文档库 最新最全的文档下载
当前位置:文档库 › 【精品试卷】高考题精解分析:31带电粒子在电场中的类平抛运动在磁场中的偏转复习专用试卷

【精品试卷】高考题精解分析:31带电粒子在电场中的类平抛运动在磁场中的偏转复习专用试卷

【精品试卷】高考题精解分析:31带电粒子在电场中的类平抛运动在磁场中的偏转复习专用试卷
【精品试卷】高考题精解分析:31带电粒子在电场中的类平抛运动在磁场中的偏转复习专用试卷

高中物理学习材料 (精心收集**整理制作)

高频考点:带电粒子在电场中的类平抛运动、在磁场中的偏转

动态发布:2011全国理综第25题、2008天津理综第23题、2008宁夏理综第24题

命题规律:带电粒子在电场中的类平抛运动、在磁场中的偏转是带电粒子在电场磁场中运动的重要题型,是高考考查的重点和热点,一般以压轴题出现,难度大、分值高、区分度大。

命题分析

考查方式一 考查带电粒子在倾斜边界电场中的类平抛运动、在磁场中的匀速圆周运动

【命题分析】电粒子在倾斜边界上的类平抛运动可迁移在斜面上的平抛运动问题的分析方法、在磁场中的匀速圆周运动可依据洛伦兹力等于向心力列方程解答。此类题难度中等。 例1. (2011全国理综第25题)如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。一质量为m 、电荷量为q (q >0)的粒子以速度v 0从平面MN 上的P 0点水平向右射入I

区。粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。求粒子首次从II 区离开时到出发点P 0的距离。粒子的重力可以忽略。

【标准解答】带电粒子进入电场后,在电场力作用下沿抛物线运动,其加速度方向竖直向下,设其大小为a ,由牛顿运动定律得qE=ma ①

经过时间t 0,粒子从平面MN 上的点P 1进入磁场,由运动学公式和几何关系得,

v 0t 0=

12

at 02 ②

粒子速度大小v 1为v 1=()2

2

00v at +。③

设速度方向与竖直方向的夹角为α,tan α=

v at 。④ 此时粒子到出发点P 0的距离为s 0=2v 0t 0 ⑤

此后粒子进入磁场,在洛仑兹力作用下做匀速圆周运动,圆

周半径r 1=

1

mV qB

.⑥ 设粒子首次离开磁场的点为P 2,弧12PP 所张的圆心角为2β,则点P 1到点P 2的距离为 s 1=2r 1sin β,⑦

由几何关系得 α+β=45°⑧

匀速

圆周运动可依据洛伦兹力等于向心力列方程解答。此类题难度中等。

例2(2008天津理综第23题)在平面直角坐标系xOy 中,第I 象限存在沿

y 轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m ,电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成60o角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求: ⑴M 、N 两点间的电势差U MN ; ⑵粒子在磁场中运动的轨道半径r ; ⑶粒子从M 点运动到P 点的总时间t .

v 0

B M

O

x

N

P

θ

y

【标准解答】⑴设粒子过N 点的速度为v ,有

cos θ=v v

v =2v 0

粒子从M 点到N 点的过程,有

22

1122

MN qU m m =-v v 2032MN

m U q

=v

⑵粒子在磁场中以O′为圆心做匀速圆周运动,半径为O′N ,有

2

m q B r =v v

2m r qB

=

v ⑶由几何关系得:ON = rsinθ 设粒子在电场中运动的时间为t 1,有

ON =v 0t 1

13m t qB

=

例3(2008宁夏理综第24题) 如图所示,在xOy 平面的第一象限

v

B

M

O x

N

P

θ

θ

O ?

y

有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角?,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角为?,求 (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。

【标准解答】 (1)质点在磁场中的轨迹为一圆弧。由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的速度方向垂直的直线,与OC 交于O '。由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。设圆弧的半径为R ,则有

R =dsin

由洛化兹力公式和牛顿第二定律得

R

v m qvB 2

=

将 式代入②式,得

?sin m

qBd

v =

(2)质点在电场中的运动为类平抛运动。设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有

v 0=v cos

电磁场金典高考试题专题训练详细答案

电磁场金典高考试题专题训练详细答案 1、(2007山东25 18分)飞行时间质谱仪可以对气体分子进行分析。如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的初速度。 (1)当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2,使离子到达探测器。请导出离子的全部飞行时间与比荷K (K=ne/m )的关系式。 (2)去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁场,磁感应强度B ,若进入a 、b 间所有离子质量均为m ,要使所有的离子均能通过控制区从右侧飞出,a 、b 间的加速电压U 1至少为多少? (1)由动能定理:neU1=1/2mv2 n 价正离子在a 、b 间的加速度a1=neU1/md 在a 、b 间运动的时间t1=v/a1=1 2neU m d 在MN 间运动的时间:t2=L/v 离子到达探测器的时间:t =t1+t2= 1 22KU L d (2)假定n 价正离子在磁场中向N 板偏转,洛仑兹力充当向心力,设轨迹半径为R ,由牛顿第二定律nevB =mv2/R 离子刚好从N 板右侧边缘穿出时,由几何关系:R2=L2+(R -L/2)2 由以上各式得:U1=25neL2B2/32m 当n =1时U1取最小值Umin =25eL2B2/32m 2、(2008山东25 18分)两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0,两板间距h=10π2mE 0qB 02 (l)求位子在0~t 0时间内的位移大小与极板间距h 的比值。 (2)求粒子在极板间做圆周运动的最大半径(用h 表示)。 (3)若板间电场强度E 随时间的变化仍如图l 所示,磁场的变化改为如图3所示.试画出粒子在板间运动的轨迹图(不必写计算过程)。 解法一:( l )设粒子在0~t0时间内运动的位移大小为s1

带电粒子在电场中的运动练习题(含答案)

带电粒子在电场中的运动 1.如图所示,A 处有一个静止不动的带电体Q ,若在c 处有初速度为零的质子和α粒子,在电场力作用下由c 点向d 点运动,已知质子到达d 时速度为v 1,α粒子到达d 时速度为v 2,那么v 1、v 2等于:( ) A. :1 B.2 ∶1 C.2∶1 D.1∶2 2.如图所示, 一电子沿等量异种电荷的中垂线由 A →O → B 匀速运动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和方向变化情况是:( ) A .先变大后变小,方向水平向左 B .先变大后变小,方向水平向右 C .先变小后变大,方向水平向左 D .先变小后变大,方向水平向右 3.让 、 、 的混合物沿着与电场垂直的方向进入同一有界匀强电场偏转, 要使它们的偏转角相同,则这些粒子必须具有相同的( ) A.初速度 B.初动能 C. 质 量 D.荷质比 4.如图所示,有三个质量相等,分别带正电,负电和不带电的小球,从上、下带电平行金属板间的P 点.以相同速率垂直电场方向射入电场,它们分别落到A 、B 、C 三点, 则 ( ) A 、A 带正电、 B 不带电、 C 带负电 B 、三小球在电场中运动时间相等 C 、在电场中加速度的关系是aC>aB>aA D 、到达正极板时动能关系 E A >E B >E C 5.如图所示,实线为不知方向的三条电场线,从电场中M 点以相同速度垂直 于电场线方向飞出a 、b 两个带电粒子,运动轨迹如图中虚线所示,不计粒 子重力及粒子之间的库仑力,则( ) A .a 一定带正电,b 一定带负电 B .a 的速度将减小,b 的速度将增加 C .a 的加速度将减小,b 的加速度将增加 D .两个粒子的动能,一个增加一个减小 6.空间某区域内存在着电场,电场线在竖直平面上的分布如图所示,一个质量为m 、电荷量为q 的小球在该电场中运动,小球经过A 点时的速度大小为v 1,方向水平向右,运动至B 点时的速度大小为v 2, 运动方向与水平方向之间的夹角为α,A 、B 两点之间的高度差与水平距离均为H ,则以下判断中正 确的是( ) A .若v 2>v 1,则电场力一定做正功 B .A 、B 两点间的电势差2221()2m U v v q =- C .小球运动到B 点时所受重力的瞬时功率2P mgv = D .小球由A 点运动到B 点,电场力做的功22211122 W mv mv mgH =-- 2 H 11H 21H 31

高中物理带电粒子在电场中的运动典型例题解析

带电粒子在电场中的运动专题练习 1.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角θ=30°,已知带 电微粒的质量m =1.0×10-7kg ,电量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2 ,结果保留二位有效数字)求: (1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向? (3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少? 2.一个带电荷量为-q 的油滴,从O 点以速度v 射入匀强电场中,v 的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨迹的最高点时,它的速度大小又为v ,求: (1) 最高点的位置可能在O 点的哪一方? (2) 电场强度 E 为多少? (3) 最高点处(设为N )与O 点的电势差U NO 为多少? 3. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m , 两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求 (1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为 多少? (2) 以上述速度入射的带电粒子,最多能有多少落到下极板上? 4.如图所示,在竖直平面内建立xOy 直角坐标系,Oy 表示竖直向上的方向。已知该平面内存在沿x 轴负方向的区域足够大的匀强电场,现有一个带电量为2.5×10-4 C 的小球从坐标原 点O 沿y 轴正方向以0.4kg.m/s 的初动量竖直向上抛出,它到达的最高点位置为图中的Q 点,不计空气阻力,g 取10m/s 2 . (1)指出小球带何种电荷; (2)求匀强电场的电场强度大小; (3)求小球从O 点抛出到落回x 轴的过程中电势能的改变量. 5、如图所示,一对竖直放置的平行金属板A 、B 构成电容器,电容为C 。电容器的A 板接地,且中间有一个小孔S ,一个被加热的灯丝K 与S 位于同一水平线,从丝上可以不断地发射出电子,电子经过电压U 0加速后通过小孔S 沿水平方向射入A 、B 两极板间。设电子的质量为m ,电荷量为e ,电子从灯丝发射时的初速度不计。如果到达B 板的电子都被B 板吸收,且单位时间内射入电容器的电子数为n 个,随着电子的射入, 两极板间的电势差逐渐增加,最终使电子无法到达B 板,求: (1)当B 板吸收了N 个电子时,AB 两板间的电势差 (2)A 、B 两板间可以达到的最大电势差(U O ) (3)从电子射入小孔S 开始到A 、B 两板间的电势差达到最大值所经历的时间。 6.如图所示是示波器的示意图,竖直偏转电极的极板长L 1=4cm ,板间距离d=1cm 。板右端距离荧光屏 L 2=18cm ,(水平偏转电极上不加电压,没有画出)电子沿中心线进入竖直偏转电场的速度是 v=1.6×107 m/s ,电子电量e=1.6×10-19C ,质量m=0.91×10-30kg 。 (1)要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U 不能超过多大? (2)若在偏转电极上加u=27.3sin100πt (V)的交变电压,在荧光屏竖直坐标轴上能观察到多长的线段? 7.两块水平平行放置的导体板如图所示,大量电子(质量m 、电量e ) 由静止开始,经电压为U 0的电场加速后,连续不断地沿平行板的方向从 两板正中间射入两板之间。当两板均不带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图所示的周期为2t 0,幅值恒为U 0的周期 性电压时,恰好..能使所有电子均从两板间通过。问: ?这些电子通过两板之间后,侧向位移的最大值和最小值分别是多少? ?侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少? 1.(1)微粒只在重力和电场力作用下沿AB 方向运动,在垂直于AB 方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动.(2)在垂直于AB 方 向上,有qE sin θ-mg cos θ=0 所以电场强度E =1.7×104 N/C V U v 图3-1-6

带电粒子在电场中的运动(附详解答案)

带电粒子在电场中的运动 强化训练 1.(多选题)冬天当脱毛衫时,静电经常会跟你开个小玩笑.下列一些相关的说法中正确的是( ) A .在将外衣脱下的过程中,内外衣间摩擦起电,内衣和外衣所带的电荷是同种电荷 B .如果内外两件衣服可看作电容器的两极,并且在将外衣脱下的某个过程中两衣间电荷量一定,随着两衣间距离的增大,两衣间电容变小,则两衣间的电势差也将变小 C .在将外衣脱下的过程中,内外两衣间隔增大,衣物上电荷的电势能将增大(若不计放电中和) D .脱衣时如果人体带上了正电,当手接近金属门把时,由于手与门把间空气电离会造成对人体轻微的电击 2.(2012·新课标全国卷) (多选题)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( ) A .所受重力与电场力平衡 B .电势能逐渐增加 C .动能逐渐增加 D .做匀变速直线运动 3.(2011·安徽卷)如图6-3-12甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( ) A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8 4.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图所示,真空室中电极K 发出电子(初速度不计)经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时,电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m ,电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心的距离变大的是( ) A .U 1变大,U 2变大 B .U 1变小,U 2变大 C .U 1变大,U 2变小 D .U 1变小,U 2变小 5.(2011·广东卷) (多选题)如图6-3-14为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘的目的.下列表述正确的是( ) A .到达集尘极的尘埃带正电荷 B .电场方向由集尘极指向放电极 C .带电尘埃所受电场力的方向与电场方向相同 D .同一位置带电荷量越多的尘埃所受电场力越大 6.如图所示,D 是一只二极管,AB 是平行板电容器,在电容器两极板间有一带电微粒P 处于静止状态,当两极板A 和B 间的距离增大一些的瞬间(两极板仍平行),带电微粒P 的运动情况是( ) A .向下运动 B .向上运动 C .仍静止不动 D .不能确定 7.(多选题)如图6-3-16所示,灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U 1,偏转电压为U 2,要使电子在电场中偏转量y 变为原来的2倍,可选用的方法有(设电子不落到极板上)( ) A .只使U 1变为原来的1 2倍 B .只使U 2变为原来的1 2倍 C .只使偏转电极的长度L 变为原来的2倍 D .只使偏转电极间的距离d 减为原来的1 2 倍 8.(2013·沈阳二中测试) (多选题)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图6-3-17所示.由此可见( ) A .电场力为3mg B .小球带正电 C .小球从A 到B 与从B 到C 的运动时间相等

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解 析 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。 (1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度; (2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。 【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】 解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有: 20 0v qv B m r = 可得:r =0.20m =R 根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012 l v t y at == , 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =?N/C (2)粒子飞离电场时,沿电场方向速度:30 5.010y qE l v at m v ===?g m/s=0v 粒子射出电场时速度:02=v v 根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '= 根据洛伦兹力提供向心力可得: 2 v qvB m r '=' 联立可得所加匀强磁场的磁感应强度大小:4mv B qr '= =' T 根据左手定则可知所加磁场方向垂直纸面向外。

高三物理《电场和磁场》测试题及答案.doc

高三物理《电场和磁场》测试题及答案 一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的 或不答的得0分) 1. 一个电子穿过某一空间而未发生偏转,则此空间( ) A.一定不存在磁场 B.可能只存在电场 C.可能存在方向重合的电场和磁场 D.可能存在正交的磁场和电场 2. 据报道,我国第21次南极科考队于2005年在南极考查时观察到了 美丽的极光,极光是由来自太阳的高能量带电粒子流高速冲进高空稀 薄大气层时,被地球磁场俘获的,从而改变原有运动方向,向两极做 螺旋运动,如图1所示,这些高能粒子在运动过程中与大气分子或原子剧烈碰撞或摩擦从而激发大气分子或原子,使其发出有一定特征的各种颜色的光,由于地磁场的存在,使多数宇宙粒子不能达到地面而向人烟稀少的两极偏移,为地球生命的诞生和维持提供了天然的屏障,科学家发现并证实,向两极做螺旋运动的这些高能粒子的旋转半径是不断减少的,这主要与下列哪些因素有关( ) A.洛伦兹力对粒子做负功,使其动能减小 B.空气阻力做负功,使其动能减小 C.向南北两极磁感应强度不断增强 D.太阳对粒子的引力做负功 3..一个质子在匀强磁场和匀强电场中运动时,动能保持不变,已知磁场方向水平向右,则质子的运动方向和电场方向可能是(质子的重力不计)( ) A.质子向右运动,电场方向竖直向上 B.质子向右运动,电场方向竖直向下 C.质子向上运动,电场方向垂直纸面向里 D.质子向上运动,电场方向垂直面向外 4. 如图2所示,一带电粒子以水平初速度0v (0E v B <)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为1W ;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度0v 穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为2W ,比较1W 和2W ,有( ) A.一定是12W W > B.一定是12W W = C.一定是1W W < D.可能是1W W <,也可能是12W W >

带电粒子在电场中的运动

带电粒子在电场中的运动 带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。带电粒子经电场偏转:处理方法:灵活应用运动的合成和分解。 带电粒子在匀强电场中作类平抛运动,U、 d、 l、 m、 q、 v0已知。 (1)穿越时间: (2)末速度: (3)侧向位移: (4)偏角:

1、如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球,以初速度v0从斜面底端 A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则() A.A、B两点间的电压一定等于mgLsinθ/q. B.小球在B点的电势能一定大于在A点的电势能 C.若电场是匀强电场,则该电场的电场强度的最大值一定为mg/q D.如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负电荷. 2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B、C两点,若AB=BC,则它们带电荷量之比q1:q2等于() A.1:2 B.2:1. C. 1:2 D.2:1 3.如图所示,质量为m、电量为q的带电微粒,以初速度v 从A点竖直向上射 入水平方向、电场强度为E的匀强电场中。当微粒经过B点时速率为V B =2V , 而方向与E同向。下列判断中正确的是( ) A、A、B两点间电势差为2mV 2/q. B、A、B两点间的高度差为V 2/2g. C、微粒在B点的电势能大于在A点的电势能 D、从A到B微粒作匀变速运动.

4.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm.(取g=10m/s2,结果保留二位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向? (3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少? 1.7×104N/C v A= 2.8m/s 5.一个带电荷量为-q的油滴,从O点以速度v射入匀强电场中,v的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨迹的最高点时,它的速度大小又为v,求: (1) 最高点的位置可能在O点的哪一方? (2) 电场强度E为多少? (3) 最高点处(设为N)与O点的电势差U NO为多少? U NO = q mv 2 sin2 2

(完整版)高中高考物理专题复习专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 山东 贾玉兵 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

带电粒子在电场中的运动教学设计

贵州师大附中实习期间 教学设计 《带电粒子在电场中的运动》 指导老师: 实习生: 谢忠 2015年9月

《带电粒子在电场中的运动》教学设计 一、教学设计说明 1.教材分析 《带电粒子在在电场中的运动》是《普通高中物理课程标准》选修模块3—1中第一章“静电场” 中的内容,其基本内容是要求“处理带电粒子在电场中运动的问题”主要培养学生综合应用力学知识和电学知识的能力。 本节课的教学内容选自人民教育出版普通高中课程标准实验教材教科书2007年版《物理》选修3—1第1章第9节。教材内容由“带电粒子的加速”“带电粒子的偏转”“示波管原理”三部分组成,教学内容的梯度十分明显,安排符合学生的认知规律,教材首先介绍了带电粒子在电场中静电力的作用会发生不同程度的偏转,紧接着通过例题的形式来研究带电粒子的加速和偏转问题,这样我们出现进行问题的处理,清晰明了,一步一步地进行分析求解,可以防止公式过多的出现,避免学生死记硬背的现象出现,让学生从问题的本质出发,将复杂的问题简单化。 示波管的原理部分不仅对力学、电学知识的综合能力有较高的要求,而且要有一定的空间想象能力,因此教科书在“思考与讨论”栏目中设置了四个问题,层次分明、循序渐进,给学生足够的时间与空间的配置,对此部分内容的学习减轻了负担。 2.学情分析 教学主体是普通高二年纪的学生,已经掌握了运动学和功能关系的知识以及简单的静电学的知识,学生具有一定的分析推理能力,但是由于力学和电学的综合程度已有提高,这对于学生的学习还是有一定的困难。 高中二年级学生处于高中学习的关键时期,理论和科技方面的知识都需要加强,而本节教学则恰是理论联系现代科学实验和技术设备的知识,对学生而言通过本节课的学习讲师质的提升,也基于物理学习的宗旨,为往后的电磁学的学习打下(作为类比学习)基础。

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

带电粒子在电场中的运动知识点精解

带电粒子在电场中的运动知识点精解 1.带电粒子在电场中的加速 这是一个有实际意义的应用问题。电量为q的带电粒子由静止经过电势差为U的电 场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为 可见,末速度的大小与带电粒子本身的性质(q/m)有关。这点与重力场加速重物是不 同的。 2.带电粒子在电场中的偏转 如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。设 两板间的电势差为U,板长为L,板间距离为d。则带电粒子在电场中所做的是类似 平抛的运动。 (1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线 运动求) (2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动) (3)离开电场时在垂直金属板方向的分速度 (4)电荷离开电场时偏转角度的正切值 3.处理带电粒子在电场中运动问题的思想方法 (1)动力学观点

这类问题基本上是运动学、动力学、静电学知识的综合题。处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过程中物体的受力情况及运动性质,并选用相应的物理规律。 能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。 (2)功能观点 对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。即使都是恒力作用问题,用功能观点处理也常常显得简洁。具体方法常用两种: ①用动能定理。 ②用包括静电势能、能在的能量守恒定律。 【说明】该类问题中分析电荷受力情况时,常涉及“重力”是否要考虑的问题。一般区分为三种情况: ①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响; ②根据题中给出的数据,先估算重力mg和电场力qE的值,若mg<

磁场高考试题汇编

2016年磁场高考试题汇编 一、选择题 1.(全国新课标I 卷,15)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( ) A. 11 B. 12 C. 121 D. 144 【答案】D 【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得: 21 02qU mv =- 得 2qU v m = ① 在磁场中应满足 2 v qvB m r = ② 由题意, 由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同. 由①②式联立求解得 匀速圆周运动的半径12mU r B q = ,由于加速电压不变, 故 1212212111 r B m q r B m q =??= 其中211212B B q q ==,,可得1 2 1 144m m =

故一价正离子与质子的质量比约为144 2.(全国新课标II 卷,18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁 场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔.筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30?角.当筒转过90?时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为 A . 3B ω B . 2B ω C . B ω D . 2B ω 【答案】A 【解析】如图所示,由几何关系可知粒子的运动轨迹圆心为'O ,''30MO N ∠= 由粒子在磁场中的运动规律可知 2 2πF m r T ?? = ??? 向 ① =F F qvB =向合 ② 由①②得2m T Bq π= 即比荷2q m BT π = ③ 由圆周运动与几何关系可知

带电粒子在电场中的直线运动.(附详细答案)

带电粒子在电场中的“直线运动”(带详解) [例题1](’07杭州)如图—1所示,匀强电场的方向跟竖直方向成α角。在电场中有一质量为m 、带电量为q 的 摆球,当摆线水平时,摆球处于静止。求: ⑴小球带何种电荷?摆线拉力的大小为多少? ⑵当剪断摆线后,球的加速度为多少? ⑶剪断摆线后经过时间t ,电场力对球做的功是多少? [解析]⑴当摆球静止时,受重力、拉力和电场力等作用,如图—2所示。显然,小球带正电荷。由综合“依据”㈡,可得 ② mg qE ① mg T -----=----=α αcos tan ⑵同理,剪断细线后,球的水平方向的合力、加速度为 ③ g a ma mg -----==ααtan tan ⑶欲求剪断摆线后经过时间t ,电场力对球做的功,须先求球的位移。由“依据”㈡、㈦,可得 ⑤ qEs W ④ at s ---?=------= αsin 2 12 最后,联立②③④⑤式,即可求出以下结果 .t a n 2 1222αt mg W = [例题3](高考模拟)如图—5所示,水平放置的两平行金属板A 、B 相距为d ,电容为C ,开始时两极板均不带电,A 板接地且中央有一小孔,先将带电液一滴一滴地从小孔正上方h 高处无初速地底下,设每滴液滴的质量为m ,电荷量为q,落到B 板后把电荷全部传给B 板。 ⑴第几滴液滴将在A 、B 间做匀速直线运动? ⑵能够到达—板的液滴不会超过多少滴? [解析]⑴首先,分析可知,液滴在场外只受重力作用做自由落体运动,在场内则还要受竖直向上的可变电场力作用。 假设第n 滴恰好在在A 、B 间做匀速直线运动,由“依据”㈠(二力平衡条件),可得 ①mg qE ----= 考虑到电容的电量、场强电势差关系以及电容定义,我们不难得 ②q n Q -----=)1( ③Cd Q d U E ---== 联立①②③式,即可求出 .12 +=q mgCd n

2019届高考物理专题三电场和磁场18年真题汇编

考点十一 磁场 1.(2018·全国卷II ·T20)如图,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。已知a 、b 两点的磁感应强度大小分别为13B 0和1 2 B 0,方向也垂直于纸面向外。则( ) A.流经L 1的电流在b 点产生的磁感应强度大小为 0127 B B.流经L 1的电流在a 点产生的磁感应强度大小为0121 B C.流经L 2的电流在b 点产生的磁感应强度大小为01 12B D.流经L 2的电流在a 点产生的磁感应强度大小为07 12 B 【命题意图】本题意在考查右手螺旋定则的应用和磁场叠加的规律。 【解析】选A 、C 。设L 1在a 、b 两点产生的磁感应强度大小为B 1,设L 2在a 、b 两点产生的磁感应强度大小为B 2,根据右手螺旋定则,结合题意B 0-(B 1+B 2)=13B 0,B 0+B 2-B 1=1 2 B 0, 联立可得B 1= 712B 0,B 2=1 12 B 0,选项A 、 C 正确。 2.(2018·北京高考·T6)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定 初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是 ( ) A.磁场和电场的方向 B.磁场和电场的强弱 C.粒子的电性和电量 D.粒子入射时的速度 【解析】选C 。由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB ,则v= E B ,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB 可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C 。 3.(2018·全国卷I ·T25) 如图,在y>0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。一个氕核11H 和一个氘核21H 先后从y 轴上y=h 点以相同的动能射出,速度方向沿x 轴正方向。已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场。11H 的质量为m ,电荷量为q 。不计重力。求

带电粒子在电场中运动题目及答案

带电粒子在电场中的运动 班级_________姓名_________ 一、带电粒子在电场中做偏转运动 1. 如图所示,在平行板电容器之间有匀强电场,一带电粒子(重力不计)以速度v 0垂直电场线射人电场,经过时间t l 穿越电场,粒子的动能由E k 增加到2E k ; 若这个带电粒子以速度3 2 v 0 垂直进人 该电场,经过时间t 2穿越电场。求: ( l )带电粒子两次穿越电场的时间之比t 1:t 2; ( 2 )带电粒子第二次穿出电场时的动能。 2.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求: ⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动. ⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 2 112 1mv eU = 电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dm eU m eE a 2 == 电子通过匀强电场的时间1 1 v l t = 电子离开匀强电场时竖直方向的速度v y 为: 1 1 2mdv l eU at v y = = v 0

电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则 d U l U mdv l eU v v tg y 11 22 1 121 2== = α ∴d U l U arctg 1122=α ⑵电子通过匀强电场时偏离中心线的位移 d U l U v l dm eU at y 12 12212122142121= ?== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 d U l l U tg l y 12 12222= =α ∴电子打到荧光屏上时,偏离中心线的距离为 )2 (221 11221l l d U l U y y y += += 3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为?37的直线运动。现将该小球从电场中某点以初速度0v 竖直向上抛出,求运动过程中(取8.037cos ,6.037sin =?=?) (1)小球受到的电场力的大小及方向; (2)小球运动的抛出点至最高点之间的电势差U . 解析: (1)根据题设条件,电场力大小 mg mg F e 4 3 37tan = ?= ① 电场力的方向向右 (2)小球沿竖直方向做初速为0v 的匀减速运动,到最高点的时间为t ,则: 00=-=gt v v y g v t 0 = ② 沿水平方向做初速度为0的匀加速运动,加速度为x a g m F a e x 4 3 == ③ 图 5

高考物理压轴题电磁场汇编

1、在半径为R 的半圆形区域中有一匀强磁场,磁 场的方向垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁 场 ( 不 计 重 力 影 响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O /Q =R / 。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- A O O

2、(17分) 如图所示,在xOy 平面的第一象限有一匀 强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度 的大小为B ,方向垂直于纸面向外。有一质量为m , 带有电荷量+q 的质点由电场左侧平行于x 轴射入 电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin = ; 由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移 221tan 2t m qE d h ??== φ,由以上各式可得 3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐 标原点O 离开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l ,l OQ 32=。不计重力。求

带电粒子在电场中运动常见题型

带电粒子在电场中运动常见题型 1. “带电粒子在匀强磁场中的圆周运动”的范围型问题 例1如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域? 【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由d Cos θR R 00=+ 有: θ+=Cos 1d R 0; 故粒子必能穿出EF 的实际运动轨迹半径R ≥R0 即: θ+≥= Cos 1d qB m v R 0 有: )Cos 1(m qBd v 0θ+≥ 。 由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出; 又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG , 且由图知: θ +θ+θ = θ+θ=cot d Cos 1dSin cot d Sin R PG 0。 【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩, 运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。 例2如图9-11所示S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场; ①若电子的发射速率为V0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大? ③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL 2,则档板上出现电子的范围多大? 图9-8 图9-9 图 9-10 图9-11 图9-12

相关文档
相关文档 最新文档