文档库 最新最全的文档下载
当前位置:文档库 › 小麦生物量和真实叶面积指数的高光谱遥感估算模型

小麦生物量和真实叶面积指数的高光谱遥感估算模型

小麦生物量和真实叶面积指数的高光谱遥感估算模型
小麦生物量和真实叶面积指数的高光谱遥感估算模型

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

叶面积指数LAI测量仪器介绍

叶面积指数LAI测量仪器介绍 目的是给出各种测量LAI的仪器的直观介绍。 LA I 是一个无量纲、动态变化的参数, 随着叶子数量的变化而变化。另外, 植物叶子的生长与植物种类自身特性、外部环境条件以及人为管理方式有关。再加上LA I 的不同定义和假设导致了LAI 值测量的极大差异。植物LAI 的地面测量方法有2 类: 直接测量和间接测量。本文简要介绍LAI2200(LAI2000)、SUNSCAN、TRAC、AccuPAR和DHP仪器并且给出一些选择建议。目前,遥感科学国家重点实验室关于LAI测量的仪器有LAI2000、LAI2200、TRAC和LI3000A。 1,LAI2200(LAI2000) LAI2200植物冠层分析仪基于成熟的LAI-2000技术平台,利用“鱼眼”光学传感器(垂直视野范围148度,水平视野范围360度,波谱响应范围320nm~490nm)测量树冠上、下5个角度的透射光线,利用植被树冠的辐射转移模型(间隙率)计算叶面积指数、空隙比等树冠结构参数。利用随机FV-2200软件,可对数据进行深入处理分析。该仪器由美国 LI-COR公司开发。 仪器组成如下图所示。

测量注意事项: 尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽;2,背对着阳光进行测量,遮挡住日光和操作者本身;3,对植物冠层进行遮阴处理;4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。 在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。 2,SUNSCAN

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

简述高光谱遥感及其进展与应用综述

高光谱遥感及其进展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在植被生态、大气科学、地质矿产、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 高光谱遥感(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一,是当前遥感的前沿技术。高光谱遥感在光谱分辨率上具有巨大的优势,被称为遥感发展的里程碑。世界各国对此类遥感的发展都十分重视,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文系统地阐述了高光谱遥感及其发展的概况,并简要介绍了高光谱遥感技术的主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。[1] 高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 [3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势

叶面积指数获取方法

A.直接方法直接测定方法是一种传统的、具有一定破坏性的方法。 1、叶面积的测定,传统的格点法和方格法。 2、描形称重法. 在一种特定的坐标纸上,用铅笔将待测叶片的轮廓描出并依叶形剪下坐标纸,称取叶形坐标纸重量,按公式计算叶面积. 3、仪器测定法. 叶面积测定仪可以分成两种类型,分别通过扫描和拍摄图像获取叶面积. 扫描型叶面积仪主要由扫描器(扫描相机) 、数据处理器、处理软件等组成,可以获得叶片的面积、长度、宽度、周长、叶片长度比和形状因子以及累积叶片面积等数据,主要仪器有: CI - 202 便携式叶面积仪、L I- 3000台式或便携式叶面积仪、AM - 300手持式叶面积仪等. 此外,还有使用台式扫描仪和专业图像分析软件测定的方法. 图像处理型 叶面积仪由数码相机、数据处理器、处理分析软件和计算机等组成,可以获取叶片面积、形状等数据,主要仪器有:W IND I2AS图象分析系统、SKYE 叶片面积图像分析仪、Decagon - Ag图象分析系统、WinFOL IA 多用途叶面积仪等. B、间接方法间接方法是用一些测量参数或用光学仪器得到叶面积指数,测量方便快捷,但仍需要用直接方法所得结果进行校正。 1、点接触法 点接触法是用细探针以不同的高度角和方位角刺入冠层,然后记录细 探针从冠层顶部到达底部的过程中针尖所接触的叶片数目,用以下公式计算. 式中,LA I为叶面积指数, n为探针接触到的叶片数, G (θ) 为投影函数,θ为天顶角. 当天顶角为57.5°时,假设叶片随机分布和叶倾角椭圆分布 ,则冠层 叶片的倾角对消光系数K的影响最小,此时采用32.5°倾角刺入冠层,会得出较准确的结果,用以下公式计算. 点接触法是由测定群落盖度的方法演进而来的 ,在小作物LA I的测量中较准确 ,但在森林中应用比较困难 ,主要是由于森林植物树体高大以及针叶树种中高密度的针叶影响了测定。 2、消光系数法 该法通过测定冠层上下辐射以及与消光系数该法通过测定冠层上下辐射以及与消光系数相关的参数来计算叶面积指数,前提条件是假设叶片。随机分布和叶倾角呈椭圆分布,由Beer - Lambert定 律知:

玉米叶面积指数变化及其应用

玉米叶面积指数变化及其应用 摘要 叶面积指数(LAI)与作物产量的增长联系紧密,在一定范围内随着叶面积指 数的增加群体光合速率提高。LAI与品种特性,种植密度,栽培措施,气象条件 有密切联系。本文分别从玉米LAI模型构建和不同处理措施对玉米LAI的影响角 度总结近年来关于玉米LAI的研究以及其对于农业生产的意义。 前言 玉米是大田中的主要作物之一,我国的玉米生产水平有较大的提高潜力。叶 面积指数是计算作物蒸散和干物质累积最重要的生理参数,可为植冠表面最初能 量交换描述提供结构化定量信息,是进行物质循环及能量代谢等研究的基础,是 除单叶光合作用速率以外决定作物冠层光合作用计算精确与否的重要参数,且最 能反映遥感数据与作物生长状态密切关系关系,因此研究叶面积指数动态变化模 式有重要的应用价值。目前有关玉米LAI的测定,LAI动态模型的建立,不同株 型玉米LAI动态变化和不同的栽培因子对于玉米LAI的影响是研究的热点。 一、玉米LAI动态模型 关于玉米全生育期的动态变化模拟模型主要是logistic模型的扩展。例如中国科 学院地理科学与资源研林忠辉等提出的模型便是以积温指标表示的生育阶段为 自变量,综合不同地理位置、品种、播期、密度等的影响,是一个扩展的Logistic 叶面积生长模型。[1] 玉米叶面积指数随生育进程变化可分为4 个时期,即缓慢增长期,指播种~拔 节期叶面积指数增长缓慢;线性增长期,指拔节~抽雄吐丝期叶面积指数增长最 快,且吐丝期达最大值;相对稳定期,指抽雄吐丝~乳熟期叶面积指数相对稳定而 后期略有下降;衰退期,指乳熟~蜡熟期叶面积指数下降。Logistic 曲线可较好 地表述玉米叶面积指数前2 个生育阶段,但不能表述相对稳定期后期及衰退期叶 面积指数下降过程,必须经过修正方可用于整个生育期动态变化模拟。[2] 玉米LAI动态模型主要用于区域作物生长模拟模型和区域作物生长监测及遥感 估产。 二、不同株型玉米LAI动态变化 主要是研究平展型品种和紧凑型品种的LAI动态变化,通过比较得出不同品种 的最大最适叶面积指数,从而为玉米的增产提供理论依据。例如沈阳农业大学的 任志勇等通过比较的玉米品种平展型品种连玉16( A1)、半紧凑型品种丹玉 39( A2) 、紧凑型品种郑单958( A3)不同时期的LAI得出了不同株型品种获得最 高产量的密度不同, 获得最高产量的最大叶面积指数也不同的结论。连玉16在2 600株/667m2密度下获得了最高产量, 其叶面积指数为3.8 ,丹玉39和郑单958在 4 500株/667m2 密度下获得了最高产量, 其叶面积指数分别为5. 15和5. 66。[3] 吉林农大的岳阳等通过分析:两个紧凑型玉米品种:先玉335、郑单958;两个平 展型玉米品种:“三北9、长城799不同生育时期的LAI动态变化得出了两个紧凑 型玉米品种的群体叶面积指数、光合速率等均比两个平展型玉米品种表现优良, 有利于光合产物的积累,提高产量的结论。[4] 这些都为玉米栽培品种的选择和玉米育种提供了重要的参考。 三、不同的栽培因子对于玉米LAI的影响

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

高光谱在遥感技术的应用

高光谱在遥感技术的应用 高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一.作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文主要阐述高光谱遥感的特点和主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。 [1]高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

叶面积指数仪的用途及工作原理介绍

叶面积指数仪的用途及工作原理介绍 植物的生长与植物的叶面积之间存在着密切的联系,我们知道叶片是植物进行光合作用的重要部分,因此植物的光合物质积累直接受到叶面积大小的影响,另外一方面通过测定和分析叶面积的变化,还能够掌握植物的生长,为制定科学的栽培技术措施等提供依据。因此在现代科技农业发展中,叶面积的测定变得越来越重要。应用叶面积指数仪来检测植物叶面积,简单直观,十分符合现代农业科研的实际工作需要。 虽然测定叶面积的方法很多,有叶形纸称重法、鲜样称重法和干样称重法、长宽系数法、回归方程法和叶面积指数仪测定法等,但是在众多的测定方法中,叶面积指数仪测定法无疑是最简单、直观和高效的,利用叶面积指数仪直接测定,可以准确而快速的获取叶面积相关数据,为科研工作的开展节约时间和成本。那么叶面积指数仪有什么特别之处,使其拥有如此突出的优势呢,叶面积指数仪的工作原理是什么? 托普云农叶面积指数仪的工作原理是利用光电转换的方法来测定叶面积值,当均匀光源照射仪器的磨砂玻璃时,由于漫反射,会使其成均匀散光亮面,再经透镜成像于光电池上,用光电池产生光电流,由微安表指示出来,将被测叶片放在均匀光面前,则亮面面积相应减少,产生的光电流减少,被测叶面积与亮面面积之比等于光电流减少与亮面产生的电流之比,测定的叶面积大小可以通过叶面积指数仪的显示框直接显示出来,达到了快速测定,直观显示测定结果的效果。 托普云农研发制造的这款TOP-1300叶面积指数仪可测量叶面积指数、散射辐射透过率、不同太阳高度角下的直射辐射透过率、不同太阳高度角下的消光系

数、叶面积密度的方位分布等。 叶面积指数仪采用国际上一致采用的原理(比尔定律以及冠层孔隙率与冠层结构相关的原理),通过专用鱼眼镜头成像和CCD图像传感器测量冠层数据和获取植物冠层图像,利用软件对所得图像和数据进行分析计算,得出冠层相关指标和参数。具有精确、省时省力、快捷方便的特点。 托普云农叶面积指数仪可测量:叶面积指数、散射辐射透过率、不同太阳高度角下的直射辐射透过率、不同太阳高度角下的消光系数、叶面积密度的方位分布、冠层内外的光合有效辐射(PAR)等。植物叶面积指数仪/叶面积仪广泛应用于作物、植物群体冠层受光状况的测量分析以及农林业科研工作。 托普云农叶面积指数仪功能特点: 1、无损测量叶面积指数以及冠层结构。

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

叶面积指数遥感反演

冬小麦叶面积指数(LAI)的遥感反演 ——经验模型和物理模型方法 李淑敏 2010/12/13

?第一部分.基础知识 ?第二部分.遥感反演LAI 的方法 ?第三部分.研究实例 本次课程主要内容 叶面积指数LAI 、遥感反演 经验模型反演方法、物理模型反演方法 几何光学模型、辐射传输模型 PROSAIL 模型 硕士论文——―基于MODIS/ASTER 的区域冬小麦叶面 积指数PROSAIL 模型反演研究” BRDF 模型PROSPECT 模型、SAIL 模型

叶面积指数leaf area index ?定义:单位土地面积上植被叶片总面积。 叶片总面积/占地面积 ?陆地生态系统的一个十分重要的参数: 农作物产量预估和病虫害评价; 反映作物生长发育的动态特征和健康状况。 ?叶面积指数越大,表明单位土地面积上的叶面积越大。 那么,叶面积指数越大越好吗?? ?以冬小麦为例了解叶面积指数变化情况

图为不同群体叶面积指数消长模型(彭永欣等,1992)1—过大群体;2—高产群体;3—过小群体. 低增缓增快 增衰减LAI 消长动态分为四个时期 1. 低速增长期,叶片总数较多,但叶面积较小,总叶面积增速较低; 2. 缓慢增长期,单叶面积渐次增加,但低温条件,出叶周期延长; 3. 快速增长期,气温回升,植株生长快速,至孕穗期LAI 达峰值; 4. 衰减期,植株生殖生长,叶片消亡叶面积衰减,至成熟期LAI 为0。一个生长期内冬小麦叶面积指数变化

叶面积指数获取方法 ?实测方法 长宽法、称重法这些方法均需要消耗一定的人力进行实物测量。 借助有关测量工具例如LAI-2000、LAI-2200、LI-3100C、LI-3000、AccuPAR等,此方法仍需实地进行测量。 仅能获得地面有限点的LAI值,对于推广获取大范围LAI存在很大局限性,不能满足植被生态和作物长势监测需求 ?遥感反演方法由于遥感数据具有覆盖范围广、时间与空间分辨率高、花费相对较少等优点。 可以用定量遥感方法反演区域LAI ?作物生长模型模拟LAI

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

高光谱,多光谱及超光谱

1、光谱分辨率 光谱分辨率spectral resolution 定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。 定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。 光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。细分光谱可以提高自动区分和识别目标性质和组成成分的能力。 传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。 举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。 一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。 2、什么是高光谱,多光谱及超光谱 高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。 (1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。 (2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。 (3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。 众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。因此,可以说光谱成像技术是光谱分析

高光谱遥感数据处理基础

泛函分析概括 高光谱遥感应用中,如何度量光谱间的相似性一直高光谱图象处理的核心问题,因而我们有必要先交代下度量空间的一些概念。 度量空间:所谓度量空间,就是指对偶(,)X d ,其中X 是一个集合,d 是X 上的一个度量(或X 上的距离函数),即d 是定义在X X ?上且对所有,,X ∈x y z 满足以下四条公理的函数: (1) d 是实值、有限和非负的。 (2) 当且仅当=x y 时,(,)0d =x y 。 (3) (,)(,)d d =x y y x (对称性)。 (4) (,)(,)(,)d d d ≤+x y x z z y (三角不等式)。 度量空间给出来空间中元素“距离”的度量,因而使得空间中的元素可比较。但是,仍需要在空间中引入代数结构,使得元素之间可进行代数运算。因而,这里需要引入线性空间。 线性空间:所谓域(K R 或C)上的线性空间是指一个非空集合X ,且其元素,,x y (称为矢量)关于X 和K 定义了两种代数运算。这两种运算分别叫做矢量的加法与标量的乘法。 矢量的加法是,对于X 中的每一对矢量(,)x y ,与其相联系的一个矢量+x y ,叫做矢量之和。按这种方式它还具有下述性质:矢量加法是可交换的和可结合的,即对所有矢量都有 ()()+=+++=++x y y x x y z x y z 此外存在零矢量,X ∈0并对每个矢量x ,存在有-x ,使得对一切矢量有 ()+=+-=x 0x x x 0 矢量与标量的乘法是,对于每个矢量x 和每个标量α,与其相联系的一个矢量αx ,叫做α与x 之积。按这种方式对一切,x y 和标量,,αβ具有

()()1αβαβ==x x x x 和分配律 ()()ααααβαβ+=++=+x y x y x x y 在很多情况下因为线性空间X 上定义了度量d ,所以X 同时也是一个度量空间。然而,如果X 的代数结构与度量没有什么关系的话,我们就不能指望把代数的概念和度量的概念结合在一起。为了保证X 的代数性质与几何性质有如此的关系,我们首先需要引入一个辅助的所谓“范数”的概念,其中要用到线性空间的代数运算。然后再用范数诱导出我们希望的度量d ,这一想法就导出了赋范空间的概念。简单的说,赋范空间把线性空间的代数结构和其作为度量空间的度量紧密结合在一起。 赋范空间:所谓赋范空间X ,就是指在其上定义了范数的线性空间X 。而所谓线性空间X 上的范数,就是指定义在X 上的一个实值函数,它在X ∈x 的值记为x ,并且具有如下性质: (1)0≥x (2)0=?=x x 0 (3)αα=x x (4)+≤+x y x y 其中,x y 是X 中的任意矢量,α为任意标量。 巴拿赫空间:所谓巴拿赫空间就是完备的赋范空间(这里的完备性是按范数定义的度量来衡量的,见下面公式) (,)d =-x y x y ,X ∈x y 此度量叫做由范数所诱导的度量。 由范数所诱导的度量具备以下基本性质: 引理(平移不变性):在赋范空间X 上,由范数诱导的度量d ,对所有的,X ∈x y 及每个标量α,都满足

叶面积指数测定仪是怎样测量出叶面积指数的

叶面积指数测定仪是怎样测量出叶面积指数的 叶面积指数又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。即:叶面积指数=叶片总面积/土地面积。 叶面积指数(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。即:叶面积指数=叶片总面积/土地面积。在田间试验中,叶面积指数(LAI)是反映植物群体生长状况的一个重要指标,其大小直接与最终产量高低密切相关。 计算公式 常用叶面积指数(LAI)由下式中求得:叶面积用直尺测量每株各叶片的叶长(Lij)和最大叶宽(Bij)。 式中,n为第j株的总叶片数;m为测定株数;ρ种为种植密度。 作用及意义 叶面积指数是反映作物群体大小的较好的动态指标。叶面积指数可以反映在一定的范围内,作物的产量随叶面积指数的增大而提高。当叶面积指数增加到一定的限度后,田间郁闭,光照不足,光合效率减弱,产量反而下降。苹果园的最大叶面积指数一般不超过5,能维持在3~4较为理想。盛果期的红富士苹果园,生长期亩枝量维持在10~12万条之间,叶面积指数基本能达到较为适宜的指标。 氮对提高叶面积指数、光合势、叶绿素含量和生长率均有促进作用,而净同化率随施氮增加而下降。施氮对大豆光合速率无显著影响。随施氮增加叶面积指数提高的正效应可以抵消净同化率下降的负效应,从而最终获得一个较高的生长率。因此,高产栽培首先应考虑获得适当大的叶面积指数。 在生态学中,叶面积指数是生态系统的一个重要结构参数,用来反映植物叶面数量、冠层结构变化、植物群落生命活力及其环境效应,为植物冠层表面物质和能量交换的描述提供结构化的定量信息,并在生态系统碳积累、植被生产力和土壤、植物、大气间相互作用的能量平衡,植被遥感等方面起重要作用。 叶面积指数测定的主要方法 直接方法 直接测定方法是一种传统的、具有一定破坏性的方法。 1、叶面积的测定,传统的格点法和方格法。

相关文档