文档库 最新最全的文档下载
当前位置:文档库 › 第十二篇 概率、随机变量及其分布第4讲 离散型随机变量的分布列

第十二篇 概率、随机变量及其分布第4讲 离散型随机变量的分布列

第十二篇 概率、随机变量及其分布第4讲 离散型随机变量的分布列
第十二篇 概率、随机变量及其分布第4讲 离散型随机变量的分布列

第4讲离散型随机变量的分布列

【2013年高考会这样考】

1.考查离散型随机变量及其分布列的概念理解;

2.两点分布和超几何分布的简单应用.

【复习指导】

复习时,要会求与现实生活有密切联系的离散型随机变量的分布列,掌握两点分布与超几何分布列,并会应用.

基础梳理

1.离散型随机变量的分布列

(1)随机变量

如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.

(2)离散型随机变量

对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.

(3)分布列

设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表

为随机变量X的概率分布列,简称X的分布列.

(4)分布列的两个性质

①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.

2.两点分布

如果随机变量X的分布列为

其中0

在含有M 件次品数的N 件产品中,任取n 件,其中含有X 件次品数,则事件{X =

k }发生的概率为:P (X =k )=C k M C n -k N -M

C n N

(k =0,1,2,…,m ),其中m =min{M ,n },且

n ≤N ,M ≤N ,n 、M 、N ∈N *,则称分布列

为超几何分布列.

一类表格

统计就是通过采集数据,用图表或其他方法去处理数据,利用一些重要的特征数信息进行评估并做出决策,而离散型随机变量的分布列就是进行数据处理的一种表格.第一行数据是随机变量的取值,把试验的所有结果进行分类,分为若干个事件,随机变量的取值,就是这些事件的代码;第二行数据是第一行数据代表事件的概率,利用离散型随机变量的分布列,很容易求出其期望和方差等特征值. 两条性质

(1)第二行数据中的数都在(0,1)内; (2)第二行所有数的和等于1. 三种方法

(1)由统计数据得到离散型随机变量分布列;

(2)由古典概型求出离散型随机变量分布列;

(3)由互斥事件、独立事件的概率求出离散型随机变量分布列.

双基自测

1.抛掷均匀硬币一次,随机变量为( ). A .出现正面的次数 B .出现正面或反面的次数 C .掷硬币的次数 D .出现正、反面次数之和

解析 抛掷均匀硬币一次出现正面的次数为0或1. 答案 A

2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1

C .X 取某2个可能值的概率等于分别取其中每个值的概率之和

D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和

3.已知随机变量X 的分布列为:P (X =k )=1

2

k ,k =1,2,…,则P (2

( ).

A.

316 B.14 C.116 D.516

解析 P (2

4.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .6

解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9. 答案 C

5.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________.

解析 此分布列为两点分布列. 答案

解析 由离散型随机变量的性质得p i ≥0,i =1,2,…n ,且 i =1

n

p i

=1. 答案 D

考向一由统计数据求离散型随机变量的分布列

【例1】?(2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数

分别从甲、乙两组中各随机选取一名同学

(1)求这两名同学的植树总棵数y的分布列;

(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.

[审题视点] 本题解题的关键是求出Y的取值及取每一个值的概率,注意用分布列的性质进行检验.

解(1)分别从甲、乙两组中随机选取一名同学的方法种数是4×4=16,这两名同学植树总棵数Y的取值分别为

17,18,19,20,21,

P(Y=17)=2

16

1

8

P(Y=18)=4

16

1

4

P(Y=19)=4

16

1

4

P(Y=20)=4

16

1

4

P(Y=21)=2

16

1

8

则随机变量Y的分布列是:

(2)由(1)知E (Y )=

178+184+194+204+21

8

19, 设这名同学获得钱数为X 元,则X =10Y , 则E (X )=10E (Y )=190.

(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;

(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.

【训练1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:

解析 设该公司一年后估计可获得的钱数为X 元,则随机变量X 的取值分别为50 000×12%=6 000(元),-50 000×50%=-25 000(元).由已知条件随机变量X 的概率分布列是

因此E (X )=6 000×24

25+(-25 000)×25

=4 760 答案 4 760

考向二 由古典概型求离散型随机变量的分布列

【例2】?袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1

7.现有

甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数.

(1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率. [审题视点] 对变量的取值要做到不重不漏,计算概率要准确.

解 (1)设袋中白球共有x 个,根据已知条件C 2x C 27=1

7

即x 2-x -6=0,

解得x =3,或x =-2(舍去).

(2)X 表示取球终止时所需要的次数,则X 的取值分别为:1,2,3,4,5.

因此,P (X =1)=A 13A 17=37,P (X =2)=A 14A 1

3A 27=2

7,

P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 1

3

A 47=335,

P (X =5)=A 44A 13

A 57=135

.

则随机变量X 的分布列为:

(3)甲取到白球的概率为P =A 3A 17+A 4A 3A 37+A 4A 3A 57=3

7635135=2235

.

求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,

然后利用排列、组合与概率知识求出X 取各个值的概率.而超几何分布就是此类问题中的一种.

【训练2】 (2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列; (2)求此员工月工资的期望.

解 (1)X 的所有可能取值为:0,1,2,3,4,

P (X =i )=C i 4C 4-i

4

C 8

(i =0,1,2,3,4), 则

(2)令Y 2 800,3 500,则P (Y =3 500)=P (X =4)=

170

P (Y =2 800)=P (X =3)=835 P (Y =2 100)=P (X ≤2)=5370

E (Y )=3 500×

170+2 800×1670+2 100×53

70

=2 280, 所以此员工月工资的期望为2 280元.

考向三 由独立事件同时发生的概率求离散型随

机变量的分布列

【例3】?(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为2

3,得到乙、丙两公司面试的

概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=

1

12

,则随机变量X 的数学期望E (X )=________. [审题视点] 分别求出随机变量X 取每一个值的概率,然后求其期望. 解析 由已知条件P (X =0)=

112

即(1-P )2×13=112,解得P =1

2,

随机变量X 的取值分别为0,1,2,3. P (X =0)=

112

, P (X =1)=23×? ????1-

122+2×13×? ????122=1

3, P (X =2)=2×23×12×? ????1-12+? ????1-23×? ????122=5

12,

P (X =3)=23×?

????122=1

6因此随机变量X 的分布列为

E (X )=0×112+1×13+2×12+3×6=3

. 答案

53

本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关

知识,公式应用,计算准确是解题的关键.

【训练3】 某地有A 、B 、C 、D 四人先后感染了甲型H 1N 1流感,其中只有A 到过疫区.B 肯定是受A 感染的.对于C ,因为难以断定他是受A 还是受B 感染的,于是假定他受A 和受B 感染的概率都是1

2.同样也假定D 受A 、B 和C 感染的概率

都是1

3.在这种假定之下,B 、C 、D 中直接受A 感染的人数X 就是一个随机变量.写

出X 的分布列(不要求写出计算过程),并求X 的均值(即数学期望). 解 随机变量X 的分布列是

X 的均值E (X )=1×132×12+3×16=11

6附:X 的分布列的一种求法

共有如下6种不同的可能情形,每种情形发生的概率都是1

6

在情形①和②之下,A 直接感染了一个人;在情形③、④、⑤之下,A 直接感染了两个人;在情形⑥之下,A 直接感染了三个人.

规范解答22——求离散型随机变量的分布列

【问题研究】 离散型随机变量的分布列问题是新课标教材概率统计中的一个重要的内容,从近几年新课标区高考试题来看,每年都有考查,而且它是进行概率计算,期望与方差计算的重要依据.

【解决方案】 (1)用好概率分布列的性质:在随机变量的分布列中随机变量各个可能值对应的概率均符合概率的一般性性质,并且所有的概率之和等于1. (2)掌握好几个特殊分布的分布列:如两点分布、超几何分布、二项分布等. 【示例】?(本题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x 、y ,记ξ=|x -2|+|y -x |.

(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列.

(1)根据x ,y 的取值,随机变量ξ的最大值为3,当ξ=3时,只能x =1,

y =3或x =3,y =1;(2)根据x ,y 的取值,ξ的所有取值为0,1,2,3,列举计数计算其相应的概率值即可.

[解答示范] (1)∵x ,y 可能的取值为1,2,3, ∴|x -2|≤1,|y -x |≤2,

∴ξ≤3,且当x =1,y =3或x =3,y =1时,ξ=3. 因此,随机变量ξ的最大值为3.(3分)

∵有放回抽两张卡片的所有情况有3×3=9种, ∴P (ξ=3)=29

.

故随机变量ξ的最大值为3,事件“ξ取得最大值”的概率为2

9.(6分)

(2)ξ的所有取值为0,1,2,3.

∵ξ=0时,只有x =2,y =2这一种情况,

ξ=1时,有x =1,y =1或x =2,y =1或x =2,y =3或x =3,y =3四种情况, ξ=2时,有x =1,y =2或x =3,y =2两种情况. ξ=3时,有x =1,y =3或x =3,y =1两种情况. ∴P (ξ=0)=19,P (ξ=1)=49,P (ξ=2)=2

9

P (ξ=3)=2

9

.(10分)

则随机变量ξ的分布列为:

(12分)

解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及

取各个值对应的概率,只有正确地理解随机变量取值的意义才能解决这个关键问题,理解随机变量取值的意义是化解这类问题难点的必要前提.

【试一试】 某射手进行射击训练,假设每次射击击中目标的概率为3

5,且各次射

击的结果互不影响.

(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. [尝试解答] (1)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率

P 1=P (AA A )+P (A AA )+P (AAA ) =35×35×25+25×35×353535×35=63125

. (2)射手第3次击中目标时,恰好射击了4次的概率P 2=C 23×?

????352×25×35=162625.

(3)由题设,“ξ=k ”的概率为

P (ξ=k )=C 2k -1×? ????352×? ????25k -3×35=C 2

k -1×? ????25k -3×? ????353(k ∈N *且k ≥3). 所以,ξ的分布列为:

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

2.1随机变量及其概率分布(1)

随机变量及其概率分布(1) 【教学目标】 1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。 2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。 3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。 4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。 【教学过程】 1、相关知识回顾: (1)随机现象: 在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件: 在一次试验中可能出现的每一个基本结果 (3)古典概型: 我们将具有:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的概率相等. 满足这两个特点的概率模型称为古典概率模型 2、新课引入: (1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数; (3)新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示, 女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点? 上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。 例如:上面的植树问题中成活的树苗棵数X : X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思? 3、新授: 知识点1:随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。 引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。 注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。如掷一枚硬币,“正

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

第二章__随机变量及其概率分布_考试模拟题答案

第二章随机变量及其概率分布考试模拟题 (共90 分) 一.选择题(每题2分共20分) 1.F(X) 是随机变量X的分布函数,则下列结论不正确的是( B ) A.0 F( x) 1 B.F( x)=P{X=x} C.F( x)=P{X x} D.F( )=1, F( )=0 解析:A,C,D 都是对于分布函数的正确结论,请记住正确结论! B 是错误的。2.设随机变量X的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X 5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是 4x 0 x1 2x A.F(x)= B.F(x)= 其它其它 x<0 x<0 C.F(x)= 2x D.F(x)= 2x 0 x 0.5 其它≥0.5 解析:由分布函数F(x) 性质:0 F(x) 1,A,B,C 都不满足这个性质,选D 4.设X 的密度函数为f(x)=则P{-2

1 解析:根据密 度函数性质: A.有f(x) 0的情况,错; B.D. 不符合 f(x)dx 1错; 1 C. 1 12dx 21x|11 12 21 1 选 C 6.设随机变量 X~N(1 ,4), (1) 0.8413, (0) 0.5 ,则事件 {1 X 3 } 的概率为(D ) 解:P{1 X 3 }=F(3)-F(1)= (3 1) (1 1) (1) (0) 0.8413 0.5 0.3413 22 7.已知随机变量 X 的分布函数为( A ) 0 x 0 1 0 x 1 F(x)= 2 ,则 P X 1 = 2 1x3 3 1 x 3 112 A . 1 B . 1 C . 2 D . 1 623 A. 0 B. C. D. 848 解析: P {-2

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.wendangku.net/doc/3710812696.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布 教学目的与要求 1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列; 2. 熟练掌握一维随机变量分布函数的概念与性质; 3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系; 4. 熟记常见的几种分布的表达形式. 6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排 第11-12学时 第一节 随机变量 第四节 随机变量的分布函数 第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布 习题辅导 教学内容 第一节 随机变量 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、分布函数的定义与性质 定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()), (,)F x P x x ξω=≤∈-∞∞ 是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质: (1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞ -∞== ()lim ()1x F F x →+∞ +∞== (3)右连续性 (0)()F x F x += 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率: {()}1(){()}(0) {()}1(0){()}()(0) P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==-- 由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律. 第二节 离散型随机变量 一、离散型随机变量的概念及其分布 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

人教版高数选修2-3第二章2.1随机变量及其分布(教师版)

随机变量及其分布 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解随机变量的概念. 2.熟练掌握随机变量的概率分布及其性质. 3.能熟练应用两点分布. 4.能熟练运用超几何分布. 1.随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母X ,Y ,Z (或小写希腊字母,,ξηζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值. 注意:(1)一般地,一个试验如果满足下列条件:i)试验可以在相同的情形下重复进行;ii)试验的所有可能结果是明确可知的,并且不止一个;iii)每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是个随机试验,为了方便起见,也简称试验. (2)所谓随机变量,即是随机试验的试验结果与实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的.这与函数概念的本质是一样的,只不过在函数概念中,函数f (x )的自变量是实数,而在随机变量的概念中,随机变量的自变量是试验结果. (3)一般情况下,我们所说的随机变量有以下两种: 如果随机变量所有可能的取值都能一一列举出来,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量. (4)离散型随机变量和连续型随机变量的区别: 离散型随机变量和连续型随机变量都用来刻画随机试验所出现的结果,但二者之间又有着根本的区别:对于离散型随机变量来说,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值,按一定次序一一列出,而连续型随机变量可取某一区间内的一切值,我们无法将其中的值一一列举. 2.随机变量的概率分布 一般地,假定随机变量X 有n 个不同的取值,它们分别是12,, ,,n x x x 且()i P X x == ,1,2,3, ,i p i n =①,则称①为随机变量X 的概率分布列. 3.随机变量概率分布的性质 (1)对于随机变量的研究,我们不仅要知道随机变量取哪些值,随机变量所取的值表示的随机试验的结果,而且需要进一步了解随机变量:取这些值的概率. (2)随机事件A 的概率满足0≤P (A )≤1,必然事件U 的概率P (U )=1.若离散型随机变量X 所有可能取的值为12,, ,.n x x x X 取每一个值i x (i =1,2,…,n )的概率为(),i i P X x p ==○ 10,1,2,3,,;i p i n ≥=○2123 1.n p p p p ++++=不满足上述两条性质的分布列一定是错误的, 即分布列满足上述两条性质是该分布列正确的必要不充分条件. (3)由离散型随机变量分布列的概念可知,离散型随机变量各个可能的取值表示的事件是互斥的.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

第7讲离散型随机变量及其分布列

第7讲 离散型随机变量及其分布列 一、选择题 1.某射手射击所得环数X 的分布列为 X 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10) =0.28+0.29+0.22=0.79. 答案 C 2.设X 是一个离散型随机变量,其分布列为: X -1 0 1 P 2-3q q 2 则q 的值为( ) A.1 B.32±336 C.32-336 D.32+336 解析 由分布列的性质知?????2-3q ≥0,q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 C 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0 B.12 C.13 D.23 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1,

得P(X=0)=1 3. 答案 C 4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是() A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤5 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C 5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是() A.4 35 B. 6 35 C. 12 35 D. 36 343 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问 题,故所求概率为P=C23C14 C37=12 35. 答案 C 二、填空题 6.设离散型随机变量X的分布列为 X 0123 4 P 0.20.10.10.3M 若随机变量Y=|X 解析由分布列的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5.

人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)

《离散型随机变量的分布列》教学设计 一、教材分析 《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。从近几年的高考观察,这部分内容有加强命题的趋势。一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。 二、学情分析 在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。 四、目标分析 1.理解核心概念——离散型随机变量分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;

相关文档
相关文档 最新文档