重机运行大车。 葫芦式起重机的设计计算完全遵守GB/T3811-2008《起重机设计规范》所确立的适应葫芦式起重机总体、钢结构、机构、电气控制与安全等方面必要的准则,同时还要遵守JB/T5663-2008 《电动葫芦门式起重机》机械行业标准。 设计步骤一般如下:

1、电动葫芦门式起重机总体设计我们这次主要是设计MD 型单主梁工字钢葫芦门式起重机。主要是确定门架结构的整体形式,主梁的数量,是否有悬臂,支腿结构和运行机构等。起升高度2-6米。起重机跨度3-10米。起重量由各小组所选择的电动葫芦起重量确定。 2、电动葫芦门式起重机钢结构设计计算设计计算的主要内容有 a、主梁强度计算包括吊载在跨中时主梁整体自由弯曲强度计算;约束弯曲强度计算;约束扭转强度计算和危险点的复合应力校核计算等 b、主梁刚度计算 c、稳定性计算 d、支腿强度计算 e、支腿刚度计算 f、支腿稳定性计算 3、起升机构电动葫芦的设计计算设计计算的主要内容有 a、确定电动葫芦的结构形式(串联型、并联型和套装型) b、吊钩的选用 c、钢丝绳的选用计算 d、滑轮设计 e、卷筒设计计算 f、电动机的选择与验算 g、减速器的选择 h、制动器的设计计算 4、葫芦运行小车的设计计算计算内容包括 a、运行阻力计算 b、运行电动机的选择和验算 c、减速器的计算与选择 d、制动器的计算与选择

塔式起重机的静力学分析

塔式起重机结构的静力学分析 摘要:强度和振动特性是设计塔式起重机的金属结构的重要指标。文章从有限元的基础理论出发,利用ANSYS软件,对塔式起重机进行静力学分析,获得了其应力应变结果,比较了三种典型的工况,指出了极限吊重情况下静态极限强度的位置,并分析了塔式起重机的振动频率和振型,为研究塔式起重机的其他动力响应提供了依据。

关键词:塔式起重机静力学分析有限元 ANSYS 引言:塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。动臂装在高耸塔身上部的旋转起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。当起重臂架绕塔式起重机的回转部分作360°回转、吊重载荷沿起重臂架运行并升降时以及由于驱动控制系统电机抖动等原因,都会使塔式起重机引起振动。在此情况下,吊重荷载等动荷载对塔式起重机结构所引起的内力和变形,要比同样大小的静荷载所引起的大,有时甚至大得多。由于塔式起重机结构及构件承受的动荷载一般都很大,而且加载次数较为频繁,更容易产生疲劳破坏。作为大型设备,塔机的工作特点是根据建筑需要将物品在很大空间内升降和搬运,属于危 险作业。目前,在建筑施工中,由塔机引起的人员伤亡和设备事故屡禁不止,重大事故发生率居高不下。 塔机的强度和振动频率是影响塔机寿命和稳定性的重要因素,因此对塔式起重机进行静力学和振动的研究是十分要必要的。本文利用有限元分析软件ANSYS对塔式起重机QTZ630进行建模,分析了三种加载在塔式起重机上的 典型的工况,得出了塔式起重机在三种工况下的静力学应力和应变云图,找出塔式起重机各个工况下的危险位置,为其塔机的改进提供参考。提取出塔机的前5阶振动模态,为其他动力学响应提供研究依据。 1.塔式起重机的结构及性能参数 1.1塔式起重机的结构 塔式起重机主要由机械部分、金属结构和电气三大部分组成。 机械部分主要是指起升机构、运行机构、变幅机构、回转机构、行走机构、架设机构等等,这些机构根据工作需要或有或无,但起升机构是必不可少的。 金属结构是构成起重机械的躯体,是安装各机构和支托它们全部重量的主体部分。金属结构主要由门架、塔身、其中避、塔顶与塔顶撑架、平衡臂、转台等组成,其中门架是起重机的基础,所有物机和压重均装于其上。门架由两个侧架和一个长方形平台组成。塔身结构也成为塔架,是塔式起重机结构的主题,主要指自底架以上的垂直塔桅部分,它支撑着塔式起重机上部结构的全部重量,并将其转至底架和台车,进而分布给轨道基础。 电气是起重机械动作的能源,各机构都是单独驱动的。 在结构的力学分析中,主要分析塔身、塔臂和塔顶的杆件受力。 1.2性能参数 起重能力:Rmax =50 m ,Q =1.2 t R=2~15.44 m ,Q=5 t 起升速度: 100/80/50/40/5 m/min 回转速度: 0.6/0.4 r/min 变幅速度: 45/16 m/min 2.创建塔式起重机的有限元模型 塔机的金属结构主要包括塔顶、起重臂架、平衡臂、变幅小车、吊钩以及上下转台等组成.根据塔机设计规范的规定,建立塔机结构几何模型过程中,忽略结构阻尼,不考虑非线性关系和过渡圆角.为了有限元建模更加合理,应考虑:模型能全面准确地反映塔机结构特点;模型受力应与塔机在工作时外载荷作用

龙门起重机 小车运行机构设计 说明书

第1章绪论 1.1 概述 起重机是指在一定范围内垂直提升和水平搬运重物的多动作起重机械。又称吊车。属于物料搬运机械。起重机的工作特点是做间歇性运动,即在一个工作循环中取料、运移、卸载等动作的相应机构是交替工作的。 架型起重机的雏形。14世纪,西欧出现了人力和畜力驱动的转动臂架型起重机。19世纪前期,出现了桥式;起重机的重要磨损件如轴、齿轮和吊具等开始采用金属材料制造,并开始采用水力驱动。19世纪后期,蒸汽驱动的起重机逐渐取代了水力驱动的起重机。20世纪20年代开始,由于电气工业和内燃机工业迅速发展,以电动机或内燃机为动力装置的各种起重机基本形成。主要包括起升机构、运行机构、变幅机构、回转机构和金属结构等。起升机构是起重机的基本工作机构,它们大多是由吊挂系统和绞车组成,也有通过液压系统升降重物的。运行机构用以纵向水平运移重物或调整起重机的工作位置,一般是由电动机、减速器、制动器和车轮组成。变幅机构只配备在臂架型起重机上,臂架仰起时幅度减小,俯下时幅度增大,分平衡变幅和非平衡变幅两种。回转机构用以使臂架回转,是由驱动装置和回转支承装置组成。金属结构是起重机的骨架,主要承载件如桥架、臂架和门架可为箱形结构或桁架结构,也可为腹板结构,有的可用型钢作为支承梁。 起重机是减轻笨重的体力劳动、提高工作效率、实现安全生产的起重运输设备。在国民经济各部门的物质生产和物资流通中,起重机作为关键的工艺设备或主要的辅助机械,应用十分广泛。 图1.1 双悬臂集装箱龙门起重机

图1.2 无悬臂集装箱龙门起重机 长期以来,龙门起重机仅小车运行机构采用交流驱动,近年来,起升机构和大车运行也相继采用了交流驱动技术,这样减少了维护和修理费,降低了营运成本。最近日本三井公司成功地采用了交流变频调速装置,解决了起升机构位势负载和车轮支承压力变化导致车轮转速变化的关键技术,达到了集装箱堆场作业的使用要求。德国派纳公司将其在自动控制领域所拥有的丰富经验成功地应用在大型轨道吊上,满足了现 代化集装箱堆场对自动化控制的需要。 1.2 集装箱龙门起重机的分类和特点 1.2.1 集装箱龙门起重机的分类 集装箱龙门起重机是用于集装箱堆场的车辆装卸、集装箱的堆码、拆垛和转运的专用机械。集装箱龙门起重机分为轮胎式集装箱龙门起重机和轨道式集装箱龙门起重机。 1.2.3 轨道式集装箱龙门起重机的特点 轨道式集装箱龙门起重机是集装箱码头货场进行装卸、堆码集装箱的专用机械。它由两片双悬臂的门架组成,两侧门腿用下横梁连接,两侧悬臂用上横梁连接,门架通过大车运行机构在地面铺设的轨道上行走。在港口多采用双梁箱型焊接结构的轨道式集装箱龙门起重机,个别采用L型单梁箱型焊接结构。在集装箱专用码头上,岸边集装箱起重机将集装箱从船上卸到码头前沿的拖挂车上,拖到堆场,用轨道式集装箱龙门起重机进行装卸堆码作业,或者相反。轨道式集装箱龙门起重机结构较为简单,操作容易,维修方便,有利于实现自动化控制。

50吨双梁龙门起重机金属结构设计

设计任务书 设计题目: 50吨双梁龙门起重机金属结构设计 设计要求: 1.能提升重物并使重物沿水平方向移动,即起重机能够提升重物一道水平面内不同的地点,而不像升降机只是一种提升机械。门式起重机的承重梁不是支撑在像桥式起重机的高架牵引箱上,而是支撑在能在地面钢轨上行驶的行走箱上。这样,可以在露天的场地行动自如。 2.双梁龙门起重机适用于工矿企业、车站、港口、露天仓库及物资部门的货场等,在固定跨距间对各种物料进行装卸及起重搬运工作。 3.本起重机由电器设备、小车、大车运行机构、门架四大部分组成。按工作繁忙程度和载荷状态分为轻级、中级、重级、特种级四种。标准电源为三相交流、50赫、380伏,电源线为架空滑线、电缆两种。本论文设计的起重机是一台50T-35m,U型变频,箱形双主梁集装箱龙门起重机总起重量50T,吊具以下起重量为50T,全长59m,跨度35m,有效悬臂9m,工作级别A5。 设计进度要求: 第一周:确定题目, 借阅相关的材料

第二周:深入现场进行实践,针对门机常有问题请教有关技师,准备编稿第三、四周:编写硬软件手写稿 第五、六周:上机编写电子稿 第七周:调试程序,找出问题,改进设计 第八周:撰写论文,准备答辩 指导教师(签名):

摘要 龙门起重机是提高装卸作业效率、减轻工人劳动强度、用途十分广泛的大型起重设备。在铁路货场、港口码头装卸集装箱,在水电站起吊大坝闸门,在建筑工地进行施工作业,在贮木场堆积木材等都得到了广泛的应用。 根据要求和用途不同,龙门起重机的参数、规格和结构形式也是各式各样。由于偏轨箱形龙门起重机具有许多优点,目前,国内外生产的龙门起重机以偏轨箱形龙门起重机居多,本论文主要研究偏轨箱形龙门起重机金属结构的设计计算,按照《起重机设计规范》规定的载荷组合,分析起重机的受力情况,计算起重机承受的自重载荷、起升载荷、水平惯性载荷、起重机运行时的风载荷等,并将上述各种载荷分为垂直载荷和水平载荷计算主梁所受的内力。根据相应的计算结果校核主梁危险截面(即小车位于跨中时的跨中截面和小车位于有效悬臂端时的支座截面)的强度、刚度及稳定性,从而判断该主梁结构的是否满足设计要求。 本论文以实际结构为例,对起重机结构系统进行了详细的分析计算,可为起重机相关的设计提供一定的辅助和参考作用。 关键词:龙门起重机,金属结构,主梁,支腿

龙门起重机设计问题汇总

起重机设计应严格执行“起重机设计规范”等有关的技术法规。我在多年起重机钢结构设计中经常要使用钢结构设计规范” GBJ1-89。在使用中应注意: 1 ,许用应力按“起重机设计规范”选取。“起重机设计规范”的制定是按半概率分析,许用应力法而来的。“钢结构设计规范”的制定是按全概率分析。极限状态设计法,分项系数表达式而来的。两者是不同的。如:起重机 2 类载荷(最大使 用载荷)的许用应力:180Mpa。钢结构设计规范”强度设计值(第一组):215Mpa。不能用错! 2 ,杆件的计算方法可用“钢结构设计规范”。因按全概率分析导出的公式,则结果与实际接近。 3 ,起重机钢结构计算中按不同的起重机工作制度,按不同的载荷组合,按不同的静载分析外力,按动载的实际发生,查表确定动载系数。然后计算杆件的内力。而建筑钢结构则不同:应用分项系数表达式进行分析,如:静载乘以分项系数。恒载:1.2;动载:1. 4 来进行计算。两者的计算方法是不同的。 所以在设计起重机钢结构时,一定要注意规范的合理使用,否则是有危险的!在运输机械中,半挂车与全挂车钢结构也是同样。方法近似起重机设计。由于我国道路状况的原因。其设计中选用动载系数一般在: 1.8-2.5。其疲劳系数一般为:1.2 -1.4 。挂车在土路上行走,车速:40 公里/ 小时时。动载系数可达:3 -4。 所以不同的钢结构,要注意其特点:挂车计算中: 1 ,动载大; 2 ,钢结构杆件应力集中现象十分显著。 3 ,低周疲劳现象明显。 挂车钢结构的计算方法: 1 ,静应力值乘以动载系数小于许用应力值。 2 ,材料的屈服强度值与静应力值之比大于许用安全系数值在起重机钢结构设计中经 常要在选用行架式还是格构式杆件上拿不定主意(外 观基本一样)。我认为: 1 ,梁结构应选用行架式。其内部的各杆全部是二力杆。受力明确。上下弦杆按弯矩图规律分配。腹杆按剪力图规律分配。计算方法:节点法和截面法。对杆件的轴线相交要求严格。节点处的偏差最大3 毫米。 2 ,立柱结构当弯矩较大(与轴向力比较)时,选用行架式。 3 ,立柱结构当轴向力较大(与弯矩比较)时,选用格构式。格构式对杆件的轴线相交无要求。制造容易。计算方法:整体虚轴长细比的计算,整体压弯杆的计算,腹杆最大剪力的确定(计算剪力与实际剪力进行比较),单杆件稳定性的计算,焊缝计算电动葫芦行架式龙门起重机主梁的计算方法:现在有不少电动葫芦行架式龙门起重机主梁是正三角形。是由一片主行架和两片副行架组成。如何计算各杆件的内力? 1 ,应用刚度分配理论进行计算。一般主行架分配0.9 2 -0.97 的外载。其 余由两片副行架承受。 主行架的分配系数:(腹杆截面不计) K = E*A1/ (E*A1+E*A2 ) 式中:E—钢的弹性模量, A1 -主行架上下弦杆的截面积。 A2 -两片副行架上下弦杆的截面积上式化简:

龙门起重机设计计算

龙门起重机设计计算一.设计条件 1.计算风速 最大工作风速:6级 最大非工作风速:10级(不加锚定) 最大非工作风速:12级(加锚定) 2.起升载荷 Q=40吨 3.起升速度 满载:v=1m/min 空载:v=2m/min 4.小车运行速度: 满载:v=3m/min 空载:v=6m/min 5.大车运行速度: 满载:v=5m/min 空载:v=10m/min 6.采用双轨双轮支承型式,每侧轨距2米。 7.跨度44米,净空跨度40米。

8.起升高度:H 上=50米,H 下 =5米 二.轮压及稳定性计算 (一)载荷计算 1.起升载荷:Q=40t 2.自重载荷 小车自重G 1 =6.7t 龙门架自重G 2 =260t 大车运行机构自重G 3 =10t 司机室G 4 =0.5t 电气G 5 =1.5t 3.载荷计算 名称 正面侧面 风力 系数 C 高度 系数 K h 挡风 面积 A 计算 结果 CK h A 高度 h 风力 系数 C 高度 系数 K h 挡风 面积 A 计算 结果 CK h A 高度 h 货物 1.2 1.62 22 42.8 50 1.2 1.62 22 42.8 50 小车 1.1 1.71 6 11.3 68 1.1 1.71 6 11.3 68 司机 1.1 1.51 4.5 7.5 40 1.1 1.51 3 5.0 40

室 门架 1.6 1.51 188 454.2 44 1.6 1.51 142 343 44 大车 1.1 1.0 2 2.2 0.5 1.1 1.0 2 2.2 0.5 合计 518 44.8 404 工作风压:q Ⅰ=114N/m 2 q Ⅱ=190N/m 2 q Ⅲ=800N/m 2(10级) q Ⅲ=1000N/m 2(12级) 正面:Fw Ⅰ=518x114N=5.91410?N Fw Ⅱ=518x190N=9.86410?N Fw Ⅲ=518x800N=41.44410?N(10级) Fw Ⅲ=518x1000N=51.8410?N(12级) 侧面:Fw Ⅰ=4.61410?N Fw Ⅱ=7.68410?N Fw Ⅲ=32.34410?N(10级) Fw Ⅲ=40.43410?N(12级) (二)轮压计算

相关文档