文档库 最新最全的文档下载
当前位置:文档库 › 集合与组合问题

集合与组合问题

集合与组合问题
集合与组合问题

集合与组合问题

陶平生(2013镇江)

基本内容与方法:集合的结构问题,计数问题,构造问题;分类与染色法、映射与对应、容斥原理,补集与补形,归纳与递推;算两次原理, 极端原理,构造法,模型法

1、集合A 是集合{}1,2,3,,2012M = 的20元子集,且A 中的任两个元素之差为12

的倍数,求这种子集A 的个数.

2、试确定,有多少种不同的方法将集合{}1,2,3,4,5M =中的元素归入,,A B C 三个

(有序)集合,使得满足:每个元素至少含于其中一个集合之中,这三个集合的交是空集,而其中任两个集合的交都不是空集?

(即A B C =? ,而,,A B B C C A ≠?≠?≠? ) (2012,南昌市、山西预赛)

3、以任意方式,将{1,2,,9}M = 分拆成,A B 两个子集,证明:其中必有一个集,

含有成等差数列的三个数.

4、设M 为n 元集,若M 有k 个不同的子集12,,,k A A A ,满足:对于每个

{},1,2,,i j k ∈ ,i j A A ≠? ,求正整数k 的最大值.

5、将前九个正整数1,2,,9 分成三组,每组三个数,使得每组中的三数之和皆为质数;

求出所有不同分法的种数.

6、将数集},...,,{21n a a a A =中所有元素的算术平均值记为)(A P ,若B 是A 的非空

子集,且)()(A P B P =,则称B 是A 的一个“均衡子集”.试求数集}9,8,7,6,5,4,3,2,1{=M 的所有“均衡子集”的个数.(2005东南赛)

7、某校有1200名新生,每人至少认识其中n 人,试求n 的最小值,使得其中必存在彼此认识的9个人.

8、设{}12

,,2013M = ,

求最小的正整数n ,使得对于集合M 的任一个n 元子集A ,

其中必有两数之差,或者为12,或者为21.

9、设{}1,2,,2013M = 是前2013个正整数组成的集合,{}1230,,,A a a a = 是M

的一个30元子集,若A 中的元素两两互质,证明A 中至少有一半元素是质数.

10、某班共有学生33人,教师问每个学生,班上还有多少个人与其同名和还有多少个人与其同姓,结果发现,答案是从0到10的所有整数. 证明:该班必有两名学生既同名且同姓.

11、求所有的正整数n ,使得集合{}1,2,,4

M n = 可以分拆成n 个四元子集:

1

n

k

k M M

==

,对于每个集合{},,,k k k k k M a b c d =,1,2,,k n = , 而,,,k k k k a b c d 四数,

其中的一数等于另外三数的算术平均.(2010北大夏季)

12、在1,2,,2012 中取一组数,使得任意两数之和不能被其差整除,最多能取多少

个数? (2012北京大学)

13、如果非负整数m 及其各位数字之和均为6的倍数,则称m 为“六合数”.求小于

2012的非负整数中“六合数”的个数.(2012东南赛)

14、对于由前2n 个正整数构成的集合{1,2,,2}M n = ,若能将其元素适当划分,排

成两个n 项的数列:1212(,,,),(,,,)n n A a a a B b b b == ,使得,1,2,,k k a b k k n -== ,则称M 为一个友谊集,而数列,A B 称为M 的一种友谊排列,例如(3,10,7,9,6)A =和

(2,8,4,5,1)B =便是集合{1,2,,10}M = 的一种友谊排列,或记为3,10,7,9,62,8,4,5,1??

?

???

(1)、证明:若{1,2,,2}M n = 为一个友谊集,则存在偶数种友谊排列; 0

(2)、确定集合1{1,2,,8}M = 及2{1,2,,10}M = 的全体友谊排列.

15、12个赌徒每日聚赌一次,每次4人一桌,共设三桌;若其中任两人都至少同桌一

次,问赌博至少持续了多少天?

16、试求最小的正整数n ,使得对于满足条件

1

2009n

i

i a

==∑的任一具有n 项的正整数

数列12,,,n a a a , 其中必有连续的若干项之和等于30.

17、对于正整数n ,证明:2210

2n k n

k

k n

n n k

n k C C

C -??

????-+==∑.

(单身汉引理) 18、集合组Ω由11个五元集1211,,,A A A 组成,其中任意两个集合的交都不是空集,

令{}11

1

2

1

,,,i

n i A A x x

x ==

= ,i x A ?∈,Ω中含有元素i x 的集合数目为i k ,记

{}12max ,,,n m k k k = ,求m 的最小值.

19、某选区有1000个选民,分别持有编号为000,001,002,,999 的选票,选区共设

有100个投票站,编号分别是00,01,02,,99 .选区制定了一条法律:规定选民z 如果要

将选票投到票站A ,只有当该选民所持有的选票号码中,若去掉其中某一数码后,剩下的两位数恰好就是该票站的号码时方可进行,(例如,持135号票的选民,只能到13,15,35号票站之一去投票);

问,在这一法规下,该选区最多可以关闭多少个投票站,使得剩下的投票站还能确保选举照常进行?

20、给定整数2n ≥,设n 个非空有限集12,,,n A A A 满足:对任意{},1,2,,i j n ∈ ,

有i j A A i j ?=-,求12n A A A +++ 的最小值.(这里,X 表示有限集合X 的元素个数,对于集合,X Y ,规定{}{},,X Y a a X a Y a a Y a X ?=∈?∈? ).(2013冬令营)

公务员数量关系题型

公务员数量关系题型 排列组合的基本计数原理有两个,加法原理和乘法原理。下面让我们逐一进行解释: 加法原理即分类时采用的计数方法。也就是说,当完成一件事情,分成几类情况时, 把每一类的情况数计算或枚举出来,那么总的情况数,就是所有类的情况数相加。 乘法原理即分步时采用的计数方法。也就是说,当完成一件事情,分成先后几步时, 把每一步的情况数计算或枚举出来,那么总的情况数,就是所有步的情况数相加乘。 那么,何为分类,何为分步?让我们来举例说明。 如果从北京到上海,那么坐飞机可以,坐高铁可以,坐汽车可以,自驾也行,此时称 为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾 游也有1种路线,那么从北京到上海,所有的方法数就是3+4+2+1=10种方法。 如果从北京到上海,上海到广州,广州再回北京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从北京到上海有3种方法,上海到广州到4条路线,广州再回北京也 有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。 我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成 此事。 第一个例子中,想从北京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完 成这个行程,即分类当中的每一类,都可以独立完成整个事情。 第二个例子中,北京到上海,上海到广州,广州再回北京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步 当中的任何一步,都不能独立完成此事。 下面来看一个例题,加深对于分类分步的理解: 例题: 某人乘车从家直接到艺术中心有3条路线可选;从家到体育场有4条路线可选,从体 育场到艺术中心有2条路线可选,则他从家到艺术中心共有几种不同的路线? 通过阅读题目,我们可以发现,题目所求的从家到艺术中心,可以分成两类情况:要 么直接到;要么从体育场中转换乘间接到。第一类直接到,有3条路线可选;第二类间接到,需要分成2小步,第一步从家到体育场,第二步从体育场到艺术中心,根据分步相乘,第 二类一共有4×2=8条路线。故一共的路线数=3+8=11种。 一、直线异地多次相遇 甲、乙两人分别从A、B两地同时出发,相向而行,则其相遇过程如下:

集合---排列组合

职 高 数 学 单 元 测 试 集合---排列组合 (时间:100分钟,满分100分) 姓名________成绩__________ 一.填空:(每空2分,共38分) 1.从1,2,3,4,5中任选两数组成加法式子,共可组成______个不同的加法式子, 若组成无重复数字的二位数,则可组成_______个不同的二位数. 2.计算:0!+5!- C 62+P 62=____ 3.四人排成一列,甲只能站右边第一个位置,则有 种不同站法. 4.1,2,3,4,5中任取2数,可以组成______个两位偶数,如果数字可以重复, 则可组成________个两位偶数. 5.-8和-2的等比中项为________,等差中项为_______ 6.等比数列{a n }中S n =2n+1-2,则此数列的公比q=_________ 7.数列{a n }为等差数列,a n =2-3n 则S 10=__________ 8.集合A={0,1,2,3}的所有真子集有_______个. 9.已知aa 13. 6名护士,3名医生分派到三所不同的学校为学生体检,每校两名护士和一名 医生,则有 种不同的分派方法。 14.已知函数 x a y log 3=的图象过点)9 1 3(,,则a= 二.选择填空题:(每小题3分,共30分) 15.从甲地到乙地,一天中有两班火车,五班汽车开出,则在一天中不同的乘车方 法有 种 A 25 B 52 C 10 D 7 16.某地有4个不同的邮筒,现将三封信投放到邮筒中,则不同的投法有 种 A 34 B 43 C P 43 D C 43 17.4×5×6×……×(n-1)×n ×(n+1)= A C n+1n-3 B (n+1)!-3! C P n+1n-2 D P n+1n-3 18.已知C 202x-7=C 20x ,则x= A 9 B 7 C 9或7 D 5或9 19.三数m-1,2m ,4成等差,则m= A 0 B 1 C 2 D 3 20.等差数列{a n }中,a 3+a 7=20,则S 9= A 9 B 20 C 90 D 180 21.等比数列:-1,2.......的第8项为 A 256 B -256 C -128 D 128 22.已知等差数列-1,1……则此数列的S 10= A 70 B 80 C 90 D 100 23.函数13sin()25 y x π =--周期和最大值分别为 A 2,3π B ,3π C 4,3π D 3 2,2 π 24.已知平面上有八个点,其中有四点在同一直线上,此外再无三点共线情形,则 此八点可组成 个三角形。 A 50 B 52 C 54 D 56 三.解答题(25、26、27小题每小题6分,28、29小题,每小题7分,共32分) 25.计算:C 63 +C 62 -P 52 +2-1 +lg2-lg20+cos600

行测知识点数量关系汇总【精品】.pdf

数量关系 一、数量思维 1.选项关联:不是填空题 注意观察选项之间的倍数关系。 2.代入排除: 应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。 3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式 整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。 4.特值思想: 数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。 数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。 图形特值:比如特殊的长方形——正方形。 5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇; ②乘除运算:一偶就是偶,双奇才是奇。 二、基础代数公式和方法 1.基础代数公式: 完全平方:(a ±b)2 =a 2 ±2ab +b 2 平方差: a 2 -b 2=(a +b )×(a -b ) 完全立方:(a ±b)3 =a 3 ±3a 2 b +3ab 2 ±b 3 立方和差: a 3 ±b 3 =(a ±b)(a 2 ab +b 2 ) 阶乘: a m ×a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n × b n 2.常用方法: 公式法(记住常用的公式) 因子法(整除特性结合) 放缩法(用于判定计算的整数部分) n 1-n 32=1n!)(?????

构造法 特值法 三、等差数列 1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d 求和公式:s n = =na 1+ n(n-1)d 项数公式:n = +1 等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i 3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 四、等比数列 1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1q n -1 求和公式:s n = (q ≠1) 等比公式:G 2=ab (若a 、G 、b 成等比数列) 2.若m+n =p+q ,则:a m ×a n =a p ×a q 3.a m -a n =(m-n)d =q (m-n) 五、周期问题 一周7天,5个工作日。一年平均365天(52周+1天),闰年366天(52周+2天)。 心竺提醒:闰年:四年一闰,百年不闰,四百年再闰。平年365天,365÷7=52…1 大月31天,小月30天,平月(2月)28或29天。 2 12) (1n a a n +?d a a n 1 -q q a n -11 ·1) -(n m a a

行测数量关系知识点排列组合的“隔板法”

在各类行测所涉及的考试中,排列组合是每年基本会涉及的一个知识点,而这类知识点是需要有一定数学的思维去思考确实有一定的难度,但是好在考法中涉及的知识点中,本篇中公网校所介绍的内容-隔板法是属于排列组合的一种常用方法。 例题1:将20个大小形同的小球放入3个不同的盒子中,并且每个盒子要求要有一个球,有几种方法? 在这类题目中,20个大小球完全相同,即满足的要素相同;盒子不同即分配的对象不同。 1、隔板法的基本模型 当n个完全相同元素放入不同的m中,每个m至少要一个元素n,有几种方法? 注意满足两个要求:1.元素n相同2.对象m不同,且分配完3.每个对象至少要一个。 2、解题思路 类似题目满足有n相同分给不同的m,且必须分完。这类题目即将n个元素排成一排,利用板子进行分配,其中需要分给m个对象,则相当于将n个元素分成m份,需要板子m-1块分配,并且将板子插入在n元素行程的空位任何选n-1空位来放m-1板子。即 C(n-1 m-1). 以上例题有:将20给球放在一排,中有19个空位选2个位置进行插板子则有C19 2=171. 3、常见题型 例题2:现在有30份《人民日报》需要分给3个不同的部门,且要求每个部门至少要拿

一份报纸,最终分配完有几种结果? 【中公参考解析】相当于将30份报纸分成3堆,需要用2个板子进行分配,则有C29 2==1711 21819??例题3:现在有30份《人民日报》需要分给3个不同的部门,且要求A 部门至少要拿一份报纸,B 部门至少要2份,C 部门至少要3份。最终分配完有几种结果? 【中公参考解析】A 部门满足基本一份的模型,B 部门以及C 部门要求较多一些,则想着转化成至少至少要一份,则优先给B 部门1份,C 部门2份。20-3=17,现在题目转化成17报纸给3个不同部门,则有C16 2==1201 21516??例题4:现在有30份《人民日报》需要分给3个不同的部门,部门没有要求至少一份报纸。分配完有几种结果? 【中公参考解析】没有要一份,则转化成要一份的思想:提前向3个部门各借一份则总数多3份为23,即23份报纸给3个不同部门集中情况:C22 2==2311 22122??关注中公网校微信eduoffcncom ,政策问题实时答,考试信息不漏看

(完整版)排列组合知识点与方法归纳

排列组合知识点与方法归纳 一、知识要点 1.分类计数原理与分步计算原理 (1)分类计算原理(加法原理): 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完 成这件事共有N= m1+ m2+…+ m n种不同的方法。 (2)分步计数原理(乘法原理): 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有 m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= m1× m2×…× m n种不同的方法。 2.排列 (1)定义 从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不 同元素中取出m个元素的排列数,记为 . (2)排列数的公式与性质 a)排列数的公式: =n(n-1)(n-2)…(n-m+1)= 特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0! =1 b)排列数的性质: (Ⅰ) =(Ⅱ) (Ⅲ) 3.组合 (1)定义

a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取 出m个元素的一个组合 b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同 元素中取出m个元素的组合数,用符号表示。 (2)组合数的公式与性质 a)组合数公式:(乘积表示) (阶乘表示) 特例: b)组合数的主要性质: (Ⅰ)(Ⅱ) 4.排列组合的区别与联系 (1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 (2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是() A .5种 B.6种 C. 7种 D. 8种 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有

数量关系中排列组合问题的七大解题策略

中公教育研究与辅导专家邹继阳 排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。 一、排列和组合的概念 排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。 二、七大解题策略 1.特殊优先法 特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有() (A) 280种(B)240种(C)180种(D)96种 正确答案:【B】 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。 2.科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;

常用止凝血筛检试验PT、APTT和PLT结果的组合分析

常用止凝血筛检试验PT、APTT和PLT结果的组合分析 1. PT延长、APTT正常、PLT正常①常见疾病:获得性FⅦ缺乏(早期肝病、维生素K缺乏、口服华发林)。②罕见疾病:FⅦ抑制物、异常纤维蛋白原血症、某些DIC、遗传性FⅦ缺乏、某些F Ⅹ变异体。 2. PT正常、APTT延长、PLT正常①常见疾病:FⅦ、FⅨ、F Ⅺ缺乏或抑制物VWD,肝素治疗。②狼疮抗凝物、某些FⅩ变异体。 3. PT延长、APTT延长、PLT正常①常见疾病:维生素K缺乏、肝病、使用华发林或肝素治疗。②罕见疾病:FⅤ、FⅩ、FⅡ、FⅠ缺乏或抑制物、低FⅡ血症、狼疮抑制物;DIC、异常纤维蛋白原血症、原发性纤溶。 4. PT延长、APTT延长、PLT减低①常见疾病:DIC、肝病。②罕见疾病:与血小板减低相关的肝素治疗。 5. PT正常、APTT正常、PLT减低①常见疾病:血小板破坏增高性疾病、血小板生成减低性疾病、脾功能亢进、血液稀释。②罕见疾病:某些遗传性血小板病(如巨血小板症、Aldrich综合征)、骨髓增生性疾病。 6. PT正常、APTT正常、PLT增高①常见疾病:轻型vVWD、获得性血小板异常(如尿毒症)。②罕见疾病:遗传性血小板异常、血管性疾病、纤溶性疾病、异常纤维蛋白原血症、轻型FⅦ、FⅨ、F Ⅺ缺乏症。 7. PT、APTT、PLT均正常则主要考虑:①与血管异常有关的疾病:此时诊断常依赖临床特征性表现,如皮肤损害(疾病包括遗传

性出血性毛细血管扩管扩张症、过敏性紫癜、老年性紫癜、维生素C缺乏病等),如BT试验阳性可支持诊断。②FVIII缺乏症:患者止凝血筛检试验均可正常。③其他疾病④检测方法的敏感性。 明确的出血病史比阴性的实验室检查结果更有价值,根据PLT、PT 、APTT这3个项目联合检测的结果,可进一步选择止凝血检测项目: ①PLT正常、PT和APTT异常,再作Fg测定以及PT或(和)APTT 的混合试验,然后做有关凝血因子及其抑制物的检查②PLT异常,PT和APTT正常: 做血小板功能检查。③如PT、APTT、PLT均正常,而病史又提示为遗传性出血倾向, 可做vWD有关的试验,如后者也正常,则进一步检查Fg、FⅩⅢ、PAI-1或抗纤溶酶活性等。

排列 组合 定义 公式 原理

排列组合公式 久了不用竟然忘了 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种?

排列组合公式(全)教程文件

排列组合公式(全)

排列组合公式 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用

(1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9!

数量关系:排列组合基本方法之优限法

2020年的第一场“大联考”——事业单位联考即将到来,一些考生在考前也许会焦灼:快考试了,备考还有效果吗?答案是:当然有!只要你有方法有策略的学习,一定会有所收获。今天中公教育辅导专家就给大家整理了职测中排列组合的基本方法——优限法。排列组合不仅在事业单位数量关系中考察到,在C 类职测的策略制定中也有所涉及,务必要引起重视。 一、知识铺垫 在排列组合中,对有限制条件的元素或者位置采取优先安排的操作叫做优限法。即优先考虑有限制条件的元素,再去考虑没有限制条件的元素。 例如甲、乙、丙、丁四人参加演讲比赛,甲不在前两出场,其他人没要求,则出场的方法有多少种?此时很明显甲出场方式有限制,那么我们就让甲优先出场,只能从后两个位置中 二、例题 【例题1】学校准备从5名同学中安排3人分别担任亚运会3个不同项目比赛的志愿者,其中张某不能担任射击比赛的志愿者,则不同的安排方法共有()。 A.60种 B.24种 C.48种 D.36种 【答案】C 【中公解析】共有三个项目,射击项目比赛对志愿者有限制要求,其他两类比赛没有,元素有限制要求用优限法。故优先选择射击运动志愿者,共有除小张4种选择,其他两个项

【例题2】用0、1、1、1、2、2、3、4这八个数字,可以组成多少个无重复的八位数? A.2940 B.5880 C.4410 D.3528 【答案】A 【例题3】一生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有: A.24种 B.36种 C.48种 D.72种 【答案】B 以上是排列组合基本方法中的优限法,各位考生也要好好练习,总结规律,以便考试遇到能够从容应对。不再傻傻分不清楚。

以真题为例详解国考数量关系排列组合题型

以真题为例详解国考数量关系排列组合题型 排列组合问题在国家公务员考试行政能力测验数量关系专项中经常出现,近几年难度不断加大,题型及其解法也灵活多变。因此很多考生在面对这类问题时,感觉思路混乱,理不清头绪,也不知道如何备考。中公专家通过多年的公考培训实践证明,备考的有效方法是将题型与解法归类,识别模式,熟练应用。同时,还要抓住一些基本策略和方法技巧,排列组合问题便能迎刃而解。下面中公专家给大家介绍几种题型及相应的解题方法策略,希望能助广大考生一臂之力。 一、含有特殊元素或位置的题目,我们可以采用特殊优先法-------所排列或组合的元素或位置有限制,可以优先安排这些特殊的元素或位置,将问题转化为无限制问题,降低题目难度。 例题1:1名老师和6名学生排成一排,要求老师不能站在两端,那么有多少种不同的排法? A.720 B.3600 C.4320 D.7200 【答案】B。解析:本题中特殊元素是老师,特殊位置是两端(即排头和排尾),优先考虑老师的位置。 方法一:考虑特殊元素 这里特殊元素是“老师”,可优先考虑老师,老师在中间5个位置选一个有5种选法,其余的6名同学在6个位置全排列有=720种排法,故共有5×720=3600种。 方法二:考虑特殊位置 这里特殊位置是“排头和排尾”,那优先考虑这两个位置。排头的排法有6种(6个同学任选其一),排尾的排法有5种,剩下五个位置的排法有=120种,故共有 6×5×120=3600种。 二、有些组合排列问题从正面考虑,情况比较复杂,对立面又相对简单,对于这样的题目可以用对立转化法,可直接将问题转化为他的对立面。 例题2:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法? A.240 B.310 C.720 D.1080

巧解数量关系之排列组合题

巧解数量关系之排列组合题 数量关系题目是我们部队文职考试中的一个重要得分点,那么如何把握住这类题目呢?今天图图就数量关系题目中的排列组合类题目给大家做一个分享。在进行作答数量关系中的排列组合题目的时候,需要考大家掌握一个分类分步的思想。也就说先分类再分步是主要思路。分类往往根据有限制的元素来进行,考生在练习题时用这样的思路去思考,相信能够很快掌握。 一、分类分步的解题原理 何为分类分步,简单来说,我要从长沙去北京,完成这样一件事情三类方法:一是坐火车过去,有3趟不同的火车;二是坐汽车过去,有2趟不同的汽车;三是坐飞机过去,有4趟不同的航班,那么我从长沙到北京就一共有3+2+4=9种不同的方法。三类方法每一类都能单独完成从长沙到北京这件事情,所以把每一类的方法数相加,这是分类相加的原理。如果我需要从长沙先到武汉,然后到北京,假设从长沙到武汉有4种方法,从武汉到北京有3种方法,那么总方法数就有4×3=12种。这是分步相乘的原理。其特点是每一步都不能缺少。 二、真题演练 分类分步是相辅相成的,做题的时候一般是先考虑分类再考虑分步。比如说这样一道题:【例1】由1-9组成没有重复数字的三位数共有多少个? A.432 B.504 C.639 D. 720 解析:三维数可以分成个、十、百三步去完成,首先完成个位,可以放任意的数字,一共有9种方法;然后完成十位,因为不能和个位一样,所以去掉个位之后还剩下8个数字,共有8种方法;最后填百位,不能和十位以及个位相同,一共有7种方法。根据分步相乘的原理,总方法数为9×8×7=504种。选择B。 这道题相对来说比较简单,但是再加工一下就变得比较复杂了,如下题: 【例2】由0-9十个数字组成的没有重复数字的三位偶数共有多少个? A. 392 B.432 C.450 D.630 解析:分析一下这道题,题目要求是三位数,那么0这个数字就不能放在百位上了,也就是说百位共有9种方法,而十位可以任意的放置,共有10种方法,个位必须是偶数,只有0、2、4、6 、8这5种方法。但我们不能说有9×10×5 =450 种方法。因为条件要求没有重复数字。按照分类分步的想法,可以分成这两类: ①个位为0,那么此时十位有9中方法,百位有8种方法,分步相乘,共有9×8=72种。

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

数量关系技巧:排列与组合之加乘原理

数量关系技巧:排列与组合之加乘原理 中公教育研究与辅导专家周璇 排列组合是我们常用的计数工具,在使用这两个计数工具之前,我们首先要弄清加乘原理,相信大家之前都听过一句口诀:分类相加,分步相乘。但是有很多同学在计算的时候经常会混淆两个概念,从而使计算结果出现问题,那中公教育专家接下来就和大家一起来研究如何区分分类与分步。计算过程中是分类还是分步取决于这种方式是否能够直接完成目的:如果能够直接完成目的,记作分类;如果不能直接完成目的,记作分步。那我们接下来通过例题来辨析这两个概念。 【例1】某超市促销,实付满60元的顾客都能获得赠品,赠品包括5种扇子、6种挂件和4种抽纸,可从中选择一个,那么赠品共有多少种选择? A.9 B.11 C.15 D.20 【中公解析】根据题干描述,此题需要完成每位符合条件的顾客获得一件赠品这件事。赠品一共有三种:扇子,挂件和抽纸。这三种赠品数量互不相同,应该相加还是相乘呢?我们从这三种赠品中进行选择,无论是哪一个赠品都可以直接完成顾客获得一件赠品的目的,因此这三种情况为分类,应当分类相加。第一类扇子有5种选择,第二类挂件有6种选择,第三类抽纸有4种选择,那么赠品一共有5+6+4=15种选择,故选择C选项。 【例2】小周记住了自己身份证号码的前14位,但他肯定,后面4个数字全是奇数,最后一个数字是1,且后4个数字中相邻数字不相同,那么小周的身份证号码有()种可能。 A.24 B.27 C.48 D.64 【中公解析】根据题干描述,此题需要完成确定小周后四位身份证号这件事。题目要求这四位数字必须全为奇数且相邻数字不相同。我们可以从1,3,5,7,9这五位奇数当中进行选择。由于第四位已经确定为1,那么只需要确定剩余三位数字即可。这三个数据,每一位数据都有不同的选择,应当相加还是相乘呢?如果只选择第一位或只选择第二位或者只选择第三位,都不能直接完成确定小周后四位身份证号这件事,这三位数字必须全部确定完才可以,因此是分步,应当分步相加。由于第四位数已经确定,那么第三位数据所给条件较多,从第三位开始分析:第一步,确定第三位数据,可以从除了1以外的剩下四个奇数当中进行选择;第二步,确定第二位数据,可以从除了第三位奇数以外的剩下四个奇数中进行选择;

排列组合公式 全

排列组合公式 排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的

数量关系个常见问题公式

一.页码问题 对多少页出现多少1或2的公式 如果是X千里找几,公式是1000+X00*3如果是X百里找几,就是100+X0*2,X 有多少个0就*多少。依次类推!请注意,要找的数一定要小于X,如果大于X就不要加1000或者100一类的了, 比如,7000页中有多少3就是1000+700*3=3100(个) 20000页中有多少6就是2000*4=8000(个) 友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题 N个人彼此握手,则总握手数 S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2=N×(N-1)/2 例题: 某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有()人 A、16 B、17 C、18 D、19 【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X人则Cx取3=152但是在计算X时却是相当的麻烦。我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×(x-3)÷2=152计算的x=19人三,钟表重合公式 钟表几分重合,公式为:x/5=(x+a)/60a时钟前面的格数 四,时钟成角度的问题 设X时时,夹角为30X,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。 1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式) 变式与应用 2.【30X-5.5Y】=A或360-【30X-5.5Y】=A(已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用) 某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b)。 证明:设A、B两地相距S,则 往返总路程2S,往返总共花费时间s/a+s/b 故v=2s/(s/a+s/b)=2ab/(a+b) 六,空心方阵的总数 空心方阵的总数=(最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4 =最外层的每一边的人数^2-(最外层每边人数-2*层数)^2 =每层的边数相加×4-4×层数 空心方阵最外层每边人数=总人数/4/层数+层数 方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;

有限集合上的组合数学问题

2012有限集合上的组合数学问题 知识点: 1.偏序集合基本概念 一个集合A 是所谓偏序的,是指它上面定义了一个二元关系“ ”满足下列条件: 1.若y x 且x y 同时成立,则y x =(反对称律) 2.若,y x z y ,则z x (传递律) 3.对于A 的每一个x ,都有x x (反身律) 4. .,y x y x y x ≠?< 特别地,如果每一对元素之间存在关系 ,则称其为一个全序集合。 这里,符号"" 读作“小于等于”。 假定),( A 是一个有限的偏序集合。由A 中两两不可比较的元素所组成的子集合称为“不可比集合”(或象一些学者所讲的,“反链”);包含元素最多的不可比集合称为“最大不可比集合”(或极大“反链”)。用 M 表示一个最大不可比集合中元素的个数。 2.偏序集合基本问题和定理。 定理1(Dilworth 定理).在将偏序集合A 分解成不相交链(相交亦可)的并时,所需要的链的最少个数m 等于A 的最大不可比集中所含元素的个数。 注意:(1)这是组合数学理论中的又一个“最大=最小”的定理,用它可以轻易地推出例7-15中的结论。 与Menger 定理,“最大流-最小割定理”和二部图中的“K ' 'o nig 定理”遥相呼应。其实,这些“最大=最小”型的结论之间存在者一定的蕴涵或等价关系。 (2)由于这个结果是如此重要,我们有必要再给出一个快捷的证明(注意:快捷而简单的证明不一定是“好”的证明!因为它的过于简单的过程会掩盖一些事务的本质。没有经验的研究人员往往忽视这一点。)下面这个证明来自于https://www.wendangku.net/doc/369917570.html,erberg 在1967年的篇文章。 证明2:设P 是一个有限偏序集合。P 中划分为不相交的链的最小个数m =P 中的一个反链所含元素的最大个数。 显然有M m ≥。对于||P 实行数学归纳。当||P =0时定理显然成立。令C 是一个极大链。如果C P -的每一个反链至多包含1-M 个元素,则定理成立。因此,设},...,,{21M a a a 为C P -的一个反链。我们定义: }.,|{i a x i P x S ?∈=- 类似第可以定义+ S 。因为C 的及大性,所以C 中的最大元素不再- S 里面。故,按照归纳假定,- S 是M

行测数量关系易错点之排列组合

行测数量关系易错点之排列组合 2018年国考已近结束,很多考生对于行测当中数量关系反映比较吃力,究其原因主要还是没有掌握行测当中这类问题的解题技巧,基础不够扎实。其中排列组合问题属于各地省考必考高频考点,故在这里结合两道真题,希望对各位备考的小伙伴们有所帮助,尤其是对于这一块一直心存畏惧的广大考生。 1、分步计算原理 解题方法:严格按照分布逻辑,通常我们采用分布相乘的原理。 【例题】某宾馆有6个空房间,3间在一楼,3间在二楼。现有4名客人要入住,每人都住单间,都优先选择一楼房间。问宾馆共有多少种安排方式? A.24 B.36 C.48 D.72 【解析】考查计数问题,属于典型排列组合问题。 根据题意,有先安排一楼的,再安排二楼的,必须分为两个步骤,缺一不可。 所以采用分布原理即可。先安排一楼共有A(4,3),即从4个人选出3个人安排到一楼,那人是不一样的,互换位置结果是不一样的,所以用排列而不是组合。一楼安排完安排二楼,那只剩下一个人,选择二楼一个房间即可,即共有三种方式。 所以,总的结果数为A(4,3)*3=4*3*2*3=72。 2、平均分组问题 解题方法:平均分组当中,不同元素均分问题,直接按照公式计算即可。 【例题】将10名运动员平均分成两组进行对抗赛,问有多少种不同的分法?( ) A.120 B.126 C.240 D252 【解析】考查计数问题,属于典型的排列组合问题。比较特殊地方在于平均分组。 10个人分两组,采用公式先选后除。 C(10,5)*C(5,5)/A(2,2)=126,故选择B选项。 这里的难点在于除这一步,分母是组数的阶乘。具体原理我会在下一个题目对比说明。 3、平均分配问题 解题方法:严格按照分布原理即可,考察队组合数本质的理解。 【例题】某公司销售部拟派3名销售主管和6名销售人员前往3座城市进行市场调研,

行测数量关系之排列组合经典模型

行测数量关系之排列组合经典模型 中公教育研究与辅导专家 杨松 在绝大部分行测考试中,排列组合是必不可少的题型,这类题目中一方面需要咱们之前讲过的四种常用方法,另一方面还需要大家学习并掌握一些经典的模型以便在考场上能快速地求解出答案。在排列组合中有两个常用的模型,错位重排和隔板模型,需要大家熟练地运用。接下来就由中公教育资深专家带领大家学习下排列组合的经典模型吧! 【例题解析】四位厨师聚餐时各做了一道拿手菜。现在要求每人去品尝一道菜,但是不能尝自己的那道菜。问有几种不同的尝法? A. 6 B. 9 C. 12 D. 15 【答案】B 。四个厨师和他们各自的拿手菜一一对应,打乱顺序后每个厨师品尝的菜都不是自己原来做的菜,因此属于是错位重排。大家需要记住的是四个元素错位重排方法数是 9。故选择B 。 【考点点拨】在行测中错位重排本身就是一种模型,不需要大家去现场计算,只需要提前记住一些简单的错位重排情况数就可以了。比如1个元素的错位重排是0种,2个元素的错位重排是1中,3个元素的错位重排是2种,4个元素是9种,5个元素是44种。 【例题解析】5个瓶子中有三个瓶子的标签贴错的情况有几种? A.9 B.18 C.20 D.30 【答案】C 。解析:先从5个瓶子里选3个有35C =10种,这3个瓶子贴错标签,构成3 个元素的错位重排有2种情况,共有35C ×2=20。故选择C 。 【例题解析】8个三好学生的名额分给3个班级,每个班级分得至少一个,求有几种分法( ) A.15 B.18 C.21 D.30 【答案】C 。解析:8个相同的名额不算头尾的空格形成了7个空,在这中间的七个空 格中任意选择2个插入板子就会自然地分成了3堆,因此有27C =21种。故选择C 。 【考点点拨】这个题清楚地给大家展示了隔板法的适用环境,有三点需要大家清楚地记下去,第一点是相同元素,第二点是分成几堆和第三点是每堆至少分一个。对应的模型公式 就是1-1 -堆数元素C 。

相关文档