文档库 最新最全的文档下载
当前位置:文档库 › Na_Ca_2_对淀粉浆中耐高温淀粉酶酶解效果的影响

Na_Ca_2_对淀粉浆中耐高温淀粉酶酶解效果的影响

Na_Ca_2_对淀粉浆中耐高温淀粉酶酶解效果的影响
Na_Ca_2_对淀粉浆中耐高温淀粉酶酶解效果的影响

Na+、Ca2+对淀粉浆中耐高温淀粉酶酶解效果的影响

徐正康,罗建勇,郭峰,周彦斌

(广州双桥股份有限公司,广东广州 510280)

摘要:在20%淀粉浆中添加不同量的Na+、Ca2+,研究它们对耐高温淀粉酶酶解淀粉的影响,结果表明:Na+、Ca2+对耐高温淀粉酶的酶解效果均有提高作用,最佳添加量分别为2.61 mmol/kg和0.50 mmol/kg。此外对Na+、Ca2+与溶液电导率的关系进行了研究,结果表明Na+、Ca2+的浓度与溶液的电导率呈明显的线性关系,在实际生产中可通过测定粉浆电导率来指导Na+、Ca2+的添加。

关键词:Na+;Ca2+;粉浆;耐高温淀粉酶;酶解效果

文章篇号:1673-9078(2010)7-700-702

Effects of Sodium and Calcium Ions on the Activity of Thermostable

Amylase in Starch Slurry

XU Zheng-kang, LUO Jian-yong, GUO Feng, ZHOU Y an-bin,

(Guangzhou Shuangqiao Co., Ltd., Guangzhou, 510280)

Abstract: The effects of sodium and calcium ions on the activity of thermostable amylase in 20% starch slurry were studied. The results showed that both Na+ and Ca2+ can improve the activity of thermostable amylase. And the best dosages of Ca2+ and Na+ added to the starch slurry were 0.50 mmol/kg and 2.61 mmol/kg, respectively. In addition, linear relationship between Na+/Ca2+ concentrations and electric conductivity was found, which could be used for determining the concentration of Na+ or Ca2+ by detection of the electric conductivity of slurry.

Key words: Na+; Ca2+; starch slurry; thermostable amylase; activity

耐高温α-淀粉酶需要添加少量的Ca2+来稳定其活性,由于自来水中含有Ca2+,一般用自来水进行淀粉调浆都能够满足生产要求。随着淀粉糖生产企业用水平衡的管理及技术水平的提高,部分淀粉调浆水采用产品蒸发浓缩产生的二次冷凝水。经检测二次冷凝水较为纯净,几乎不含有Ca2+、Na+等离子,为了保持耐高温淀粉酶酶解效果的持续稳定,保证淀粉液化工艺的稳定,淀粉糖生产企业需要了解Ca2+、Na+等离子能否真正稳定耐高温淀粉酶的活性、提高其酶解效果。而文献在此方面的报道不一,有关Ca2+对淀粉酶活性的影响备受争议,姜锡瑞等[1]认为Ca2+可以提高中温α-淀粉酶的稳定性,提高其液化效果;而耐高温α-淀粉酶对其依赖性不强。Wang-yaobing等[3]认为Ca2+提高高温α-淀粉酶的稳定性;Pitafm等[2]的研究结果则是Ca2+抑制淀粉酶活性;Na+对高温淀粉酶酶解效果的影响在国内尚见相关报道。因此,本文通过添加不同量的Na+、Ca2+,对两种离子对耐高温淀粉酶的酶解效果的影响进行了研究和探讨,并确定了其合适的添加量。同时本文还对Na+、Ca2+浓度与其溶液电导率的关系进行了研究,并拟合了关系曲线,以指导实际生产中钙、收稿日期:2010-05-11 钠离子的添加。

1 材料与方法

1.1 试验材料

食用玉米淀粉(中粮生化集团);耐高温淀粉酶(Liquozyme Supra,诺维信);NaCl(AR,广州化学试剂厂);CaCl2(AR,广州化学试剂厂)。

1.2 实验仪器

数显恒温水浴锅(上海申生科技有限公司,上海一恒科技有限公司);Thermo Orion 3 STAR酸度计(低离子电极,美国);SHIMADZU AUY220电子天平(日本);RW 20.n 电动搅拌器(美国IKA);Waters高效液相色谱仪(Waters 515水泵、2414示差折光检测器等,美国)。

1.3 实验方法

1.3.1 Na+、Ca2+对粉浆中耐高温淀粉酶酶解效果的影响

1.3.1.1 Ca2+对粉浆中耐高温淀粉酶酶解效果的影响

(1)粉浆配制方法:称取一定量的玉米淀粉,用纯净水将其配成20%(w/w)的粉浆,用1%的柠檬酸将淀粉浆pH值调至5.50,按照0.45 kg/t淀粉的量加

700

701 入耐高温淀粉酶。 (2)淀粉酶解方法:将配制好的淀粉浆置于98 ℃水浴锅中进行酶解,过程中不断搅拌并维持8 min ,之后保温,2 h 后将样品取出快速冷却终止酶解反应。

取等量(1)所配制的粉浆五份,分别加入0、0.25、0.50、0.75、1.00 mmol/kg 的Ca 2+,之后按照(2)的方法进行酶解,然后将酶解液过滤并测定其组分含量。 1.3.1.2 Na +对粉浆中耐高温粉酶酶解效果的影响

取等量的六份粉浆(以1.3.1.1(1)的方法配制淀粉浆),分别加入0、0.87、1.74、2.61、3.48、4.35 mmol/kg Na +,之后用1.3.1.1(2)方法进行酶解,然后将酶解液过滤并测定其组分含量。

1.3.1.3 同时添加 Na +、Ca 2+对粉浆中耐高温淀粉酶酶解效果的影响

以1.3.1.1(1)的方法配制淀粉浆,分别在含有0.50 mmol/kg Ca 2+的六份等量粉浆中加入0、0.87、1.74、2.61、3.48、4.35 mmol/kg 的Na +,含有2.61 mmol/kg Na +的五份等量粉浆中加入0、0.25、0.50、0.75、1.00 mmol/kg 的Ca 2+,之后用1.3.1.1(2)方法进行酶解,然后将酶解液过滤并测定其组分含量。 1.3.2 糖组分测定

本文以酶解液中二糖含量的变化来评价酶解效果[4],由此表征添加Na +、Ca 2+对耐高温淀粉酶酶解效果的影响。

检测方法:取上述制备的液化样品,纯净水稀释至2%左右,用Waters 高效液相色谱仪检测糖组分。

仪器参数:固定相:Shodex SC1011,流动相:水,示差折光检测器。检测器温度:35 ℃,进样量:20 μL ,流速:0.50 mL/min ,柱温:80 ℃。

1.3.3 不同浓度Na +、Ca 2+溶液电导率的测定

分别在纯净水中添加不同量的Ca 2+和Na +,测定添加后溶液的电导率,拟合两种离子浓度与电导率的关系曲线。

在含有2.61 mmol/kg Na +的20%粉浆中加入不同量的的Ca 2+;含有0.50 mmol/kg Ca 2+的20%粉浆中加入不同量的Na +,测定添加后溶液的电导率,拟合同时含有两种离子时其浓度与电导率的关系曲线。 2 结果与分析

2.1 Ca 2+对粉浆中耐高温淀粉酶酶解效果的影响 从图1中二糖含量的变化趋势可知,随着Ca 2+浓度的增加,耐高温淀粉酶的酶解效果是逐渐提高的,这可能是因为Ca 2+提高了耐高温淀粉酶的稳定性,使此酶可以在较长时间内维持较高的活力,提高其酶解

能力。从图中还可以看出,当Ca 2+浓度为0.50 mmol/kg 时酶解效果最好,之后随着Ca 2+的增加反而下降。因此0.50 mmol/kg 为粉浆中Ca 2+的最佳添加量。

图1 不同Ca 2+

浓度对液化液二糖含量的影响 Fig.1 The influence of Ca 2+ dosage on maltose content

2.2 Na +对粉浆中耐高温淀粉酶酶解效果的影响 由图2可知,Na +同样有稳定耐高温淀粉酶活性的作用,可以提高其酶解效果,而且随着Na +添加量的增加,其酶解效果不断升高,但在Na +的添加量升高至2.61 mmol/kg 时,酶解液中二糖含量的升高趋于平缓。结合实际,考虑到生产成本及后续的精制工艺,淀粉浆中添加2.61 mmol/kg Na +为宜。

图2 不同Na +

浓度对液化液二糖含量的影响 Fig.2 The influence of Na + dosage on maltose content

2.3 同时添加 Na +、Ca 2+对粉浆中耐高温淀粉酶酶解效果的影响

图3 含有2.61 mmol/kg 的Na +

时Ca 2+

对液化液二糖含量的影响 Fig.3 The influence of Ca 2+ dosage on maltose content in the

starch slurry containing 2.61 mmol/kg Na +

702

图4 含有0.50 mmol/kg 的Ca 2+

时Na +

对液化液二糖含量的影响 Fig.4 The influence of Na + dosage on maltose content in the

starch slurry containing 0.50 mmol/kg Ca 2+

一般淀粉浆中Ca 2+、Na +两种离子共同存在,而两者“共存”时可能会相互影响。

图3结果表明在含有2.61 mmol/kg 的Na +时,Ca 2+对耐高温淀粉酶的酶解效果仍然有提高作用,添加不同量的Ca 2+时,二糖的增长趋势同没有Na +存在时相似,说明Na +的存在不影响Ca 2+对耐高温淀粉酶的稳定作用;从图4可以看出在含有0.50 mmol/kg 的Ca 2+时,随着Na +含量的增加二糖含量持续增加,在Na +添加量达到4.35 mmol/kg 时,二糖含量仍未出现图2中的平缓趋势,因此得知,Ca 2+的存在可以促进Na +对高温酶的稳定作用。

从图3、图4中也可以发现,Ca 2+、Na +同时存在时,对耐高温淀粉酶的酶解效果的提高作用小于二者的作用和,即二者的作用效果没有叠加性。但是同时添加一定量的两种离子,均大于单独添加相同量的Na +或Ca 2+的作用效果。因此在利用耐高温淀粉酶酶解淀粉时,适合同时添加两种离子来提高其酶解效果。 2.4 Na +、Ca 2+离子浓度与电导率的关系

图5 Na +浓度与电导率的关系

Fig.5 The relationship of Na + concentration and electric

conductivity

图6 Ca 2+

浓度与电导率的关系

Fig.6 The relationship of Ca 2+ concentration and electric

conductivity

图7 0.50 mmol/kg Ca 2+和不同浓度的Na+与电导率的关系 Fig.7 The relationship of Na + concentration and electric conductivity of starch containing 0.50 mmol/kg Ca 2

图8 2.61 mmol/kg Na +

和不同浓度的Ca 2+

与电导率的关系 Fig.8 The relationship of Ca 2+concentration and electric conductivity of starch slurry containing 2.61 mmol/kg Na +

由图5、图6可知, Na +、Ca 2+的浓度与溶液的电导率呈明显的线性关系;图7和图8说明在含有0.50 mmol/kg Ca 2+时Na +的浓度与电导率、在含有2.61 mmol/kg Na +时Ca 2+的浓度与电导率也呈明显的线性关系。四条拟合曲线如图所示,其相关系数均大于0.999。因此实际生产中可用直接测定粉浆的电导率方

(下转第699页)

时其对过氧化氢的清除活性高于同浓度的Vc;此外,3种温度下提取的桦树胆水提取物中,90 ℃提取物清除过氧化氢的活性最强。

图3 桦树胆水提取物对过氧化氢的清除活性

Fig.5 The hydrogen peroxide scavenging activity of water extracts

of Fuscoporia oblique

3 结论

3.1 在3种不同温度下提取的桦树胆提取物中,90 ℃的水提取物具有最高的总酚和类黄酮含量以及最强的清除羟基自由基、超氧阴离子自由基和过氧化氢的活性。

3.2 桦树胆水提取物对超氧阴离子自由基(O2?-)、过氧化氢(H2O2)、和羟基自由基(HO·)的清除活性随着提取物用量的增加而增强,说明提取物的抗氧化活性与其浓度有一定的正相关性。

3.3 桦树胆水提取物的抗氧化活性与总酚和类黄酮的含量具有明显的正相关性。

参考文献

[1]黄年来.俄罗斯神秘的民用药用菌-桦褐孔菌[J].中国食用

菌,2002,21(4):7-8

[2]钟秀宏,孙东植.桦褐孔菌的研究进展[J].延边大学医学学

报,2004,27(4):319-320

[3]良清乐,王秋颖,樊锦燕,等.桦褐孔菌的研究进展[J].中草

药,2005,36(4):623-625

[4]Sakanaka S, Tachibana Y, Okada Y. Preparation and

antioxidant properties of extracts of Japanese persimmon leaf

tea (kakinoha-cha) [J]. Food Chemistry, 2005, 89: 569-575 [5]Lin C M, Xin P, Fei Q, et al. Antioxidant properties of water

and eheanol extracts from hot air-dred and freeze-dried daylily flowers[J]. Eur. Food Res. Teschnol., 2005, 74: 247-250. [6]陈国平,王澍.黄山贡菊提取物对羟自由基清除作用[J].化工

时刊,2005,19(5):14-17

[7]朱小霞,杨文侠.树莓叶黄酮类物质提取及抗氧化性研究[J].

现代食品科技,2009,25(5):547-549

[8]G. Miliauskasa, P R. V enskutonisa, T A. V an Beekb.

Screening of radical scavenging activity of some medicinal

and aromatic plant extracts [J]. Food Chemistry, 2004, 85:

231-237

[9]余小林,孟凌华,邓瑞君.数种果蔬的抗氧化活性评价[J].食

品科学,2001,22(12):52-56

(上接第702页)

式监控液化过程中两种离子的浓度,以便实际生产中快速、便捷地添加两种离子,保证两种离子持续在所需浓度范围内。

3 结论

3.1 Ca2+、Na+在一定浓度范围内对耐高温淀粉酶的酶解效果均有提高作用,Ca2+、Na+的最佳添加量分别为0.50 mmol/kg、2.61 mmol/kg。

3.2 Ca2+、Na+两种离子相互影响,两种离子同时添加时对耐高温淀粉酶酶解效果的提高作用小于二者的作用和,但是均大于单独添加相同量的Na+或Ca2+的作用效果。

3.3 Na+、Ca2+的浓度与溶液的电导率、在同时含有两种离子的时候其浓度与电导率均呈线性关系。因此,在实际生产中通过测定粉浆电导率来指导Na+、Ca2+的添加是可行的。

参考文献

[1]姜锡瑞,段钢.新编酶制剂实用技术手册[M].北京:中国轻工

业出版社,2002:21-28

[2]RITAFM,W AGIED,ETAL.Starch-hydrolyzing bacteria from

Etiopiansoda lakes[J].Ectremophiles,2001,5(2):35-l44

[3]Wang Y ao-Bing, Nagata Shinichi. Participation of Ions and

Solutes on the Thermostability of α-amylase [J].Chinese Journal of Biotechnology, 2004, 20(1): 104-110

[4]沈泽洞.温度、时间、PH值对酶法水解淀粉生产葡萄糖二

糖三糖四糖生成量影响的研究[J].现代食品科技,2004,

20(1):25-27

699

测定α淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响

α-淀粉酶抑制剂的研究进展

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (2) 1 α-淀粉酶抑制剂的介绍 (2) 1.1 α-淀粉酶抑制剂的来源 (2) 1.2 α-淀粉酶抑制剂的特性研究 (3) 2 α-淀粉酶抑制剂的制备 (4) 2.1 来源于天然植物的α-淀粉酶抑制剂 (4) 2.11 豆类植物 (5) 2.12 麦类植物 (5) 2.13 齿苋类植物 (6) 2.14 其他植物 (7) 2.2 来源于微生物的α-淀粉酶抑制剂 (7) 3 α-淀粉酶抑制剂的分离纯化 (8) 4 α-淀粉酶抑制剂的检测方法 (9) 4.1 碘比色法 (9) 4.2 3,5-二硝基水杨酸(DNS)比色法 (9) 5 α-淀粉酶抑制剂的筛选方法 (10) 6 α-淀粉酶抑制剂的研究进展 (11) 6.1 国内外研究概况 (11)

α淀粉酶抑制剂的研究进展 摘要:α-淀粉酶抑制剂是一种糖苷水解酶抑制剂。抑制糖类消化吸收药物,减少糖分的摄取,降低血糖和血脂含量,还可作为抗虫基因。目前在医学和农业上具有广泛的用途。本文对α-淀粉酶抑制剂的制备、检测、筛选方法、特性以及发展进行了综述,并对其前景作了展望。 关键词:α-淀粉酶抑制剂,制备,检测,筛选方法,特性Research progress of α-amylase inhibitor Abstract:α-amylase inhibitor is a kind of glycoside hydrolase inhibitor, It can be potentially use as medicines of diabetes owing to inhibiting glucose from being absorbed in the digestive tracts. Which can reduce ingestion of sugar and blood fat contet and has hypoglycemic activity, and its gene can be used as insect-resistant genes in crops breeding. There is comprehensive, application in agriculture and medicine . The preparation、detection、screening methods、characteristics and development of the α-amylase inhibitors were reviwed in this paper, and the prospects were forecasted. Key words:α-amylase inhibitor, preparation, detection, screening methods, characteristics .

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

七年级生物:探究唾液对淀粉的消化作用(附教学反思)

初中生物新课程标准教材 生物教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 生物教案 / 初中生物 / 七年级生物教案 编订:XX文讯教育机构

探究唾液对淀粉的消化作用(附教学反思) 教材简介:本教材主要用途为通过学习生物这门课程,可以让学生打开对世界的认识,提高自身的见识,本教学设计资料适用于初中七年级生物科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 〖教学目标〗 1.知识: 通过探究唾液对淀粉的消化作用,说明淀粉在口腔中已经开始被消化。 2.能力: 通过探究活动使学生掌握科学研究的基本方法,让学生针对实际现象做出合理的解释和验证,以培养学生解决实际问题的能力和决策能力,培养创新精神。 3.情感态度与价值观: 通过探究活动培养学生的团结协作精神;通过收集唾液等操作活动培养学生严谨求实的科学态度。 〖设计思路〗 本节探究活动以“分组探究”模式开展,因为探究唾液对淀粉的消化作用关键有三步:一是制备淀粉糊并取定量;二是收集唾液;三是水温调节控制。所以我把学生分成三人一组,

每人做一步,这样既可保证每个环节都得到探究又可节省时间。该模式突出以学生为主体的原则,使每个学生都有参与的机会,都能掌握一些科学研究的方法。淀粉糊的制备、唾液的收集方法由教师提供并指导学生完成。教学中应注意的问题是淀粉糊的浓度不宜太大,以免消化不完全。还应给学生解释不同人的唾液中唾液淀粉酶的含量不等,为确保淀粉消化完全,收集的唾液应尽可能纯一些,这样就要求学生在收集唾液之前要漱口。 〖学校及学生状况分析〗 我校地处太行山脚下,教学条件与城市相比较为简陋,但我校为重点中学,教学设施与本县其他学校相比又较为优越,但还不能满足每个学生的探究需求,只能以小组探究模式展开,由于教学资源有限,探究的内容也要受到限制,不能一课多探。 学生大多来自农村,求知欲望强烈,学习态度积极,回答问题踊跃,但学习方法相对比较传统,缺乏创新意识,质疑能力差,在教学过程中需要教师引导才能发现问题。 〖教学设计(课堂实录)〗 〖教学反思〗 通过这次探究活动,锻炼了学生的探究技能,提高了组织能力,并激发了学生的创造性思维,培养交流协作精神。假设的提出、方案设计和验证假设等是教师引导的结果,也是学生利用科学研究方法主动探究的结果。学生们掌握了这种方法后,就能够利用这种方法和已

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告 淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告 实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热 恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至 1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6

的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用 0.1mol/L氢氧化钠溶液调节pH值至 6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70?士0.5? 恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40?士 0.5? 恒温水浴中保温15min ,再向各管分别加入40?下预热的1,淀粉溶液 2m1,摇匀,立即放入40?恒温水浴准确计时保温 5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶 活动,准备测糖。

酶制剂在食品工业中的应用 论文

酶制剂在食品工业中的应用 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用。并对酶制剂在食品工业中的发展方向和安全问题进行了讨论。 关键词:酶制剂;食品工业;应用 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。 随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 1.酶与食品的关系 在食品生产加工中,为了保持食物原有的色、香、味和结构,就要尽量避免引起剧烈的化学反应。酶是一类具有专一性生物催化能力的蛋白质,因此作用条件非常温和。许多酶所催化的反应从动植物最初生长时就开始了,当它被作为食品时,其体内酶的催化作用仍然继续进行着。如动物体死后,其合成代谢停止,而分解代谢加快,因此就会导致组织腐败,但这可能也会改善某些食品原料的风味。在大多数成熟的水果中,由于某些酶的增加,会使得其呼吸速度加快,淀粉转变为糖,叶绿素发生降解,细胞体积快速增加。这些变化,对于水果风味的改善是有益的;而对蔬菜来讲,叶绿素的降解则是有害的。 2.与食品生产有关的酶制剂 2.1与淀粉糖和甜味剂生产有关的酶制剂 淀粉酶工业上应用酶制剂已有数十年的历史,淀粉加工用酶所占比例达到15%,是酶制剂最大的市场。近年来淀粉酶类耐热性大大提高,并已通过基因工程技术改善其品质。特别要提到的是一系列新的酶制剂的发现和应用,如在1995年已经工业化的酶转化淀粉生产海藻糖,改变了先前从酵母等食物中抽提的生产方法,生产成本大大下降。这种糖不仅耐酸、耐热、防龋齿,还可抑制蛋白质变性和油脂酸败,市场日益扩大。 2.2与油脂生产有关的酶制剂 油脂是人类食品的主要营养成分之一,有赋予食品不可缺少的风味,而且用酶法生产有益健康的油脂的正逐步应用成熟,如用DNA等高度不饱和脂肪酸作为食品的原材料所制作的食品销售额已达400亿日元。 2.3与蛋白质有关的酶制剂 蛋白质在食品加工中,不仅具有营养的功能还具有各种物理功能,提高这类功能将会增加其附加值,要达到这个目的需要利用蛋白酶类。为了以蛋白质水解后的产物作为生产氨基酸系列的调味品,就必须把蛋白质彻底分解为氨基酸。 2..4与面包生产有关的酶制剂

淀粉酶水溶液(1%,pH5.3)

淀粉酶水溶液(1%,pH5.3) 简介: 糖原染色是病理学中常规的染色方法之一,McManus 在1946年最先使用高碘酸-雪夫技术显示黏蛋白,该法常用来显示糖原和其他多糖,该染色试剂盒不仅能够显示糖原,还能显示中性黏液性物质和某些酸性物质以及软骨、垂体、霉菌、真菌、色素、淀粉样物质、基底膜等。PAS 技术是唯一可检测不同种类的黏液物质(如糖原、黏蛋白和糖蛋白)的方法,但PAS 技术却不能区别黏蛋白和糖原。若要准确鉴别黏液物质(如黏蛋白或糖原),需加入糖原消化步骤。大多数情况下可用α–淀粉酶或麦芽淀粉酶来催化糖原的糖苷键水解,形成水溶性的双糖-麦芽糖,在应用PAS 技术之前将糖原从组织切片上除去。 Leagene 淀粉酶水溶液(1%,pH5.3)由淀粉酶、磷酸盐组成,主要用于糖原PAS 染色之前切片处理。糖原消化时需要两张相同的切片,脱蜡后一张切片用a-淀粉酶水溶液(1%)处理,另一张仅用PBS 或蒸馏水处理,然后两张切片均用PAS 法染色,消化后染色消失表明存在糖原。 组成: 操作步骤(仅供参考): 1、两张相同切片,二甲苯脱蜡,梯度乙醇入水。 2、一张切片入淀粉酶溶液处理。另一张不用淀粉酶溶液处理,入水中作为对照。 3、流水冲洗两张切片。 4、进行糖原PAS 染色步骤 染色结果: 编号 名称 DG0014 Storage 淀粉酶水溶液(1%,pH5.3) 100ml 4℃ 使用说明书 1份 糖原、中性,唾液黏蛋白 红紫色 各种糖蛋白 红紫色 细胞核 蓝色 未处理的切片,糖原呈亮红色或红紫色;淀粉酶处理的切片,糖原阴性。

注意事项: 1、切片脱蜡应尽量干净,否则影响染色效果。 2、需使用一张阳性对照片验证酶的活性。 3、避免接触过多的阳光和空气,使用前最好提前取出恢复到在室温后,避光暗处使用。 4、冷冻切片染色时间尽量要短。 5、为了您的安全和健康,请穿实验服并戴一次性手套操作。 有效期:6个月有效。 相关: 编号名称 DC0032 Masson三色染色液 DF0135 多聚甲醛溶液(4% PFA) DH0006 苏木素伊红(HE)染色液 DK0022 尼氏染色液(焦油紫法) NR0040 RNase A(10mg/ml) PE0103 Acr-Bis(30%,29:1) TC0713 葡萄糖检测试剂盒(GOD-POD比色法)

实验七尿淀粉酶活性测定

实验七尿淀粉酶活性测定 淀粉酶(AMY或AMS在体内的主要作用是水解淀粉,它随机地作用于淀粉分子内的 a—1, 4糖苷键生成葡萄糖、麦芽糖、寡糖及糊精。血清中的淀粉酶主要有胰型(P型)和 唾液型(S型)及其亚型同工酶组成,P型淀粉酶主要来源于胰腺,S型淀粉酶主要来源于唾 液腺。正常淀粉酶因分子量小,故可从肾小球滤过而由尿中排出。 【目的】 1、验证淀粉酶的催化作用。 2、观察淀粉及其水解产物分别与碘反应呈现的颜色变化。 【原理】血清及尿中的淀粉酶来源于胰腺和唾液腺,正常血清与尿中有一定活性。 Winslow 氏法测定尿和血清中淀粉酶活性是将试样作等比稀释,观察一系列试样在规定的 37C、30分钟的条件下,恰好能将0.1%淀粉溶液1ml水解(指加入碘液后不再呈蓝色)的 酶量定为淀粉酶的一个活性单位,乘以尿的稀释倍数,即可得知每项ml 尿液中的淀粉酶活性。 【器材】 试管(10mn X 100mr)、试管架、电热恒温水浴箱、吸管、洗耳球、滴管。 【试剂】 1 、 9%NaCl 2、0.3%碘液 3、0.1%淀粉溶液 【操作】 1 、准备尿液(自备)。 2、取 10支试管,编号,用吸管向管中加入0.9%NaCl 1ml。 3、用1ml吸管(注意应用刻度到头的)向第一管加尿液1ml,混合,再将试管中的液 体吸起,然后任其流回试管,如此重复三次,以便全管混匀,并借此冲洗吸管内壁。吸出此混合液1ml 移入第二管中。 4、用同法处理第二管使之混匀,并取出1ml 置于第三管中。依此类推,如此继续稀释 至第九管后,吸出1ml混合液弃之,这样既可获得分别含原尿液为1/2ml,1/4ml,1/8ml, ... 1/512ml 的不同浓度的尿稀释液。第十管不加尿液作为对照管。 5、从第十管起依次向各管迅速准确加入0.1%淀粉液2ml,迅速摇匀(是否充分混匀往

淀粉酶抑制剂-来自baidu百科

能抑制α-淀粉酶的抑制剂 如链霉菌YM-25菌株产生的hairm;链霉菌S. corchoruchii菌株产生的paim以及链霉菌S. dimorph ogenes菌株产生的萃他丁(trestatin)等都是α-淀粉酶抑制剂,它们对不同来源的α-淀粉酶均显示出强的抑制作用,但不抑制β-淀粉酶和β-糖苷酶。 以萃他丁为例:它含有A,B,C三个组分的α-淀粉酶抑制剂属于低聚糖同系物。它是无色粉末,紫外光谱呈末端吸收,对蒽酮、酚-硫酸呈阳性反应,对坂口、红四唑呈阴性反应。Trestatin对猪胰α-淀粉酶、曲霉α-淀粉酶、枯草杆菌α-淀粉酶都有抑制作用,但不抑制β-淀粉酶和β-葡萄糖苷酶。 国外α-淀粉酶抑制剂研究起步较早,早在上世纪四十年代就有小麦种子中α-淀粉酶抑制剂的报道[5~7]。它是一种电迁移率为0.2,分子量为21000的蛋白质。但在随后的25年间很少有这方面的报道[8]。之后Shainkin和Birk[9]提出小麦粉中存在两种α-淀粉酶抑制剂,并阐述了它们的分离和性质。它们的电迁移率不同,对不同来源的α-淀粉酶专一性不同。从后来的研究[10~14]知道:它们在小麦种子中是多分子形式的蛋白质,能不同程度的抑制昆虫和哺乳动物的淀粉酶。 1945又在普通大豆上有过报道[15~16],1972年α-淀粉酶抑制剂曾经在微生物上有过报道,因其在医药上的价值而被广泛研究。α-淀粉酶抑制剂在20世纪70年代被深入研究,在20世纪80年代和90年代,由于发现其在医学上的重要性,尤其在抑制糖尿病和高血糖以及对昆虫选择性控制等方面具有重要作用而加速研究[17]。 70年代以来,已研究发现100多种来自植物和微生物的抑制α-淀粉酶的活性物质,有的已经进入临床实验[18]。微生物来源的糖苷水解酶抑制剂的筛选研究在近些年来已成为比较活跃的领域之一,尤其在联邦德国和日本。现已报道的这类酶抑制剂20~30种。Namiki等报道从一株链霉菌发酵液中分理出一种新的寡糖类α-糖苷水解酶抑制剂Adiposin。体内实验Trestatins对胰腺或唾液的α-淀粉酶有很强的抑制作用,并能降低血糖和血脂的浓度,是一种新的α-淀粉酶抑制剂[19]。 国内酶抑制剂方面的研究始于70年代末,福建省微生物所从土壤中筛选到产生的淀粉酶抑制剂的产生菌S-2-35菌株,并对其代谢产物的分离及其理化性质进行深入研究,研究成果显著[20],上海医药工业研究所在80年代初就开始与日本东京微生物化学研究所,日本麒麟啤酒和美国辉瑞公司等合作从土壤中寻找新的有为生物产生的生理物质的研究,建立淀粉酶抑制剂等的筛选模型。国内研究突出得是河北科学院生物研究所从链霉菌中获得产生α-淀粉酶抑制剂的菌种S-19-1,是国内首次从淡紫灰类群中筛选出该抑制剂菌株,建立适合S-19-1菌株的发酵工艺,并对其化学性质进行研究。发酵滤液中的α-淀粉酶抑制剂活性超过70%。经BALB小鼠试

酶在食品工业中的应用与前景

食品科学,2006(12):酶在食品工业中的应用与前景 肖玫1郭雪山2 (1南京农业大学工学院,南京210031 2南京财经大学食品科学与工程学院,南京210003) XIAO Mei 1 GUO Xue shan 2 (1. Engineering College,Nanjing Agricultural Universituy, Nanjing 210031,China ; 2. Food Science And Engineering College,Nanjing Universituy of Finance And Economics,Nanjing 210003,China) 摘要:本文介绍了酶在食品工业中的重要作用;概括了酶在肉类、鱼类加工、蛋品加工、乳品工业、果蔬加工、饮料、酿酒工业、焙烤食品和制糖中的应用;展望了酶对食品工业的发展前景。 关键词:酶;食品工业;应用;前景 The Application and the prospect of developmentof Enzy matic Techology in the Food Industry Abstracts:This paper introduces important effect of enzy in food industry,summarizes the application of enzy in the production of flesh, fish, eggs, milk, vegetable, beverage, vintage, toast food and refine suger,and gives developing prospect of enzy in food industry. Key words: Enzy;Food Industry;Application Prospect 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分,是利用酶的特异催化功能,将一种物质转化为另一种物质的技术,即将生物体内具有特定催化作用的酶类或细胞、细胞器分离出来,在体外借助工业手段和生物反应器进行催化反应来生产某种产品的工程技术。当前酶制剂的生产,主要依靠从微生物发酵液或细胞中提取有用的酶类,如——淀粉酶、糖化酶、蛋白酶、脂酶、果胶酶、纤维素酶、葡萄糖氧化酶、葡萄糖异构酶以及用于重组DNA技术的各种工具酶等。这些酶类已被广泛用于食品加工、纺织、制革、医药、加酶洗涤剂生产和基因工程中。 生物技术在食品工业中应用的代表就是酶的应用。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的

唾液淀粉酶对淀粉的消化作用要点

“唾液淀粉酶对淀粉的消化作用”的实验改进 北京市八角中学刘馥花 前言: 北京版初中生物教材(第一册)第四章生物的营养,第二节人和动物的营养中的[实验]唾液的消化作用。要求学生分组实验,人人动手。但是由于上课时间有限,且学生在取唾液时有一定的难度,需要教师上课时做思想工作;再有本次实验所需的实验用具过多,教师在准备时也有很大的难度。于是,我们针对学生的实际情况,根据学校的设备进行了实验改进。保证了学生实验的顺利进行并达到了预期的实验结果。 1.进行实验改进的原因: 1.1 做这个实验所需的仪器很多: 本实验需要的仪器有:大、小烧杯、试管、酒精灯、温度计、三脚架。我校初一每班平均近40人,那么所需的仪器如下:(以人教版教材为例计算) 仪器名称酒精灯试管温度计大烧杯小烧杯三脚架总计 需要数量(个)20 40 20 20 20 20 140 从表中可以很清楚地看到酒精灯、试管、温度计、烧杯总计有140件。对于实验设备齐全地学校来说,是不成问题的,对于我们普通学校,就有一定的难度,而且教师准备实验也要花去很多时间。 1.2 制备淀粉浆糊与取唾液需要一定的教学时间。 实验步骤的第一步是:将淀粉煮成浆糊,需要6——10分钟,之后还要取唾液,时间也需要6——8分钟。即便两步同时做,也需要10分钟左右。这样就占了一节课近1/4的时间。后边的步骤还很多,一节课下来根本就做不完实验,常常是同学们没看到结果就下课了,不能进行实验分析,不能达到实验目的。 1.3取唾液的过程中,学生的纪律不易保证。 取唾液的过程,要做好学生的思想工作和指导。有的学生觉得有趣,互相取笑,有的同学觉得恶心、不愿意做,不能保证实验的顺利进行。教师要在课前拿出一定的时间来进行学生的思想教育工作,组织教学。 2.实验的改进: 2.1 用淀粉纸代替淀粉浆糊效果比较好。 选择淀粉纸的标准:吸水性强、有韧性、洁白。通过多次实验比较了白报纸、过滤纸后发现用过滤纸做淀粉纸效果最好。

淀粉酶活性研究

淀粉酶活性研究 宁加彬1,王文移2 (青岛科技大学) 摘要:淀粉酶主要用作果汁加工中的淀粉分解和提高过滤速度以及蔬菜加工、糖浆制造、葡萄糖等加工制造。淀粉酶活性的研究在淀粉催化分解工程中占有 重要地位。文中综述了淀粉酶活性及其热稳定性,电场对淀粉酶活性的影响。 pH值、温度、淀粉浓度和钙的添加量以及瞬时高压处理对α-淀粉酶的热稳定 性和活性的影响 关键词:淀粉酶酶活性热稳定性 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的 淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。对淀粉酶的研究,有利于我们 更好的理解其催化机理。淀粉是植物种子的主要贮存物质,淀粉酶的主要作用是催化淀粉的水解,淀粉被水解成简单有机化合物并提供细胞生长所需的能量。 1、淀粉酶的研究概况 淀粉酶研究经历了一个较长的奠定和发展时期。在中国知网依据主题—— 淀粉酶进行检索,结果显示在1979-2013年共涉及15840篇文献。其中,2005 年以前的总计5256篇,2005-2010年5256篇,也就是说2005年之前的研究篇 数仅占目前土壤酶研究总数的1/3。而从2005年开始我国对土壤酶活性研究 的论文以超百篇的速度增加,且增加趋势较为明显,仅2012年就有724篇。 针对我国淀粉酶活性研究的快速发展,该文就我国淀粉酶研究种类及研究 方法的资料进行归纳总结,旨在进一步扩宽我国淀粉酶活性研究的范围,为今 后淀粉酶的研究提供一些新的思路,同时也可促进我国淀粉酶研究方法的发展。 2、淀粉酶的分类 淀粉酶是水解淀粉和糖原酶类的统称。按水解淀粉方式不同,把淀粉酶分 为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶四类。目前淀粉酶已广泛 地应用于食品、发酵、畜牧业生产、谷物加工、纺织、造纸、轻化工业、医药 和临床分析等领域 (Ashok et al.,2000;Lili,2000;柳辉等,2007;张剑等,2009)。其中,中温淀粉酶主要应用于饴糖、啤酒、黄酒、葡萄糖、味精以及抗生素等行业,也可以用于高质量的丝绸人造棉、化学纤维的退浆。淀粉 酶广泛存在于微生物、植物和动物体中。现已有大量有关土壤微生物产淀粉酶 及酶学性质的文献报道(卢涛等,2002,四川大学学报(自然科学版),39(6):1131—1133;张应玖等。2002)。

减肥降糖材料a-淀粉酶抑制剂简介g

白芸豆提取物 (高比例α-淀粉酶抑制剂) 产品说明与营养标签 (α--淀粉酶抑制剂(α-AI)≥40000 IU/g ,两小时淀粉糖化阻断率≥80%。) 〖警示〗:常规提取技术与一般饮食烹饪会完全破坏α-淀粉酶抑制剂活性,请认真阅读本文,并谨慎选择采购合作。 胡小能.2020年C版

白芸豆提取物(高比例α-淀粉酶抑制剂) 【简介】白芸豆提取物(主含α--淀粉酶抑制剂,俗称“淀粉阻断剂”),因提取时利用分层技术分离除去了杂质与大部分淀粉,同步利用酶解技术析出并保护了活性白芸豆水解蛋白粉(保留活性才是a--淀粉酶抑制剂),因此,本提取物主要有效成分为活性水解蛋白粉(化学名称是α--淀粉酶抑制剂,它是一种糖蛋白,分子量为56KDa)。反映在下表中即蛋白质。科学证明α--淀粉酶抑制剂具有非常强大的抑制淀粉酶水解淀粉转化为碳水化合物的能力。 【重要提示】 1)同样是叫白芸豆提取物,不要以为都有降糖减肥功能,是只有激活了白芸豆中的á--淀粉酶抑制剂,并在后续工序中分离并保护下来的提取物才有此功能。激活与保护活性牵涉到特殊提取工艺,一般提取工厂根本不知道此奥秘。 2)白芸豆提取物有没有降糖减肥功能,重要看两个指标,其一,蛋白质(活性水解蛋白粉)含量,这个近似于α-淀粉酶抑制剂的占比;其二,α-淀粉酶抑制剂活性(α-AI),单位IU/g。尤其是后者,最为关键。 3)白芸豆中同时含有白芸豆凝集素,这种植物凝集素(普通扁豆同)是一种防御性蛋白(就是植物的抵御外力侵害时的自毒护体能力),对人体尤其是心血管病人有一定危害,在加工工艺中往往通过高温灭其活性,一般水提取过程会经过高温,但α-淀粉酶抑制剂如遇高温也一样会失去活性。所以除去白芸豆凝集素必须用其它方法。一般提取工厂生产的白芸豆提取物(包括直接食用熟的白芸豆)不具备活性,原因也在此。 4)以上3条告诉你,激活与保护a--淀粉酶抑制剂活性在提取过程中,并不简单,不是谁都能生产出有活性或高活性的a--淀粉酶抑制剂。 5)并不是只有白芸豆才有a--淀粉酶抑制剂,实际上谷物(小麦、玉米、大米)与部分豆科含量都较高,但它们的提取工艺难度是一样的,只是出粉率(主要指α-淀粉酶抑制剂含有量)有差异,选择哪种提取源可以因需要决定,白芸豆并不是唯一的选择。 【产品基础信息】 商品名称:白芸豆提取物(主要成分α-淀粉酶抑制剂,占近半)

淀粉酶的提取要点

α-淀粉酶的提取、分离及测定 (生化试验小组-2005.4) 试验全程安排: 试验一、色谱分离淀粉酶 1.1 试剂及设备 离子交换树脂 -20℃冰箱 样品管(5-10ml试管) 1.5ml离心管 紫外分光光度计 α-淀粉酶样品 秒表 胶头吸管(进样用) 平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液) 洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠) 试剂瓶 1.2 离子交换色谱原理与方法 色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromatography, 即中文的色谱,这就是现代色谱这一名词的来源。

但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。自20世纪40年代以来以Martin为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。同样,石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用。气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析必不可少的手段和工具。 20世纪80年代以后我国也大规模采用气相色谱和高效液相色谱。随着环境科学的发展,不仅需要对大量有机物质进行分离和检测,而且也要求对大量无机离子进行分离和分析。1975年美国Dow化学公司的H.Small等人首先提出了离子交换分离抑制电导检测分析思维 即提出了离子色谱这一概念离子。色谱概念一经提出便立即被商品化产业化由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。我国从20世纪80年代开始引进离子色谱仪器,在我国八五、九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关。 色谱的分类 色谱的分类有多种,主要按两相的状态及应用领域的不同可分为两大类 1. 按应用领域不同分类制备色谱半制备色谱 2. 以流动相和固定相的状态分类气相色谱、气固色谱、气液色谱、液相色谱、液固 色谱、液液色谱、超临界色谱、毛细管电泳 离子交换色谱 离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子。它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架在苯环上引入磺酸基形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构以便于快速达到交换平衡。离子交换树脂耐酸碱,可在任何pH范围内使用,易再生处理,使用寿命长。缺点是机械强度差,易溶胀,易受有机物污染。 离子色谱基本流程图如下图所示:

(植物中)淀粉酶活性的测定

(植物中)淀粉酶活性的测定 一实验目的 本实验的目的在于掌握淀粉酶的提取及活性的测定方法。 二实验原理 植物中的淀粉酶能将贮藏的淀粉水解为麦芽糖。淀粉酶几乎存在于所有植物中,有α-淀粉酶及β-淀粉酶,其活性因植物生长发育时期不同而有所变化,其中以禾谷类种子萌发时淀粉酶活性最强。 α-淀粉酶和β-淀粉酶都各有其一定的特性,如β-淀粉酶不耐热,在高温下容易钝化,而α-淀粉酶不耐酸,在pH3.6以下容易发生钝化。通常酶提取液中同时存在两种淀粉酶,测定时,可以根据他们的特性分别加以处理,钝化其中之一,即可以测出另一种酶的活性。将提取液加热到70℃维持15分钟以钝化β-淀粉酶,便可测定α-淀粉酶的活性。或者将提取液用pH3.6的醋酸在0℃加以处理,钝化α-淀粉酶,以测出β-淀粉酶的活性。 淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定。由于麦芽糖能将后者还原成3-氨基-5-硝基水杨酸的显色基团,在一定范围内其颜色的深浅与糖的浓度成正比,故可以求出麦芽糖到含量。以麦芽糖的毫克数表示淀粉酶活性大小。 三实验材料 萌发的小麦、大麦或者豆类等(芽长1cm左右) 四实验仪器和试剂 1.仪器: 电子天平、研钵、100mL容量瓶(1个)、50mL量筒(1个)、刻度试管[25mL(9个)、10mL(1个)]、试管6支、移液管[1mL(2支)、2mL(2支)、10mL(2支)]、离心机、恒温水浴锅、7220型分光光度计 2.试剂: 1%淀粉溶液、0.4mol/LNaOH、 pH5.6的柠檬酸缓冲液:A、称取柠檬酸20.01g,溶解后稀释至1 000mL;B、称取柠檬酸钠29.41g,溶解后稀释至1 000mL;取A液13.70mL与B液26.30mL 混匀即是。 3,5-二硝基水杨酸:精确称取3,5-二硝基水杨酸1g溶于20mL1mol/LNaOH 中,加入50mL蒸馏水,在加入30g酒石酸钾钠,待溶解后用蒸馏水稀释至100mL,盖紧瓶盖,勿让CO2进入。 麦芽糖标准液:称取化学纯麦芽糖0.100g溶于少量蒸馏水中仔细移入100mL 容量瓶中,用蒸馏水稀释至刻度。 五操作步骤 1.酶液的提取: 称取萌发的水稻种子0.5g(芽长1cm左右,置于研钵中加石英砂研磨成匀浆,移入25mL刻度试管中,用水稀释至刻度,混匀后在温室下放置,每隔数分钟振荡一次,放置20分钟后离心,取上清液备用。 2.α-淀粉酶活性的测定: (1)取三支试管,编号注明1支为对照管,2支为测试管。 (2)于每管中各加入酶提取液1mL,在70℃恒温水浴中(水文的变化不应该超过±0.5℃),准确加热15分钟,在此期间β-淀粉酶受热钝化,取出后迅速在自来水中冷却。

酶在食品中的应用

酶在食品中的应用 人类对酶的应用可以追溯到几千年前。在对酶的不断认识过程中,我们给酶下了一个科学的定义:酶是由生物活细胞产生的、具有高效和专一催化功能的生物大分子。食品酶学是酶学的基本理论在食品科学和技术领域中应用的科学,主要研究食品原料、食品产品中酶的性质、结构、作用规律以及食品储藏、加工和食用品质的影响,食品级酶的生产及其在食品储藏、加工环节的应用理论与技术。 食品用酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究、开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。在食品工业中广泛采用酶来改善食品的品质以及制造工艺,酶作为一类食品添加剂,其品种不断增多。它在食品领域中的应用方兴未艾。与以前的化学催化剂相比,酶反应显得特别温和,这对避免食品营养的损失是很有利的。 酶制剂在食品行业中的应用主要体现在以下几个方面: 1. 有利于食品的保藏,防止食品腐败变质。例如:目前与甘氨酸配合使用的溶菌酶制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。如溶菌酶用于 pH6.0,7.5的饮料和果汁的防腐。乳制品保鲜新鲜牛乳中含有13毫克/100毫升的溶菌酶,人乳中含量为40毫克/毫升。在鲜乳或奶粉中加入一定量溶菌酶,不但可起到防腐作用,而且有强化作用,增进婴儿健康。 2. 改善食品色香味形态和质地。如,花青素酶用于葡萄酒生产,起到脱色作用;复合蛋白酶嫩化肌肉,使肉食品鲜嫩可口;在肉类香精生产中常用的风味酶就是一种复合酶,使最终反应达到风味化要求。 3. 保持或提高食品的营养价值。通过多种蛋白酶的作用生产多功能肽及各种氨基酸已经是营养保健行业常见的加工方法。

相关文档