文档库 最新最全的文档下载
当前位置:文档库 › 红外拉曼光谱复习题

红外拉曼光谱复习题

红外拉曼光谱复习题
红外拉曼光谱复习题

红外、拉曼光谱习题

三.问答题

1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么?

答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。 (2)产生红外吸收的条件:

1)红外辐射的能量应与振动能级差相匹配。即 v E E ?=光; 2)分子在振动过程中偶极矩的变化必须不等于零。

故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。

2. 如何用红外光谱区别下列各对化合物? a P-CH 3-Ph-COOH 和Ph-COOCH 3 b 苯酚和环己醇

答:a 、在红外谱图中P-CH 3-Ph-COOH 有如下特征峰:vOH 以3000cm-1为中心 有一宽而散的峰。而Ph-COOCH3没有。

b 、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。

3. 下列振动中哪些不会产生红外吸收峰?

(1)CO 的对称伸缩

(2)CH 3CN 中C —C 键的对称伸缩 (3)乙烯中的下列四种振动

(A )

(B )

(C ) (D )

答:(1)0

?μ,有红外吸收峰

(2)0

?μ,有红外吸收峰

(3)只有D无偶极矩变化,无红外吸收峰

4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起?

HO—

CH = O CH3—CO2CH2C≡CH (A)(B)

答:(A)HO C-H :v OH3700~3200cm-1

δOH1300~1165cm-1

v CH(O)2820~2720cm-1双峰

v C=O1740~1720cm-1

苯骨架振动:1650~1450 cm-1

苯对位取代:860~800 cm-1

v=CH3100~3000cm-1

(B)CH3—COCH2C≡CH :

v C=O1750~1735cm-1

v C—O—C1300~1000cm-1

v C≡C2300~2100cm-1

v≡CH3300~3200cm-1

v as C—H2962±10cm-1、2926±5cm-1

v s C—H2872±10cm-1、2853±10cm-1

δas C—H1450±20cm-1、1465±20cm-1

δs C—H1380~1370cm-1

5、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合?

O

(A)

(B)

C)(D)(E)

答:(A)结构含—OH,而图中无v OH峰,排除

(C)结构中含—CNH2,伯酰胺,而图中无1650、1640cm-1的肩峰,排除。

(D)与(E)结构中有-COOH,而图中无3000cm-1大坡峰,排除。

(B)图中3600cm-1,3300cm-1为v Ar—N

1680cm-1,为v C=O

1600~1400cm-1为苯骨架振动

1300~1000cm-1表示有C-O-C

所以应为(B)。

6、芳香化合物C7H8O,红外吸收峰为3380、3040、2940、1460、1010、690和740cm-1,试推导结构并确定各峰归属。

解:Ω= 7 + 1 – 8/2 = 4

3380cm-1表明有-OH

3040cm-1表明为不饱和H

O

690与740cm -1表明苯单取代 得

3380cm -1为v OH ; 2940cm -1为CH 2的v C-H ; 3040cm -1为v =C-H ; 1460cm -1为苯骨架振动; 1010cm -1,为v C-O ;

690与740cm -1为苯单取代δC-H

7、化合物C 4H 5N ,红外吸收峰:3080, 2960, 2260, 1647, 990和935cm -1,其中1865为弱带,推导结构。

解:Ω= 4 + 1 + )2

5

1(

= 3 CH 2 = CHCH 2C≡N

3080cm -1为v =C-H ;

2960cm -1、2260cm -1为v C-H ; 1647 cm -1为v C≡N ; 1418cm -1为δC-H ;

990cm -1和935cm -1为烯烃—取代δ=C-H

7.一个化合物的结构不是A 就是B,其部分光谱图如下,试确定其结构。

(A) (B)

答:由图可得,在2300cm-1左右的峰为C≡N产生的。而图在1700cm-1左右也没有羰基的振动峰。故可排除(B)而为(A)

8.下图是分子式为C

8H

8

O化合物的红外光谱图,bp=202℃,试推测其结构。

答:其结构为

9.请根据下面的红外光谱图试推测化合物C

7H

5

NO

3

(mp106℃)的结构式。

答:其结构为

10.分子式为C

8H

16

的未知物,其红外光谱如图,试推测结构。

答:其结构为

11. 红外光区的划分?

答:红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)、中红外区域(2.5-25微米)、远红外区(25-1000微米)。

12.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低?

答:(1)振动光谱有红外吸收光谱和激光拉曼光谱两种类型。

(2)价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。

1)伸缩振动:指键合原子沿键轴方向振动,这是键的长度因原子的伸缩运动发生变化。

2)弯曲振动:指原子离开键轴振动,而产生键角大小的变化。

(3)伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。

13.说明红外光谱产生的机理与条件?

答:(1)产生机理:当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱

(2)产生条件:

1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。

2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化

14.红外光谱图的表示法?

答:红外吸收光谱图:不同频率IR光辐射于物质上,导致不同透射比,以纵座标为透过率,横座标为频率,形成该物质透过率随频率的变化曲线,即红外吸收光谱图。横坐标:波数cm-1或者波长μm ,纵坐标:透过率%或者吸光度。

15.红外光谱图的四大特征(定性参数)是什么?如何进行基团的定性分析?如何进行物相的定性分析?

答:(1)红外光谱图的四大特征(定性参数)是:谱带的数目、谱带的位置、谱带的强度、谱带的形状。

(2)进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。

(3)进行物相的定性分析:

1)对于已知物:

a、观察特征频率区,判断官能团,以确定所属化合物的类型

b、观察指纹频率区,进一步确定基团的结合方式

c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,可确认为一种物质。

2)对于未知物:

A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离

B、按照鉴定已知化合物的方法进行

16.何谓拉曼效应?说明拉曼光谱产生的机理与条件?

答:(1)光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。

(2)产生的机理:由于光子与试样分子发生非弹性碰撞,使得分子的极化率发生变化,最终使散射光频率和入射光频率有差异。

17.请叙述CS

的拉曼和红外活性的振动模式?

2

对称伸缩振动时只有拉曼活性,反对称伸缩振动和弯曲振动时只有红外答:CS

2

活性。

18.比较拉曼光谱与红外光谱。

答:(1)相同点:两光谱都属于分子振动光谱

(2)不同点:

1)两光谱的光源不同:拉曼光谱用单色光很强的激光辐射,频率在可见光范围;红外光谱用的是红外光辐射源,波长大于1000nm的多色光

2)产生机理不同:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,红外光谱是分子对红外光的吸收,强度由分子偶极矩决定,其适用于研究不同原子的极性键的振动。

3)光谱范围不同:红外光谱的范围是4000-400cm-1,拉曼光谱的范围是4000-40cm-1.拉曼光谱的范围较红外光谱范围宽。

4)制样、操作的不同:

a、在拉曼光谱分析中水可以作溶剂,但是红外光谱分析中水不能作为溶剂。

b、拉曼光谱分析中样品可盛于玻璃瓶,毛细管等容器中直接测定,但红外光谱分析中不能用玻璃容器测定。

c、拉曼光谱分析中固体样品可直接测定,但红外光谱分析中固体样品需要研磨制成KBr压片。

19.红外与拉曼活性判断规律?指出下列分子的振动方式哪些具有红外活性、哪些具有拉曼活性。为什么?

(1)O

2、H

2

(2)H

2

O的对称伸缩振动、反对称伸缩振动和弯曲振动。

答:(一)红外与拉曼活性判断规律:产生偶极矩变化有红外活性,反之没有。分子极化率变化有拉曼活性,反之没有,凡有对称中心的分子,其分子振动仅对红外和拉曼之一有活性;凡无对称中心的分子,大多数分子振动对红外和拉曼都是有活性的;少数分子的振动即红外非活性又拉曼非活性。

(二)(1)O2、H2都有两个原子,且为线性分子,所以其振动形式有3n-5=3*2-5=1中,即对称伸缩振动,它们分子的振动是拉曼活性,红外非活性,因为它们是对称分子,其振动中并没有偶极矩的变化,有极化率的变化。

(2)H2O分子中有3个原子,且为非线性分子,所以其振动形式有3n-6=3*3-6=3种,即对称伸缩振动、反对称伸缩振动和弯曲振动三种振动都对红外和拉曼都具有活性,因为水分子为无对称中心的分子,其振动同时使偶极矩和极化率产生变化。

20、比较红外与拉曼光谱分析的特点。什么样的分子的振动具有红外或拉曼活性?

答:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,与红外光谱分析相比,拉曼光谱的特点:

1)光谱范围较红外光谱宽,为40-4000cm-1;

2)水可以作溶剂;

3)样品可盛于玻璃瓶,毛细管等容器中直接测定;

4)固体样品可直接测定;

5)激光方向性强,光束发散小(1-2μ)可测定一定深度的微区样品;如测包裹体中的物质;

6)合频、倍频谐波少甚至无;图谱简单。

21、何为有机基团的IR特征吸收峰?影响红外吸收峰发生移动的因素有哪些?答:(1)总结大量红外光谱资料后,发现具有同一类型化学键或官能团的不同化合物,其红外吸收频率总是出现在一定的波数范围内,我们把这种能代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰。

(2)影响红外吸收峰发生移动的因素可分为两类:一是内部结构因素,二是外部因素。

1)内部因素:

①电子效应:A.成键轨道类型; B.诱导效应; C.诱导效应;

②空间效应:A.场效应; B.空间障碍; C.跨环效应; D.环张力;

③氢键效应;

④互变异构;

⑤振动偶合效应;

⑥样品的物理状态的影响.

2)外部因素:

①溶剂影响:极性基团的伸缩频率常常随溶剂的极性增大而降低;

②仪器的色散元件:A.棱镜:分辨率低; B:光栅:分辨率高。

22、请叙述碳纳米管拉曼光谱中三个不同拉曼位移的物理意义。

碳纳米管研究

答:特征峰1是碳纳米管的直径,特征峰2是D带——缺陷信息,特征峰3是切向伸缩模式——电子特性。

23、解释名词:

(1)拉曼散射与瑞利散射(2)Stokes线与anti-Stokes线

(3)拉曼位移(4)拉曼光谱的表面增强效应(SERS)答:(1)单色光照射透光的样品,大部分的光被透过,小部分被散射。散射分两类:

1)拉曼散射(RamanScattering):光子与样品分子发生非弹性碰撞,不仅光子方向改变且有能量交换;

2)瑞利散射(RayleighScattering):光子与样品分子发生弹性碰撞,无能量交换,仅改变方向;

(2)STOKES线:光子将部分能量给样品分子,散射光的能量减少,在低频处测得的散射光线;

ANTI-STOKES线:光子从样品中获得能量,散射光的能量增大,在高频得测得的散射光线。

(3)能量变化所引起的散射光频率变化称为拉曼位移。

(4)SERS效应是在激发区域内,由于样品表面或近表面的电磁场的增强导致的拉曼散射信号极大的增强

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点 红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 一、相同点在于: 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。 二、不同点在于: 两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

(完整版)12红外吸收光谱法习题参考答案

红外吸收光谱法 思考题和习题 红外光谱仪与紫外-可见分光光度计在主要部件上的不同。 3.简述红外吸收光谱产生的条件。 (1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν (2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠0; 4.何为红外非活性振动? 有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。对于非直线型分子,分子基本振动数为3n-6。而对于直线型分子,分子基本振动数为3n-5。 振动吸收峰数有时会少于振动自由度其原因可能为: 分子对称,振动过程无偶极矩变化的红外非活性活性。 两个或多个振动的能量相同时,产生简并。 吸收强度很低时无法检测。 振动能对应的吸收波长不在中红外区。

6.基频峰的分布规律有哪些? (1)折合质量越小,伸缩振动频率越高 (2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。 (3)同一基团,一般ν> β > γ 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 共轭效应的存在,常使吸收峰向低频方向移动。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 以脂肪酮与芳香酮比较便可说明。 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1。C C ≡ν峰位在2260-2100cm -1 , 是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别位于 1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左 右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 11.简述傅立叶变换红外光谱仪的工作原理及傅立叶变换红外光谱法的主要特点。 傅里叶变换红外光谱仪是通过测量干涉图和对干涉图进行快速Fourier 变换的方法得到红外光谱。它主要由光源、干涉仪、检测器、计算机和记录系统组成。同色散型红外光谱仪比较,在单色器和检测器部件上有很大的不同。由光源发射出红外光经准直系统变为一束平行光束后进人干涉仪系统,经干涉仪调制得到一束干涉光,干涉光通过样品后成为带有样品信息的干涉光到达检测器,检测器将干涉光讯号变为电讯号,但这种带有光谱信息的干涉信号难以进行光谱解析。将它通过模/数转换器(A/D)送入计算机,由计

拉曼光谱、红外光谱、XPS的原理及应用..

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别 1) 拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。 2) 在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。 3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。4)拉曼光谱与红外光谱可以互相补充、互相佐证。 红外光谱与拉曼光谱的比较 1、相同点 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。 2、不同点 (1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光; (2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 拉曼光谱和红外光谱的区别 红外光谱和拉曼光谱都属于分子振动光谱,都是研究分子结构的有力手段。红外光谱测定的是样品的透射光谱。当红外光穿过样品时,样品分子中的基团吸收红外光产生振动,使偶极矩发生变化,得到红外吸收光谱。拉曼光谱测定的是样品的发射光谱。当单色激光照射在样品上时,分子的极化率发生变化,产生拉曼散射,检测器检测到的是拉曼散射光。 单色激光照射样品后,产生瑞利散射和拉曼散射。瑞利散射是激光的弹性散射,不负载样品的任何信息。拉曼散射又分为斯托克斯散射和反斯托克斯散射,拉曼散射负载有样品的信息。

十二章 红外吸收光谱法△

1、红外光区是如何划分的?写出相应的能级跃迁类型。 红外线(或红外辐射)是波长长于可见光而短于微波的电磁波(0.76~1000μm)。习惯上按红外线波长的不同,将红外线划分为三个区域,0.76~2.5μm称为近红外区(低于1000nm 为分子价电子,1000~2500nm为分子基团振动),2.5~25μm为中红外区(振动能级跃迁),25μm以上为远红外区(转动能级跃迁)。 2、红外吸收光谱法与紫外-可见吸收光谱法有何不同? 红外吸收光谱法,即根据样品(中)红外吸收光谱进行定性、定量及测定分子结构的方法。因为红外线的照射能量较低,只能引起分子振动能级的跃迁。而紫外-可见吸收光谱法紫外-可见光区为200~800nm,属于电子光谱,作用于具有共轭结构有机分子外层电子和有色无机物价电子,是由电子跃迁引起的光谱。 3、简述红外吸收光谱产生的条件。 满足两个条件: ①红外辐射的能量必须与分子的振动能级差相等,即E L=△V·hν或νL=△V·ν 即分子(或基团)的振动频率与振动量子数之差△V之积等于红外辐射的照射频率。 ②分子振动过程中其偶极矩必须发生变化,即△μ≠0,只有红外活性振动才能产生吸收峰。 4、何为红外非活性振动? 红外非活性振动是不能引起偶极矩变化,不吸收红外线的振动。(补充:红外活性振动就是能引起偶极矩变化而吸收红外线的振动,简并是振动形式不同但是振动频率相同而合并的现象。) 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。 原因:①首要原因:简并。②只有在真的过程中偶极矩发生变化的振动才能吸收能量相当的红外辐射,而在红外吸收光谱上才能观测到吸收峰。即红外非活性振动是又一原因。 6、基频峰的分布规律有哪些? ①折合相对原子质量越小,基团的伸缩振动频率越高。所有含氢基团折合相对原子质量较小,因此其伸缩振动的基频峰,一般都会出现在中红外吸收光谱高波数区(左端)。 ②折合相对原子质量相同的基团,其化学键力常数越大,伸缩振动基频峰的频率越高。 ③折合相对原子质量相同的基团,一般ν(伸缩振动)>β(面内弯曲振动)>γ(面外弯曲振动)。 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 比如脂肪酮和芳香酮。前者频率1715㎝-1,后者频率1685㎝-1。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 8、如何利用红外吸收光谱区别烷烃、烯烃及炔烃? P242,脂肪烃类。 9、如何在谱图上区别异丙基及叔丁基? 当2个或3个甲基连接在同一碳原子上时,则δs CH3吸收峰分裂为双峰。如果是异丙基,双峰分别位于1385㎝-1和1375cm-1左右,其峰强基本相等;如果是叔丁基,双峰分别位于1365㎝-1和1395㎝-1附近,且1365㎝-1峰的强度约为1395㎝-1的两倍。 10、如何利用红外吸收光谱确定芳香烃类化合物? P244 11、简述傅里叶变换红外光谱仪的工作原理及傅里叶变换红外光谱法的主要特点? 工作原理:它主要由光源、干涉仪、检测器、计算机和记录系统组成。由光源发射出红

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

红外拉曼光谱练习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是( D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是( B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则( ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是( E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是( D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是( C )

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

红外光谱与拉曼光谱比较

拉曼光谱红外光谱 相同点给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息 产生机理电子云分布瞬间极化产生诱导偶极振动引起偶极矩或电荷分布变化 入射光可见光红外光 检测光可见光的散射红外光的吸收 谱带范围40-4000cm-1 400-4000cm-1 水可做溶剂不能作为溶剂 样品测试装置玻璃毛细管做样品池不能用玻璃仪器 制样固体样品可以直接测需要研磨制成溴化钾片 拉曼光谱红外光谱 拉曼位移相当于红外吸收频率。红外中能得到的信息在拉曼中也会出现。互补 拉曼光谱也同样有三要素,此外,还有退偏振比。解析三要素(峰位、峰强、峰形) 非极性基团谱带强(S-S、C-C、N-N)极性基团的谱带强烈(C=O、C-Cl) 容易表征碳链振动较容易测定链上的取代基红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点在于:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点在于:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:(1)光谱的选择性法则是不一样的,红外光谱是要求分子的偶极矩发生变化才能测到,而拉曼是分子的极化性发生变化才能测到; (2)红外很容易测量,而且信号很好,而拉曼的信号很弱; (3)使用的波长范围不一样,红外光谱使用的是红外光,尤其是中红外,而拉曼可选择的波长很多,从可见光到NIR,都可以使用;(4)拉曼和红外大多数时候都是互相补充的,就是说,红外强,拉曼弱,反之也是如此; (5)在鉴定有机化合物方面,红外光谱具有较大的优势,无机化合物的拉曼光谱信息量比红外光谱的大。 (6)理论基础和检测方法存在明显的不同。我们说物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移,它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。 红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量;而拉曼光谱法的检测是用可见激光来检测处于红外区的分子的振动和转动能量,它是一种间接的检测方法。

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

红外吸收光谱解析

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。第二节红外吸收光谱的基本原理

一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 (1)、基本振动的类型 1πμ2c K m 1m 2m 1m2+ K μ

相关文档
相关文档 最新文档