文档库 最新最全的文档下载
当前位置:文档库 › 采用改进细菌觅食算法的风_光_储混合微电网电源优化配置_马溪原

采用改进细菌觅食算法的风_光_储混合微电网电源优化配置_马溪原

采用改进细菌觅食算法的风_光_储混合微电网电源优化配置_马溪原
采用改进细菌觅食算法的风_光_储混合微电网电源优化配置_马溪原

细菌觅食算法MATLAB实现

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %*********************细菌觅食算法********************** %%%%%%%%%%%%%%%%%%%-----BFA算法-----%%%%%%%%%%%%%%%%%%% clear; clc; %-----(1)初始化参数----- bounds = [-5.12 5.12;-5.12 5.12]; % 函数变量范围 p = 2; % 搜索范围的维度 s = 26; % 细菌的个数 Nc = 50; % 趋化的次数 Ns = 4; % 趋化操作中单向运动的最大步数 C(:,1) = 0.001*ones(s,1); % 翻转选定方向后,单个细菌前进的步长 Nre = 4; % 复制操作步骤数 Ned = 2; % 驱散(迁移)操作数 Sr = s/2; % 每代复制(分裂)数 Ped = 0.25; % 细菌驱散(迁移)概率 d_attract = 0.05; % 吸引剂的数量 ommiga_attract = 0.05; % 吸引剂的释放速度 h_repellant = 0.05; % 排斥剂的数量 ommiga_repellant = 0.05;% 排斥剂的释放速度 for i = 1:s % 产生初始细菌个体的位置 P(1,i,1,1,1) = -5.12 + rand*10.24; P(2,i,1,1,1) = -5.12 + rand*10.24; end %------------------细菌趋药性算法循环开始--------------------- %-----(2)驱散(迁移)操作开始----- for l = 1:Ned %-----(3)复制操作开始----- for k = 1:Nre %-----(4)趋化操作(翻转或游动)开始----- for j = 1:Nc %-----(4.1)对每一个细菌分别进行以下操作----- for i = 1:s %-----(4.2)计算函数J(i,j,k,l),表示第i个细菌在第l次驱散第k次 %----------复制第j次趋化时的适应度值----- J(i,j,k,l) = Cost(P(:,i,j,k,l)); %-----(4.3)修改函数,加上其它细菌对其的影响----- Jcc = sum(-d_attract*exp(-ommiga_attract*((P(1,i,j,k,l)-... P(1,1:26,j,k,l)).^2+(P(2,i,j,k,l)-P(2,1:26,j,k,l)).^2))) +... sum(h_repellant*exp(-ommiga_repellant*((P(1,i,j,k,l)-... P(1,1:26,j,k,l)).^2+(P(2,i,j,k,l)-P(2,1:26,j,k,l)).^2))); J(i,j,k,l) = J(i,j,k,l) + Jcc; %-----(4.4)保存细菌目前的适应度值,直到找到更好的适应度值取代之

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

细菌趋化觅食

细菌觅食算法(Bacterial Foraging Algorithm,BFA)[亦有称为细菌觅食优化算法(Bacterial Foraging Optimization algorithm,BFO||BFOA)]由K.M.Passino于2002年基于Ecoli大肠杆菌在人体肠道内吞噬食物的行为,提出的一种新型仿生类算法。该算法因具有群体智能算法并行搜索、易跳出局部极小值等优点,成为生物启发式计算研究领域的又一热点。 细菌觅食算法模仿大肠杆菌在人体肠道内觅食行为,属于仿生类优化算法。在BFA模型中,优化问题的解对应搜索空间中细菌的状态,即优化函数适应值。BFA算法包括趋化(chemotaxis)、复制(reproduction)和驱散(elimination-dispersal)3个步骤。 ①细菌向富养区域聚集的行为称为趋化。在趋化过程中,细菌运动模式包括翻转(tumble)和前进(run||swim)。细菌向任意方向移动单位步长定义为翻转。当细菌完成一次翻转后,若适应值得到改善,将沿同一方向继续移动若干步,直至适应值不再改善,或达到预定的移动步数临界值。此过程定义为前进。 ②一旦生命周期结束,即达到临界趋化次数,细菌将进行繁殖。细菌的繁殖过程遵循自然界“优胜劣汰,适者生存”原则。以趋化过程中各细菌适应值累加和为标准,较差的半数细菌死亡,较好的半数细菌分裂成两个子细菌。子细菌将继承母细菌生物特性,具有与母细菌相同的位置及步长。为简化计算,可以规定复制过程中细菌总数保持不变。 ③趋化过程可确保细菌的局部搜索能力,复制过程能加快细菌的搜索速度,但对于复杂的优化问题,趋化和复制无法避免细菌陷人局部极小现象发生。BFA引入驱散过程以加强算法全局寻优能力。细菌在完成一定次数的复制后,将以一定概率被驱散到搜索空间中任意位置。

粒子群优化算法及其应用研究

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

关于量子粒子群算法(QPSO)

关于量子粒子群算法的杂七杂八 1 关于PSO 说到GPSO,必须要说到它的源头,也就是PSO,也就是粒子群算法 按照北京航空航天大学的王小川老师说法,粒子群优化算法(Particle swarm optimization,PSO)是模拟鸟群捕食行为的优化算法。不同于遗传算法(Genetic Alogrithm,GA),粒子群算法是有记忆的,之前迭代过程中的最优位置和最优方向都会保留下来并作用于粒子群的更新。这个算法的应用太广了,如果学习了一段时间的机器学习,即将迈入深度学习的阶段,一定要迈过去的两个坎,一个是RBM,就是受限玻尔兹曼机,另一个就是PSO 1.1相关的名词解释 粒子群长度:粒子群长度等于每一个参数取值范围的大小。 粒子群维度:粒子群维度等于待寻优参数的数量。这个根据项目的具体要求可以十分容易的敲定 粒子群位置:粒子群位置包含参数取值的具体数值。 粒子群方向:粒子群方向表示参数取值的变化方向。 个人感觉这里也可以理解成想原本的粒子(或者是cluster中的拥有实际含义的矩阵)的方向向量进行进一步的分解,从某种意义上说,其实它加大了分解出来的向量之间的联系,算是在某种程度上对于数据的维度进行了一定的扩充。 适应度函数:表征粒子对应的模型评价指标。关于适应度函数的取值其实不止一个算法或者是模型中提到了关于适应度函数的具体含义与在具有特定条件与背景之下可能有效的适应度函数的取法,经典的如北京航空航天大学的王小川老师在他的著作中认为可以将适应度函数的取值设定为cluster中的单个样本的值对应的总的cluster的mean值的均方差的倒数,当然这个说法并不唯一,而且是在不同的条件下取值并不完全相同。《43个案例分析》中单只要是涉及到函数的拟合的,适应度函数的取值都为待拟合的函数的取值的倒数。目前尚无较为肯定的经验公式或者是对应的参照物图表可以归纳所有情况。 pbest:(局部最优)pbest的长度等于粒子群长度,表示每一个参数取值的变化过程中,到目前为止最优适应度函数值对应的取值。 gbest:(全局最优)gbest的长度为1,表示到目前为止所有适应度函数值中最优的那个对应的参数取值。 1.2关于粒子的更新 在对于具有实际含义的矢量进行了分解之后,使用不同的矢量表示出原本的矢量,写成坐标

相关文档
相关文档 最新文档