文档库 最新最全的文档下载
当前位置:文档库 › 节理裂隙岩体渐进破坏机理研究综述

节理裂隙岩体渐进破坏机理研究综述

节理裂隙岩体渐进破坏机理研究综述
节理裂隙岩体渐进破坏机理研究综述

岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用

第24卷第22期岩石力学与工程学报V ol.24 No.22 2005年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2005 岩石破坏机理及节理裂隙分布尺度效应的非线性 动力学分析与应用 刘传孝 (山东科技大学资源与环境工程学院,山东青岛 266510) 博士学位论文摘要:通过MTS系统、扫描电镜和光学电子显微镜等岩石力学实验研究,抽象出砂岩全应力–应变实验曲线的3种典型形态,从断裂损伤角度探讨了岩石节理裂隙微观、细观和宏观破坏的机理联系。提出了圆与正方形相耦合的分形维数计算方法和相空间重构时滞判定的功率谱分析法,将该方法应用于岩石节理裂隙分布尺度效应研究和混沌动力学评价TDS准则的建立;同时,补充了非线性动力学研究的基础理论与方法。运用分形理论分析砂岩跨越尺度界限的微、细、宏观节理裂隙分布特征,得到了砂岩节理裂隙分布的无标度区域,为解决岩石断裂机理的尺度效应问题提供了可行途径。在无标度区域建立了定量描述岩体结构的节理裂隙分布(条数)预测模型,并将该预测模型应用于岩石破坏机理的离散单元法研究。通过岩石力学实验建立了混沌动力学评价岩石节理裂隙系统破坏的TDS准则数学模型,在一定程度上克服了Wolf方法判定混沌动力学指标鲁棒性较差的局限。提出岩石全应力–应变曲线的二分法原则,应用混沌动力学评价TDS准则定性研究了砂岩全应力–应变曲线的分段特征,运用Kolmogorov熵理论实现了岩石节理裂隙贯通与否的定量判别,并尝试应用于岩石强度准则的研究。基于断裂力学理论及能量余法建立坚硬顶板及三维顺层滑坡系统的运动方程,运用混沌动力学评价TDS 准则分析运动方程的稳定性,得到了资源开采活动对坚硬顶板系统稳定性的扰动规律和三维顺层滑坡体阻尼敏感的系统效应。混沌动力学理论与3DEC反演建模相结合,研究坚硬顶板运动的阶段特征,由此可以控制坚硬顶板从冲击性整体运动向周期性分段运动转化,并实现对其运动状态的短时预测。将混沌动力学评价TDS准则应用于现场顺层滑坡的稳定性评价,得到阶段Kolmogorov熵值的升高是滑坡体稳定性状态突变时机及临界状态预测的关键,证明了从能量角度分析与预测滑坡系统运动状态这一方法是可行的。 关键词:岩石力学;破坏机理;节理裂隙;尺度效应;非线性动力学;分形;混沌;3DEC 中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2005)22–4202–01 ANALYSIS AND APPLICATION OF ROCK DAMAGE MECHANISM AND SCALE EFFECT ON JOINTS DISTRIBUTION WITH NONLINEAR DYNAMICS LIU Chuan-xiao (College of Resources and Environmental Engineering,Shandong University of Science and Technology,Qingdao266510,China) 收稿日期:2005–09–12 作者简介:刘传孝(1970–),男,2005年于山东科技大学资源与环境工程学院获工学博士学位,导师为蒋金泉教授,现为副教授,主要从事非线性动力学、计算力学、岩土力学与工程等方面的教学与研究工作。E-mail:lchuanx@https://www.wendangku.net/doc/3e11814151.html,。

2.1岩石破坏准则1

2.1岩石破坏强度准则 岩石的破坏主要与外荷载的作用方式、温度及湿度有关。一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。 图2-1 岩石破坏形态示意图 从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论 最大正应力强度理论也称朗肯理论,该理论是朗肯(W.J.M.Rankine)于1857年提出的。它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。 考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力 sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。土体处于极限平衡状态时的最大主应力为 s1=gz ,而最小主应力 s3即为主动土压力强度 pa 。根据土的极限平衡理论,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式: 粘性土: 213...2tan tan 454522c ??σσ??????=-++ ? ???? ? (1) 无粘性土 231.tan 452?σσ???=- ??? (2) 该理论认为材料破坏取决于绝对值最大的正应力。因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。 因此,朗肯强度破坏准则可以表示为:c σσ≥1,或者t σσ-≤3 式中,1σ为岩石受到的最大主应力,MPa ;3σ为岩石受到的最小主应力,MPa ;c σ为岩石单轴抗压强度,MPa ;t σ为岩石抗拉强度,MPa 。 朗肯强度破坏准则只适用于岩石单向受力及脆性岩石在二维应力条件下的受拉状态,处于复杂应力状态中的岩石不能采用这种强度理论。 2.1.2最大正应变强度理论 岩石受压时沿着平行于受力方向产生张性破裂。因此,人们认为岩石的破

共面闭合非贯通节理岩体贯通机制和破坏强度准则研究

第25卷第10期岩石力学与工程学报V ol.25 No.10 2006年10月Chinese Journal of Rock Mechanics and Engineering Oct.,2006 共面闭合非贯通节理岩体贯通机制和 破坏强度准则研究 刘远明1,2,3,夏才初1,2 (1. 同济大学岩土工程重点实验室,上海 200092;2. 同济大学地下建筑与工程系,上海 200092; 3. 贵州大学土木建筑工程学院,贵州贵阳 550003) 摘要:简述共面闭合非贯通节理岩体的破坏机制及其贯通强度依赖于节理和岩桥的特性,阐述现有的共面闭合非贯通节理岩体的强度准则及其不足。研究直剪应力状态下共面闭合非贯通节理的受力特点,提出共面闭合非贯通节理岩体破坏机制,引入起裂角,在此基础上建立含起裂角的共面闭合非贯通节理岩体贯通破坏强度准则。通过与前人的试验进行对比,结果表明提出的破坏机制能较好地解释试验现象,理论计算的峰值强度与试验实测值吻合较好。 关键词:岩石力学;节理岩体;直剪;起剪角;破坏强度;共面闭合非贯通节理 中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2006)10–2086–06 STUDY ON FRACTURE MECHANISM AND CRITERIA OF FAILURE STRENGTH OF ROCK MASS CONTAINING COPLANAR CLOSE DISCONTINUOUS JOINTS UNDER DIRECT SHEAR LIU Yuanming1,2,3,XIA Caichu1,2 (1. Key Laboratory of Geotechnical Engineering,Tongji University,Shanghai200092,China; 2. Department of Geotechnical Engineering,Tongji University,Shanghai200092,China; 3. School of Civil Engineering and Architecture,Guizhou University,Guiyang,Guizhou550003,China) Abstract:Rock masses containing coplanar close discontinuous joints are commonly found in nature,and their failure mechanism and strength strongly depend on the properties of joints and rock bridges,which are defined as the areas between joints. Several shear failure criteria of the rock mass are viewed and compared,and their weaknesses are pointed out. The mechanical behaviors of brittle rock mass containing coplanar close discontinuous joints under shear condition are analyzed,and the failure mechanisms of the rock mass are proposed. The rock mass may fail in three ways,failure in tension,failure in shear,and failure in mixed tension and shear. A modified criterion of failure strength of the rock mass is proposed for failure in mixed shear and tension. The equation of the shear strength contains the properties of geometry and mechanics of joints and rock bridges. Shear initiation angle as a new parameter is introduced firstly and also is contained in the equation. The failure mechanism can explain the phenomenon in direct shear test,and the calculated results according to the modified criterion of failure strength agree well with experimental results. Key words:rock mechanics;jointed rock mass;direct shear;shear initiation angle;failure strength;coplanar close discontinuous joints 收稿日期:2005–06–10;修回日期:2005–09–22 基金项目:国家自然科学基金资助项目(40472142) 作者简介:刘远明(1975–),男,1998年毕业于河海大学,现为博士研究生,主要从事地下结构方面的研究工作。E-mail:liuyuanming75@https://www.wendangku.net/doc/3e11814151.html,

第三章2岩石的破坏准则

,. 五、岩石的破坏准则 对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。 岩石的应力、应变增长到一定程度,岩石将发生破坏。用来表征岩石破坏条件的函数称为岩石的破坏准则。 岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延

,. 性性质,同时它的强度极限也大大提高了。

,. 许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论 最大正应变理论 最大剪应力理论(H.Tresca) 八面体应力理论 莫尔理论及库伦准则 格里菲思理论(Griffith) 伦特堡理论(Lundborg) 经验破坏准则

,. 1、最大正应力理论 这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。 适用条件: 单向应力状态。对复杂应力状态不适用。 写成解析式: 0))()((22322 2221=---R R R σσσ 0))()((223222221≥---R R R σσσ 破坏

,. 2、最大正应变理论 该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。 则破坏准则为 u εε≥max 式中 m ax ε——岩石内发生的最大应变值; u ε——单向拉、压时极限应变值; 这一破坏准则的解析式为(由广义虎克定律)

节理裂隙层理断层断裂的区别

节理、裂隙、层理、断层、断裂的区别 节理: 岩石中的裂隙,其两侧岩石没有明显的位移。地壳上部岩石中最广泛发育的一种断裂构造。通常,受风化作用后易于识别,在石灰岩地区,节理和水溶作用形成喀斯特。岩石中的裂隙,是没有明显位移的断裂。 节理是地壳上部岩石中最广泛发育的一种断裂构造。按成因节理可分为: ①原生节理,成岩过程中形成,如沉积岩中因缩水而造成的泥裂或火成岩冷却收缩而成的柱状节理;②构造节理,由构造变形而成;③非构造节理,由外动力作用形成的,如风化作用、山崩或地滑等引起的节理,常局限于地表浅处。 片理 又称“片状构造”。指岩石形成薄片状的构造。板状、千枚状、片状、片麻状构造可通称为片理。在变质岩中极为常见,是重要特征之一。对于其成因观点不一,一般认为在应力和温度的联合作用下,导使沿剪切面方向之一发育成一组劈理,或因重结晶较强烈,进而在此方向上形成片理构造。片理面的方向有的与原岩层理斜交,但也有与原岩层理方向一致的,后者说明片理的形成可能是继承原岩层理发育而成。 层理 岩石层之间的分割面称为层理面。沉积岩层的原始产状多是趋于水平的,后来的构造运动可以使其倾斜、直立、弯曲甚至发生破裂,形成褶皱、节理、断层、劈理等构造形态。 裂隙 【crack;crevice;fracture】裂开的缝儿 地质地貌学:裂隙是断裂构造的一种,通常把岩体中产生的无明显位移的裂缝叫做裂隙。 水文地质学:裂隙是指固结的坚硬岩石(沉积岩,岩浆岩和变质岩)在各种应力作用下破裂变形而产生的空隙.以裂隙率表示.fissure 由构造应力作用形成的裂隙叫做构造裂隙或节理。由于构造应力在一个地区有一定的方向性,所以由构造应力形成的各种构造裂隙在自然界中的分布是有规律的,排布方向是一定的。 编辑本段构造裂隙的分类 按力学性质分类,可分为张裂隙和剪切裂隙两种。另外,对形态微细,分布密集,相互平行排列的构造裂隙,又称为[劈理]。 节理-岩体两侧未发生显著相对位移的破裂; 裂隙-坚硬岩体呈裂缝状的间隙; 断层-岩层在内动力作用下断裂并沿断裂面发生位移的一种构造变动形迹;

岩石的破坏准则汇总

岩石的破坏准则 岩石的破坏准则 对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。 岩石的应力、应变增长到一定程度,岩石将发生破坏。用来表征岩石破坏条件的函数称为岩石的破坏准则。 岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延 1

岩石的破坏准则 2 性性质,同时它的强度极限也大大提高了。

岩石的破坏准则 许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论 最大正应变理论 最大剪应力理论(H.Tresca) 八面体应力理论 莫尔理论及库伦准则 格里菲思理论(Griffith) 伦特堡理论(Lundborg) 经验破坏准则 3

岩石的破坏准则 4 1、最大正应力理论 这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。 适用条件: 单向应力状态。对复杂应力状态不适用。 写成解析式: 破坏

岩石的破坏准则 5 2、最大正应变理论 该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。 则破坏准则为 式中 m ax ε——岩石内发生的最大应变值; u ε——单向拉、压时极限应变值; 这一破坏准则的解析式为(由广义虎克定律)

岩石孔隙裂隙发育

(1) 提供较多的储水空间,形状各异,空隙、溶隙、孔洞、张开结构面等。 (2)孔隙裂隙连续性好 不连通,难以成水体,更谈不上地下水的运动。玄武岩的原生气泡可能是储水空间,但如果节理裂隙不发育,也难以成统一的水体。就象孤立的小溶洞。 (3)岩土中稳定的水体 如果稳定地下水位在地下10米,西北很多地方是这样的。满足 (1)和 (2)的岩层在10米深度以上,严格意义上讲,不能成为含水层-没有水啊! (4)丰富的水源与补给源 虽然没有稳定的水体,但有季节的补给也有可能成为含水层。 包括天然降雨入渗、测向越流补给、人工补给等都是判断含水层的重要条件。想想,研究沙漠中的孤山中的破碎岩层是否为含水层?确实不中 (2)补充一下 (1),几种岩石的孔隙度(=孔隙体积/岩石体积) 岩石名称砾石粗砂细砂亚粘土泥炭 孔隙度(%)5080 是不是说泥炭比砾石更容易成为含水层?都饱和相同条件下会排出更多的水? 非也,除了细粒土可能有层理,其粘性土薄层隔断或弱化水之间的联系外,水分子的吸附和能否排出是关键。

给水度就是岩土可排出重力水的能力则相反。 岩石名称砾砂粗砂中砂细砂极细砂亚砂土亚粘土给水度0.3-0.350.25-0.30.2-0.250.15-0.20.1-0.150.07-0.10.04-0.07 (3)看看含水层的定义: (1)含水层——饱含水的透水层。 (2)隔水层——不透水层。 (3)弱透水层-渗透性较差的岩层,相邻含水层通过其发生越流时,进行水量交换。 含水层与隔水层是相对的。含水层与隔水层的定义取决于运用它们的具体条件。因此,大家很难定界含水层和隔水层,隔水层也是相对的,也有水的渗流,只不过很微弱而已。有地区特点。有的地方定义含水层除了考虑给水度、渗透系数,把含水层厚度、延伸情况也考虑进去来定义。

第三章3水对岩石强度的影响

五、水对岩石强度的影响 前已述汲水对岩石强度影响: 膨胀、崩解、溶解 水→岩软化 渗透→水压水 对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。

对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当有孔隙水压力p w时,岩石的有效应力为 σ—岩石总应力(MPa);σ'—有效应力(MPa); p w——孔隙水压力(MPa) 在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。

1.莫尔摩伦准则 根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为: ①?στtg c f ?'+= 或可见,由于p w 的存在,岩石的抗剪强度降低。 ②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有 c R N +'='?σσ3 1,式中w p -='11σσ,w p -='33σσ 推出

由上式可解得p w,即岩石从初始作用应力σ1和σ3达到岩石破坏时所需施加的孔隙水压力: 亭定(Handin 结果,在p w p w=0时的包络线, 曲线。

当施加主应力σ1、σ3时,(p w =0)岩石稳定(莫尔圆II ),在此主应力下,增加p w 直至破坏(莫尔圆I 与包线相切)。 从上面分析可见,p w 对岩体强度影响很大。在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后,如果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与包线相切或相交时,岩体将失稳。

3 水对岩石强度的影响

前已述汲水对岩石强度影响: 膨胀、崩解、溶解 水→岩软化 渗透→水压水 对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。 对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当

有孔隙水压力p w时,岩石的有效应力为 σ—岩石总应力(MPa);σ'—有效应力(MPa); p w——孔隙水压力(MPa) 在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。 1.莫尔摩伦准则

根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为: ①?στtg c f ?'+= 或可见,由于p w 的存在,岩石的抗剪强度降低。 ②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有 c R N +'='?σσ3 1,式中w p -='11σσ,w p -='33σσ 推出 由上式可解得p w ,即岩石从初始作用应力σ1和σ3达到岩石破坏

时所需施加的孔隙水压力: 亭定(Handin)砂岩实验结果,在p w为零时作一系列的实验,绘莫尔应力圆,得到p w=0时的包络线,即岩石强度曲线。 当施加主应力σ1、σ3时,(p w=0)岩石稳定(莫尔圆II),在此主应力下,增加p w直至破坏(莫尔圆I与包线相切)。 从上面分析可见,p w对岩体强度影响很大。在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后,如

果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与包线相切或相交时,岩体将失稳。 2.格里菲思准则 如果把有效应力引入格里菲思破坏准则,用1σ'和3 σ'代替原式中的1σ 和3σ ,即 w p -='11σσ,w p -='33 σσ w p 4331>+σσ时,

节理岩体

3.9. 隐式节理模型: 节理岩(Jointed Rock)模型 岩土材料在各方向上的特性值可能会不同,从而引起各方向在荷载作用下的反应不同,这样的特性叫做各向异性(anisotropic)。各向异性又分为弹性各向异性和塑性各向异性。弹性各向异性是指各方向使用不同的弹性刚度值,塑性各向异性是指像节理岩模型那样在各方向上使用不同的强度特性值。 节理岩模型是各向异性弹性-完全塑性(anisotropic elastic perfectly-plastic)模型,即同时具有弹性横观同性(transversely isotropic elastic)模型和塑性各向异性(anisotropic plastic)模型的特点。节理模型适合于模拟分层的岩石,该模型可模拟具有三个层方向和结合方向的完整岩。完整岩要输入五个参数和一个方向,是属于横观同性弹性材料,其各向异性特点表现在断层等现象上。假定主结合方向的剪切应力遵循库伦(Coulomb)准则,沿着该方向产生最大剪切应力时将产生塑性滑动(plastic sliding)。可以定义三个滑动方向(平面)的强度,第一个平面假定与弹性横观同性方向一致。各平面可具有不同的剪切刚度。 M ajor joint direction 图2.31 节理模型示意图 节理模型适合模拟具有连续的接缝或接缝的集合的岩石,接缝应平行且接缝中不能填充有断层粘土,接缝宽度与结构物的尺寸也要小很多。 节理模型的几个基本特性值如下: A. 完整岩的横观同性弹性特性: ,,,,x z xy zx xz E E G νν B. 三个方向上遵循库伦准则的剪切磨坏参数: ,i i c φ 3.9.1. 横观同性弹性材料刚度 节理模型中的横观同性特性与前面章节中介绍的正交异性材料相同。 3.9.2. 三个方向上的塑性反应 为了考察具有局部坐标系(n, s, t)的平面的塑性条件,需要先计算笛卡尔坐标下的应力。局部坐标应力包括正应力n σ和两个独立的剪切应力 s τ和t τ。 T i i σσ=T (2.96)

岩石孔隙裂隙发育

(1)岩石孔隙裂隙发育 提供较多的储水空间,形状各异,空隙、溶隙、孔洞、张开结构面等。 (2)孔隙裂隙连续性好 不连通,难以成水体,更谈不上地下水的运动。玄武岩的原生气泡可能是储水空间,但如果节理裂隙不发育,也难以成统一的水体。就象孤立的小溶洞。 (3)岩土中稳定的水体 如果稳定地下水位在地下10米,西北很多地方是这样的。满足(1)和(2)的岩层在10米深度以上,严格意义上讲,不能成为含水层- 没有水啊! (4)丰富的水源与补给源 虽然没有稳定的水体,但有季节的补给也有可能成为含水层。 包括天然降雨入渗、测向越流补给、人工补给等都是判断含水层的重要条件。想想,研究沙漠中的孤山中的破碎岩层是否为含水层?确实不中 (2)补充一下(1),几种岩石的孔隙度(=孔隙体积/岩石体积) 岩石名称砾石粗砂细砂亚粘土粘土泥炭 孔隙度(%)27 40 42 47 50 80 是不是说泥炭比砾石更容易成为含水层?都饱和相同条件下会排出更多的水? 非也,除了细粒土可能有层理,其粘性土薄层隔断或弱化水之间的联系外,水分子的吸附和能否排出是关键。 给水度就是岩土可排出重力水的能力则相反。 岩石名称砾砂粗砂中砂细砂极细砂亚砂土亚粘土 给水度 0.3-0.35 0.25-0.3 0.2-0.25 0.15-0.2 0.1-0.15 0.07-0.1 0.04-0.07(3)看看含水层的定义: (1)含水层——饱含水的透水层。 (2)隔水层——不透水层。 (3)弱透水层- 渗透性较差的岩层,相邻含水层通过其发生越流时,进行水量交换。 含水层与隔水层是相对的。含水层与隔水层的定义取决于运用它们的具体条件。因此,大家很难定界含水层和隔水层,隔水层也是相对的,也有水的渗流,只不过很微弱而已。有地区特点。有的地方定义含水层除了考虑给水度、渗透系数,把含水层厚度、延伸情况也考虑进去来定义。

含孔洞节理岩体损伤破坏过程的颗粒流数值模拟

含孔洞节理岩体损伤破坏过程的颗粒流数值模拟 张敏思王述红 侯佳男 郭牡丹 杨勇 (东北大学资源与土木工程学院,沈阳 110004) 摘要:基于颗粒流理论,引入颗粒接触连接本构模型,建立了岩体颗粒流数值模型。通过含孔洞花岗岩试样损伤破坏试验和Particle Flow Code(PFC)离散元程序,对带有圆形空洞的花岗岩的单轴压缩试验进行了数值模拟,模拟试验观察到的空洞周边扰动区的损伤破坏过程。与室内试验结果对比分析,PFC2D基本再现了脆性岩石的局部受压破坏现象,并且在破坏过程中可以得到应力-应变关系曲线,及其裂缝扩展过程图,进而通过声发射技术来监测微裂缝的演化过程。通过改变计算模型中颗粒单元的性质,给出了在不同颗粒单元参数时试样的宏观性质,并且损伤破坏试验验证了本模拟的正确性,其研究结果对岩体本构关系的完善有一定的应用价值。 关键词:颗粒流;圆形空洞;数值模拟;声发射 Particle Flow Code Numerical Simulation Of Failure Around a Circular Opening In Jointed Rock Mass ZHANG Minsi, WANG Shuhong, HOU Jianan, GUO Mudan, YANG Yong (School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, Liaoning, China) Abstract: Based on particle flow code(PFC)theory , rock mass numerical models are constituted , in which different contact bond constitutive relation are introduced. The Uniaxial compression tests of failure around a circular opening in Granite sample are simulated by PFC2D respectively, and also by the lab test of failure around a circular opening in Granite sample. The failure process of peripheral disturbance around a circular opening is also simulated. Compared with the indoor test results, the local pressure brittle rock damage phenomenon is represented by PFC2D, and also the stress-strain curve and the crack propagation graph can be obtained through the failure process, the tiny cracks of the evolution process is monitored through the acoustic emission. Through the changes in the calculation model of particle nature of the unit, the macro properties of different parameter in the sample unit are given, more over, the correctness of the simulation is validated by the failure and simulation experiment and there has been certain practical value for the perfect constitutive relation of of rockmass. Keywords: particle flow code, a circular opening, numerical simulation, the acoustic emission 基金项目:国家高技术研究发展计划(2007AA06Z108);国家重点基础研究发展计划(2007CB209405);辽宁省自然科学基金(2009) 作者简介:张敏思,女,山东淄博人,东北大学硕士研究生,主要从事地下结构方面的学习和研究工作。 Email:mscccathy@https://www.wendangku.net/doc/3e11814151.html,;王述红,男,江苏泰州人,东北大学副教授,主要从事岩土力学与工程方面的教学和研究工作。

岩石的层理及节理学习

一、节理 (一)基本概念 1、节理:岩石受力作用形成的破裂面或裂纹,称为节理,它是破裂面两侧的岩种构造。 节理的产状也可用走向、倾向和倾角进行描述。 2、节理组和节理系:在同一时期,同一成因条件下形成的,彼此相互平行或近组;在同一构造应力作用下,形成有规律组合的节理组,叫节理系。 (二)节理分类 1、按节理的成因分类 节理按成因可分为原生节理、构造节理和表生节理。 (1)原生节理:指岩石形成过程形成的节理,如玄武岩的柱状节理 (2)构造节理:是岩石受地壳构造应力作用产生的,这类节理具有明显的方向性和对地下水的活动和工程建设的影响也较大。构造节理与褶皱、断层及区域性地质构它们常常相互伴生,是工程地质调查工作中的重点对象(相对于节理、表生节理)。 (3)表生节理:又称风化节理、非构造节理,是岩石受外动力地质作用(风、水、化作用产生的风化裂隙等,这类节理限在空间分布上常局限于地表浅部岩石中,对有较大的影响。 2、按力学性质进行分类 (1)张节理:在垂直于主张应力方向上发生张裂而形成的节理,叫张节理。张节理尤其在褶皱转折端等张拉应力集中的部位最发育,它主要有以下特征:裂口是张开的,剖面呈上宽下窄的楔形,常被后期物质或岩脉填充; 节理面粗糙不平,一般无滑动擦痕和磨擦镜面;

产状不稳定,沿其走向和倾向都延伸不远即行尖灭; 在砾岩或砂岩中发育的张节理常常绕过砾石、结核或粗砂粒,其张裂面明显凹凸张节理追踪X型剪节理发育呈锯齿状。 (2)剪节理:岩石受剪应力作用发生剪切破裂而形成的节理,叫剪节理,它一般夹角的平面上产生,且共轭出现,呈X状交叉,构成X型剪节理。它具有以下特征剪节理的裂口是闭合的,节理面平直而光滑,常见有滑动擦痕和磨光镜面; 剪节理的产状稳定,沿其走向和倾向可延伸很远; 在砾岩或砂岩中发育的剪节理常切砾石、砂粒、结核和岩脉,而不改变其方向; 剪节理的发育密度较大,节理间距小而且具有等间距性,在软弱薄层岩石中常常 张节理剪节理 3、按节理与岩层走向关系分类 (1)走向节理:节理延伸方向大致与岩层走向平行。 (2)倾向节理:节理延伸方向大致与岩层走向垂直。 (3)斜交节理:节理延伸方向与岩层走向斜交。 4、根据节理与褶皱轴的关系,可将节理分为: (1) 纵节理-节理走向与褶皱轴向平行 (2) 横节理-节理走向与褶皱轴向直交

岩石的破坏准则

岩石的破坏准则 对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。 岩石的应力、应变增长到一定程度,岩石将发生破坏。用来表征岩石破坏条件的函数称为岩石的破坏准则。 岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延专业文档供参考,如有帮助请下载。. 性性质,同时它的强度极限也大大提高了。 专业文档供参考,如有帮助请下载。. 许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论 最大正应变理论 最大剪应力理论(H.Tresca) 八面体应力理论 莫尔理论及库伦准则 格里菲思理论(Griffith) 伦特堡理论(Lundborg) 经验破坏准则

1、最大正应力理论 这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。 或??R??R?tc13适用条件:单向应力状态。对复杂应力状态不适用。写成解析式: 222222???)?R)(R0(R??)(?312 222222???)?R0RR(?)(?)(?破坏312专业文档供参考,如有帮助请下载。. 2、最大正应变理论 该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。 则破坏准则为 ???u max式中——岩石内发生的最大应变值;?axm——单向拉、压时极限应变值;?u这一破坏准则的解析式为(由广义虎克定律)专业文档供参考,如有帮助请下载。. ?????)?(?????31211R?????????)(????????? 3221u E E?????????)??(????3321R或RR —c t222222??????0()(?))(???u21u3u推出:??????222222????????????R?(???[R[)]?(??)]R0[?(??)]31131322?)))R破坏232321131实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。专

东北大学岩石力学讲义岩石破坏机制及强度理论

第二章 岩石破坏机制及强度理论 第一节 岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力方向平行的裂隙。 二、剪切破坏:岩石试件单向抗压的X 形破坏。从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。 (a ) (b )

三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 123(,)f σσσ= 研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。 第二节 岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 c εε≤ (2-1) c ε—拉应变的极限值,ε—拉应变。

若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。按弹性力学有3 3E E σμ εσσ= -12(+),即33E εσμσσ=-12(+)。若3ε<0则产生拉应变。由于E >0,因此产生拉应变的条件是 3σμσσ-12(+)<0,3μσσσ12(+)> 若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t E σε=?0t E σε=。 按最大线应变理论30εε≥破坏,即 312()t σμσσσ-+≥ (2-2) 式中0ε是允许的拉应变。 二、格里菲斯理论 格里菲斯理论的主要观点是:材料内微小裂隙失稳扩展导致材料的宏观破坏。 格里菲斯理论的主要依据是:1)、任何材料中总有各种微小微纹;2)、裂纹尖端的有严重的应力集中,即应力最大,并且有拉应力集中的现象;3)、当这种拉应力集中达到拉伸强度时微裂纹失稳扩展,导致材料的破坏。 格里菲斯理论的来源:由玻璃破坏得到的启示。 格里菲斯理论的基本假设为: 1、岩石的裂隙可视为极扁的扁椭圆裂隙; 2、裂隙失稳扩展可按平面应力问题处理; 3、裂隙之间互不影响。 按格里菲斯理论,裂纹失稳扩展条件为 1)、当1330σσ+>时,满足 21313()8()0t σσσσσ-++= (2-2)

岩石破坏准则

精心整理2.1岩石破坏强度准则 岩石的破坏主要与外荷载的作用方式、温度及湿度有关。一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。 准则。本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。 2.1.1最大正应力强度理论 最大正应力强度理论也称朗肯理论,该理论是1857年提出的。它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。根据土的极限平衡理论,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式: 粘性土: 213...2tan tan 4545c ??σσ??? ???=-++ ? ?(1) (2) 2.1.2变, 岩石强度条件可以表示为: m εε≤max (3) 式中,m ax ε为岩石内发生的最大应变值,可用广义胡克定律求出;m ε为单向压缩或单向拉伸试验时岩石破坏的极限应变值,由实验求得。 对于三轴应力状态时: ()[]321max 1 σσμσε+-= E (4)

相关文档
相关文档 最新文档