文档库 最新最全的文档下载
当前位置:文档库 › QAM和星座图

QAM和星座图

QAM和星座图
QAM和星座图

正交调制读书报告

NJUer

摘要:正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用,本文探讨了正交振幅调制技术的相关原理,并从星座图的角度认识这种调制方式的实现和相关应用。

关键词:正交幅度调制QAM、星座图

一、正交幅度调制

QAM是一种振幅和相位联合调制,也即其已调信号的振幅和相位均随数字基带信号变化而变化。采用M(M>2)进制的正交振幅调制,可记为MQAM。M越大,频带利用率就越高。

在移动通信中,随着微蜂窝的出现,使得信道传输特性发生了很大变化。过去在传统蜂窝系统中不能应用的正交振幅调制也引起人们的重视。QAM数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。它以其灵活的配置和优越的性能指标,广泛的应用于数字有线电视传输领域和数字MMDS系统。

为改善数字调制的不足之处,如:频谱利用率低、抗多径抗衰弱能力差、功率谱衰减慢、带外辐射严重等,人们采取了如下的几种方式,如提高功率利用率以增强抗噪声性能;适应各种随参信道以增强抗多径抗衰落能力等。另外,在恒参信道中,正交振幅调制(QAM)方式具有高的频谱利用率,因此正交振幅调制(QAM)在卫星通信和有线电视网络高速数据传输等领域得到广泛应用。

二、QAM调制的原理和星座图

2.1、数据经过信道编码之后,被映射到星座图上,图1就是QAM调制器的基本原理框图。

一个信号有三个特性随时间变化:幅度、相位或频率。然而,相位和频率仅仅是从不同的角度去观察或测量同一信号的变化。人们可以同时进行幅度和相位的调制,也可以分开进行调制,但是这既难于产生更难于检测。但是在特制的系统中信号可以分解为一组相对独立的分量:同相(I )和正交(Q )分量。这两个分量是正交的,且互不相干的。

图1中的QAM 调制器中I 和Q 信号来自一个信号源,幅度和频率都相同,唯一不同的是Q 信号的相位与I 信号相差090。具体关系如图2所示,当I 的幅度为1的时候,Q 的幅度为0,而当I 的幅度为0的时候,Q 的幅度为1,两个信号互不相干,相位相差090,是正交的。

对于MQAM 信号,一般的表达式为:

∑∞

?∞=+?=

n n c s n MQAm t nT t g A t e )cos()()(φω式中,n A 是基带信号的振幅,)(s nT t g ?是宽度为s T 的第n 个码元基带信号波形,n φ是第n 个码元载波的相位。上式展开的正交表示形式为:

∑∑∞?∞

=∞?∞

=???=n c n s n n c n s n MQAm t

nT t g A t nT t g A t e ωφωφsin ]sin )([cos ]cos )([)(∑∑∞

?∞=∞?∞=???=n c s n n c s n t

nT t g Y t nT t g X ωωsin )]([cos )]([式中n n n A X φcos =,n n n B Y φcos =是第n 个码元振幅,

∑∞?∞=?n s n nT t g X )(与

∑∞?∞=?n s

n nT t g Y )(课实为基带信号。因此从上式可以看出,QAM 调制是两个独立的数字基带信号对两个相互正交的同频载波进行抑制载波双边带调制。

在QAM 调制机制中,。相位+幅度状态定义了一个数字或数字的组合。QAM 的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,效率就越高。对于给定的系统,所需要的符号数为n 2,这里n 是每个符号的比特数。对于16QAM ,n =4,因此有16个符号,每个符号代表4bit :0000,0001,0010等。对于64QAM ,n =6,因此有64个符号,每个符号代表6bit :000000,000001,000010等。

经过信道编码的二进制的MPEG-2比特流进入QAM 调制器,信号被分为两路,一路给I ,另一路给Q ,每一路一次给3比特的数据,这3比特的二进制数一共有8种不同的状态,分别对应8种不同的电平幅度,这样I 有8个不同幅度的电平,Q 有8个不同幅度的电平,而且I 和Q 两路信号正交。这样任意一个I 的幅度和任意一个Q 的幅度组合都会在极坐标图上映射一个相应的星座点,这样每个星座点代表由6个比特的数据组成的一个映射,I 和Q 一共有8×8共64种组合状态,各种可能出现过的数据状态组合最后映射到星座图上,得到如图2所显示的64QAM 星座图。

图二

2.2、星座图的应用

同基带数字传输的眼图相比较,星座图可以看成数字信号的一个“二维眼图”阵列,同时符号在图中所处的位置具有合理的限制或判决边界。代表各接收符号的点在图中越接近,信号质量就越高。由于屏幕上的图形对应着幅度和相位,阵列的形状可用来分析和确定系统或信道的许多缺陷和畸变,并帮助查找其原因使用星座图可以轻松发现诸如幅度噪声、相位噪声、相位误差、调制误差比等调制问题。

(1)增益压抑

增益压抑是在信号传送路径上因主动原件(放大器或信号

处理器)过度驱动或不良的主动原件所导致的信号失真,结果在

星座图上显示出四个角落被扭曲造成四边弯成如弓形的现象,

而不是正常的四方形形状。

(2)相位噪声

相位噪声是一段时间内振荡器的相位相对不稳定的情况,如

果此振荡器是关于信号处理(例如本地振荡器)这些相位不稳定

会影响在信号上,在信号处理设备内的振荡器在设计上是只会对

所处理的信号增加非常微小的相位噪声,然而不良的调制器或处

理器可能增加非常可观的相位噪声在信号上,结果在星座图上显

示出绕着图形中央旋转的现象。

(3)不连续的噪声干扰

在实际的网络系统中,QAM 信号会一直被噪声干扰。噪

声导致所显示的符号落在星座图方框内正常位置的周围,所以

在累积一段时间长度后统计一特定方框内所有符号的落点就

会形成如云般的形状,每个符号表示噪声干扰些微的差异。如

果有够多的噪声干扰星座图会显示一些符号以表示超过判断

门坎形成“误码”。

三、QAM 误码率分析

通常情况下,我们采用矩形的QAM 信号星座,这是因为容易产生PAM 信号可直接加到两个正交载波相位上,此外它们还便于解调。

对于k M 2=下的矩形信号星座图(k 为偶数),QAM 信号星座图与正交载波信号上的两个PAM 信号时等价的,着两个信号中的每一个上都有2/2k M =个信号点。因为相位正交分量上的信号能被相干判定方法进行分离,所以易于通过PAM 的误码率确定QAM 的误码率。M 进制QAM 系统正确判定的概率是:

2

)1(M C P P ?=上式中,M P 是M 进制PAM 系统的误码率,该PAM 系统具有等价QAM 系统的每一个

正交信号的一半的平均功率。通过适当调整M 进制PA 系统的误码率,可得到:

)13()11(20

N E M Q M P av M ??=上式中,0

N E av 是每个符号的平均信噪比,这样一来,M 进制的QAM 调制的误码率为:2)1(1M M P

P ??=可以注意到,当k 为偶数时,这个结果对k M 2=情形时精确的,而当k 为奇数时,就不

存在与之等价的M 进制PAM 系统。如果使用最佳距离量度进行判决的最佳判决器,可以求出任意k ≥1误码率的严格上限为:

020)1(34])1(321[1N M E Q N M E Q

P av av M ?≤???≤式中

0N E av 是每个比特的平均信噪比四、QAM 与MPSK 之比较

为了说明QAM 调制相对于MPSK (多进制相位键控)来说,抗干扰能力更强,误码率更低,图3示出了16PSK 和16QAM 的星座图:

图三16QAM 和16PSK 的星座图

这两个星座图表示的信号最大功率相等,相邻信号点的距离d1,d2分别为:

2DPSK :A A d 39.016sin

21=≈π16QAM :A M d 47.01

162122=?=?≈结果表明,d2>d1,大约超过 1.64dB 。合理地比较两星座图的最小空间距离应该是以平均功率相等为条件。由相关资料得知,在平均功率相等条件下,16QAM 的相邻信号距离超过16PSK 约 4.19dB 。星座图中,两个信号点距离越大,在噪声干扰使信号图模糊的情况下,要求分开两个可能信号点越容易办到。因此16QAM 方式抗噪声干扰能力优于16PSK 。参考文献:

1、《现代通信原理》文元美张树群等编著科学出版社

2、《数据通信原理》陈启美李勃等编著南京大学出版社

数字电视mer及星座图剖析

数字电视MER及星座图剖析 数字电视MEF及星座图剖析 向天明深圳市浩格电子仪器有限公司经理、中国电子测量与仪器学会委员 随着数字电视的发展,人们越來越重视数字电视的质量问题,数字电视质量的好坏首先是数字电视信号的质量, 因此数字电视信号的分析、测试非常重要,本文重点对数字电视信号的MER及星座图剖析。 1、广义噪声 无论是模拟电视信号或者数字电视信号,它在产生和传输过程中都会受到失真、噪声、干扰等影响,不可能是非常理想的电视信号,这就要求我们对电视信号进行测量、分析。 在模拟电视信号中,这些失真、噪声、干扰会直接影响电视的图像或伴音。如噪声会使电视图像产生雪花,甚至不能收看节目;电源的交流会 使图像滚动;二次差拍失真、三次差拍失真会使图像产生垂直、倾斜或水平波纹等等。因此我们将这些影响电视质量的丙索,进行必要的测试,并分别规定相应的参数、限定在某一个数值上,进 行测试。即有载噪比(C/N)、亨声、二次差拍失真(CSO、三次差拍失真(CTB等等测量参数。对于数字电视信号來说,由于它是将电视信号变成数字信号,在传输过程中是编码的脉冲信号。那么上述的噪声、电源干扰、失真(CSO CTB等)都不直接影响电视信号的图像,但当它们 达到足够大的电平的时侯,会造成误码,使图像有马赛克或“断线”收不到图像。此外数字电视信号对相位噪声较为敏感,而模拟电视几乎不考虑这一因素。 还得说明的是突发干扰信号,它的特点是信号幅度大,持速时间很短暂,就是一般仪器來观察它都非常困难,这对于模拟电视來说虽然它有影响,但由于人的视觉的迟钝,很难观察出來,而对于数字电视信号來说,它便易于产生误码。我们常把它称之为突发噪声,这对数字电视影响非常大,必须严格测试。 上述的这些影响电视信号质量的信号,对于数字电视信号来说它是有害的,我们称它为无用信号,或者把它们都看成噪声信号來处理,笔者建议称之为广义噪声。 2、星座图 数字电视目前用得最多的是DVB标准,为分析方便起见,我们以DVB-C标准的有线数字电视信号为例。DVB-C采 用如图1所示的QAM调制方式,当已经过编码、压缩、复用的数字信号流,经过串/并重组方框将数字信号流分 成I和Q两组,分别经过量化,达到不同的直流电平阶梯,再经滤波,I、Q两路信号经同一本振混频,但相位相 差90 o (Q路是Smo t,I路是Cos? t),两路再经混合器合成一彳、信号发射、传输。由此我们知道、两路数字信号I、Q相位差90°, 而量化后的I路信号电平幅度按量化等级,在I轴方向有数个相应的位置,如量化8个 等级则有8个位置,Q路也是如此。这样一来,每一个数字电视信号会在一个坐标图上都有它相应的位置,这就是图2所示的星座图。如 I、Q各组量化4个等级,则有4X4=16个框的星座,量化8个等级则为64框的星座图。

数字通信中几种调制方式的星座图解析

数字通信中几种调制方式的星座图由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。一.星座图基本原理一般而言,一个已调信号可以表示为:(1)上式中,是低通脉冲波形,此处,我们为简单处理,假设,,即是矩形波,以下也做同样处理。假设一共有(一般总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这个消息序列分别映射到载波的幅度,频率和相位上,显然,必须有才能实现这个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1.当和为常数,即时,为幅度调制(ASK。 (2.当和为常数,即时,为频率调制(FSK。(3.当和为常数,即时,为相位调制(PSK。我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM。我们把(1)式展开,可得:(2)根据空间理论,我们可以选择以下的一组基向量:其中是低通脉冲信号的能量,。这样,调制后的信号就可以用信号空间中的向量来表示。当在二维坐标上将上面的向量端点画出来时,我们称之为星座图,又叫矢量图。也就是说,星座图不是本来就有的,只是我们这样表示出来的。星座图对于判断调制方式的误码率等有很直观的效用。由此我们也可以看出,由于频率调制时,其频率分量始终随着基带信号的变化而变化,故而其基向量也是不停地变化,而且,此时在信号空间中的分量也为一个确定的量。所以,对于频率调制,我们一般都不讨论其星座图的。二.星座图的

矢量调制星座图实验

实验三、矢量调制星座图实验 一、实验目的 1、掌握星座图的概念、星座图的产生原理及方法, 2、了解星座图的作用及工程上的应用。 二、实验内容 1、观察QPSK、OQPSK、MSK、GMSK基带信号的星座图。 2、比较各星座图的不同及他们的意义。 三、基本原理 星座图可以看成数字信号的一个“二维眼图”阵列,同时符号在图中所处的位置具有合理的限制或判决边界。代表各接收符号的点在图中越接近,信号质量就越高。由于屏幕上的图形对应着幅度和相位,阵列的形状可用来分析和确定系统或信道的许多缺陷和畸变,并帮助查找其原因。 星座图对于识别下列调制问题相当有用: * 幅度失衡 * 正交误差 * 相关干扰 * 相位噪声、幅度噪声 * 相位误差 * 调制误差比 在数字调制中,我们可以通过星座图来观察相位的变化、噪声干扰、各矢量点之间的相位转移轨迹等状况,通过星座图,我们可以很容易地看出各矢量调制的频谱利用率情况,应该说,改变基带信号的相位转移轨迹也就改变了调制信号的频谱特性。 星座显示是示波器显示的数字等价形式,将正交基带信号的I和Q两路分别接入示波器的两个输入通道,通过示波器的“X-Y”的功能即可以很清晰地看到调制信号的星座图。 我们知道QPSK信号可以用正交调制方法产生。在它的星座图中,四个信号点之间任何过渡都是可能的,如图7-2(a)所示。在这正方形星座图中对角过渡,必将产生180度相移,此时经限带后所造成的包络起伏最大。如果在正交调制时,将正交路基带信号相对于同相路

基带信号延时一个信息间隔,即符号间隔的一半,则有可能减小包络起伏。这种将正交路延时一段时间的调制方法称为偏移四相相移键控,常记作OQPSK ,又称为参差四相相移键控(SQPSK )。 将正交路信号偏移T 2 /2的结果是消除了已调信号中突然相移180度的现象,每隔T 2 /2信号相位只可能发生±90度的变化。因而星座图中信号点只能沿正方形四边移动,如图7-2(b )所示。滤波后的OQPSK 7-1中比值为无限大的情形。 图7-1 QPSK 信号限带前后的波形 (a )QPSK (b )OQPSK (c )MSK 图7-2 相位转移图 波形的跳跃与弯曲是由于载波相位不连续变化所引起的。采用PSK 调制方式时,在信号点配置图上信号的相位从一点转到另一点会发生瞬时变动,相位的不连续性是不可避免的。因此,只要采用PSK 调制方式,就会出现旁瓣。 MSK 信号配置图如图7-2(c)所示,1比特区间仅使用圆周的1/4,信号点必是轴上4个点中任何一个,因此,相位必然连续。采用MSK 旁瓣降低得非常明显,即使不使用截止特性较好的带通滤波器,也能获得邻道干扰少的调制信号。对MSK 稍加改进就可以获得较少旁瓣的调制方式。由MSK 信号点配置图可知,调制时出现旁瓣是由于调制载波相位急剧变化所引起的。MSK 的相位变化是连续的,但相位变化速率(相位的一次微分)在比特变化点变成不连续。要使相位的一次微分连续,相位点必须以恒定速度旋转,若接近比特变化点, 滤波后 QPSK

基于MATLAB的QAM 眼图和星座图

南昌大学信息工程学院 《随机信号分析》课程作业 题目:QAM调制信号的眼图及星座图仿真指导老师:虞贵财 作者:毕圣昭 日期:2011-12-05

QAM调制信号的眼图及星座图仿真 1. 眼图 眼图是在数字通信的工程实践中测试数字传输信道质量的一种应用广泛、简单易行的方法。实际上它的一个扫描周期是数据码元宽度1~2倍并且与之同步的示波器。对于二进制码元,显然1和0的差别越大,接受判别时错判的可能性就越小。由于传输过程中受到频带限制,噪声的叠加使得1和0的差别变小。在接收机的判决点,将“1”和“0”的差别用眼图上“眼睛”张开的大小来表示,十分形象、直观和实用。MATLAB工具箱中有显示眼图和星座图的仪器,下面通过具体的例子说明它们的应用。 图1-1所示是MATLAB Toolbox\Commblks中的部分内容,展示了四进制随机数据通过基带QPSK调制、升余弦滤波(插补)及加性高斯白噪声传输环境后信号的眼图。 图1-1 通过QPSK基带调制升余弦滤波及噪声环境后观察眼图的仿真实验系统 图1-2所示是仿真运行后的两幅眼图,上图是I(同相)信号,下图是Q(正交)信号。 图1-2 通过QPSK基带调制及噪声传输环境后观察到的眼图

2. 星座图 星座图是多元调制技术应用中的一种重要的测量方法。它可以在信号空间展示信号所在的位置,为系统的传输特性分析提供直观的、具体的显示结果。 为了是系统的功率利用率、频带利用率得到充分的利用,在特定的调制方式下,在信号空间中如何排列与分布信号?在传输过程中叠加上噪声以后,信号之间的最小距离是否能保证既定的误码率的要求这些问题的研究用星座图仪十分直观方便。多元调制都可以分解为In-phase(同相)分量及Quadrature(正交)分量。将同相分量用我们习惯的二维空间的X轴表示,正交分量用Y轴表示。信号在X-Y平面(同相-正交平面)的位置就是星座图。MATLAB通信系统的工具箱里有着使用方便、界面美观的星座图仪。 图1-3所示是随机数据通过基带QAM调制及噪声环境传输后,观察星座图的仿真系统。 图1-3 通过基带QAM调制及噪声环境传输后观察星座图的仿真系统图1-4所示是运行仿真后的星座图 图1-4 通过基带QAM调制及噪声环境传输后观察到的星座图

QAM和星座图

正交调制读书报告 NJUer 摘要:正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用,本文探讨了正交振幅调制技术的相关原理,并从星座图的角度认识这种调制方式的实现和相关应用。 关键词:正交幅度调制QAM、星座图 一、正交幅度调制 QAM是一种振幅和相位联合调制,也即其已调信号的振幅和相位均随数字基带信号变化而变化。采用M(M>2)进制的正交振幅调制,可记为MQAM。M越大,频带利用率就越高。 在移动通信中,随着微蜂窝的出现,使得信道传输特性发生了很大变化。过去在传统蜂窝系统中不能应用的正交振幅调制也引起人们的重视。QAM数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。它以其灵活的配置和优越的性能指标,广泛的应用于数字有线电视传输领域和数字MMDS系统。 为改善数字调制的不足之处,如:频谱利用率低、抗多径抗衰弱能力差、功率谱衰减慢、带外辐射严重等,人们采取了如下的几种方式,如提高功率利用率以增强抗噪声性能;适应各种随参信道以增强抗多径抗衰落能力等。另外,在恒参信道中,正交振幅调制(QAM)方式具有高的频谱利用率,因此正交振幅调制(QAM)在卫星通信和有线电视网络高速数据传输等领域得到广泛应用。 二、QAM调制的原理和星座图 2.1、数据经过信道编码之后,被映射到星座图上,图1就是QAM调制器的基本原理框图。

星座图与调和曲线图

星座图 星座图是将高维空间中的样品点投影到平面上的一个半圆内,用投影点表示样品点。具体的作图步骤是: (1)将数据{X ki }变换为角度{θki },使0?θki ?π,常取变换方法如下(极差标准化): 180min max min 111?--====Li n L Li n L Li n L ki ki X X X X θ k =1,…,n i =1,…,p (2)适当地选一组权系数 w 1, w 2, …,w p ,其中 w i >0 且11=∑=p i i w 。重要的变量相应的权数可取大一点。最简单的取法 为w p =1/p ,i =1,…,p 。 (3)画出一个半径为1的上半圆及半圆底边的直径。 (4)对给定的第k 次观测X k =(X k 1, X k 2,…, X kp ),对应着上半圆内的一个点“·”或“*”和一条由折线表示的路径。路径的折点坐标是 星号位于路径的终点,其坐标为( U k (p ), V k (p ) )。 将这些坐标(U 1(1), V 1(1)), (U 1(2), V 1(2)),…,(U 1(p), V 1(p))所对应的点分别记为o 1, o 2, …,o p ,连接o 1, o 2, …,o p 即为第一? ? ? ? ? ? ? = = = = ∑ ∑ = = n k W V p L W U L i ki i L k L i ki i L k , , 1 sin , , 1 cos 1 ) ( 1 ) ( θ θ

个样品点的路径。 从上面表达式不难看出路径终点的横坐标就是点o1到点o p的横坐标之和,终点的纵坐标是点o1到点o p的纵坐标之和。 如果将n个样品点的路径折线和星号位置都画出来,就很像天文学中星座的图象,故称之为星座图。下面对消费数据,使用相同的权数即w1, w2,…,w6=1/6作星座图。 调和曲线图 调和曲线图是D.F.Andrews1972年提出的三角多项式作图法,所以又称为三角多项式图。其思想是把高维空间中的一个样品点对应于二维平面上的一条曲线。 设p维数据x = (x1, x2, … , x p)',对应的曲线是: 上式当t在区间[-π, π]上变化时,其轨迹是一条曲线。 在多项式的图表示中,当各变量的数值太悬殊时,最好先标准化后再作图。这种图对聚类分析帮助很大,如果选择

基于星座图的8QAM最优结构选取

基于星座图的8QAM最优结构选取 摘要 本文提出了8QAM中最优星座图的设计,并在MATLAB的环境下,对几种常用的8QAM星座图与所设计的星座图分别进行了仿真和对比。通过设定发送功率对比误比特率曲线的方法,证明了所设计星座图的最优性。 目录 1 QAM调制原理 (2) 2 QAM星座图设计 (2) 2.1常见星座图简介 (2) 2.2星座图的性能评价指标 (3) 2.3 最优8QAM星座图的构造 (4) 3 仿真与对比 (4) 3.1 对比对象 (4) 3.2 对比前提 (5) 3.3 程序仿真 (5) 3.4 结果分析 (6) 附:完整代码 (7) 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对

两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图设计 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分层分布,同一层信号点的振幅相同,位于一个圆周上。常见的调制方式如8QAM,16QAM,64QAM所对应的星座图中分别有8,16,64个矢量端点。 2.1 常见星座图简介 多电平QAM星座图的形式主要有圆形、三角形和矩形等3种。其中,由于矩形星座图,易于实现、系统误码率较低,得到了广泛应用。 (1) 圆形星座图 圆形星座图的基本特征是所有星座点都处在以原点为圆心的一个或多个圆周上。实际应用中,为了提高系统性能,排列在各个圆周上的星座点应遵循以下原则。首先,各圆周上的星座点数与该圆的半径成正比关系,即圆的半径越大,圆周上的星座点数就越多,且半径与星座点数之比是一个常数; 其次,同一圆周上各星座点应保持均匀分布,各星座点之间应保持一定的几何位置。 (2) 三角形星座图 三角形星座图中相邻最近3点的连线构成一个正三角形。这种星座图一般不在原点处安排星座点,因而,围绕原点构成一个正六边形。这样的安排使相邻的星座点之间距离相等,从而提高了系统性能。实际应用中,应尽可能将各星座点按正三角形排列的原则布置在一个圆环内,这样可以较好地利用发信功放的输出功率。

星座图分析

使用DS8821Q的星座图分析工具优化传输指标 DS8821Q除了提供专业的频谱分析 能力外,还提供了专业的QAM星座图分 析工具。星座图可以看成数字信号的一 个“二维眼图”阵列,同时符号在图中所 处的位置具有合理的限制或判决边界。 代表各接收符号的点在图中越接近,信 号质量就越高。由于屏幕上的图形对应 着幅度和相位,阵列的形状可用来分析和确定系统或信道的许多缺陷和畸变,并帮助查找其原因 使用星座图可以轻松发现诸如幅度噪声、相位噪声、相位误差、调制误差比等调制问题。 不连续的噪声干扰 在实际的网络系统中,QAM 信号会一直被噪声干 扰。噪声导致所显示的符号落在星座图方框内正常位置 的周围,所以在累积一段时间长度后统计一特定方框内 所有符号的落点就会形成如云般的形状,每个符号表示 噪声干扰些微的差异。如果有够多的噪声干扰星座图会显示一些符号以表示超过判断门坎形成 “误码” 相位噪声 相位噪声是一段期间振荡器其相 对的相位不稳定的情况,如果此振荡器 是有关于信号处理(例如本地振荡器) 这些相位不稳定会影响在信号上,在信 号处理设备内的振荡器在设计上是只会 对所处理的信号增加非常微小的相位噪声,然而不良的调制器或处理器可能增加非常可观的相位噪声在信号上,结果在星座图上显示出绕着图形中央旋转的现象。

增益压抑 增益压抑是在信号传送路径上因主动 原件(放大器或信号处理器)过度驱动或不良 的主动原件所导致的信号失真,结果在星座 图上显示出四个角落被扭曲造成四边弯成如 弓形的现象,而不是正常的四方形形状。 作为一款便携式数字频谱分析仪,DS8821Q可以方便地在系统中各个测试节点,实现星座图、CSO/CTB、HUM等多达15项数字有线电视关键指标的测试。DS8821Q 的星座图分析工具,使用起来非常简便。星座图多级放大查看功能,可以更加详细分析故障原因。

QPSK系统的误码率和星座图仿真

目录 一、课题内容 (1) 二、设计目的 (1) 三、设计要求 (1) 四、实验条件 (1) 五、系统设计 (2) 六、详细设计与编码 (4) 1. 设计方案 (4) 2. 编程工具的选择 (4) 3. 程序代码 (5) 4. 运行结果及分析 (8) 七、设计心得 (9) 八、参考文献 (10)

一、课题内容 基于MATLAB或C语言模拟仿真OFDM通信系统。 主要功能: 1、搭建基带OFDM系统仿真平台,实现OFDM信号体制与解调; 2、能够画出输入数据与输出数据的星座图; 3、能在不同信噪比信道的情况下,对信号进行误码分析。 3、能够和理论误码率公式比较 二、设计目的 1、综合应用《Matlab原理及应用》、《信号与系统》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念; 2、培养学生系统设计与系统开发的思想; 3、培养学生利用软件进行通信仿真的能力。 三、设计要求 1、每人独立完成不同子系统的详细功能; 2、对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系统的原理框图; 3、提出仿真方案; 4、完成仿真软件的编制; 5、仿真软件的演示; 6、提交详细的设计报告。 四、实验条件 计算机、Matlab软件

五、系统设计 1. 四相绝对移相键控(QPSK)的调制基本理论 四相绝对移相键控利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元。我们把组成双比特码元的前一信息比特用a代表,后一信息比特用b代表。双比特码元中两个信息比特ab通常是按格雷码(即反射码)排列的,它与载波相位的关系如表1所列。 表1 双比特码元与载波相位的关系 双比特码元载波相位φ a b A方式B方式 0 0 0°45° 0 1 90°135° 1 1 180°225° 1 0 270°315° 由于四相绝对移相调制可以看作两个正交的二相绝对移相调制的合成,故两者的功率谱密度分布规律相同。 2. 四相绝对移相键控(QPSK)的调制基本方法 下面我们来讨论QPSK信号的产生与解调。QPSK信号的产生方法与2PSK信号一样,也可以分为调相法和相位选择法。

介绍QAM 星座图的测量

介绍QAM 星座图的测量 大多数在HFC 网络上所提供的数字服务信号传播,是使用一种同时传送两个数据串流(data stream)的调制系统,每一个承载其独自的信息,通常称这些串流(stream)为”I”和”Q”,九十度相位差振幅调制(Quadrature Amplitude Modulation,QAM)是一个将此两个串流调制至一个射频(RF)载波的方法。在”I”和”Q”信号传送的值只有预先定义的几个值代表广泛不同的状态,一个调制的协议(Protocol)针对每个调制形式规定允许的状态数量,例如在16 QAM 的”I”和”Q” 信号每个只可有4 个状态;在64 QAM 时每个可有8 个状态。 Constellation 星座图与Boxes 方框 I 和Q 串流可描绘为九十度相位差形成的格子可提供代表I 乘Q 数的可能状态,此格子通常称为星座图(Constellation)亦可想象为方框的数组。每个方框代表个别I 和Q” 的”符号状态”,理想或正常的符号状态位置是在其方框的中央,相邻方框之间的分界线称为”判断门坎”。 测量BER 和MER Bit Error Ratio (BER) 误码率在通讯工业使用两种简单的测量来叙述数据传输的品质,此两种测量噪声的影响与其它在传送码上的扰乱。BER 测量符号被推挤进入相邻符号范围的机率,因而导致那些符号被误解。BER 被叙述为大量传送码的错误码比率以10 的几次方来表示,例如测量得3E-7 表示在一千万次传送码有3 次被误解,此比率是采用少数的实际传送码来实际分析并统计而推估的值,越低的BER 代表越好的效能表现。尽管较差的BER 表示信号品质较差,但BER 不只是测量纯粹QAM 信号本身的情况,因为BER 测量侦测并统计每个被误解的码,他是一个灵敏的指标可指出问题是由瞬间的或突然发生的噪声干扰。

通信中星座图简介

数字通信中几种调制方式的星座图 由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。 一.星座图基本原理 一般而言,一个已调信号可以表示为: ()()cos(2)N m n k s t A g t f t π?=+ 0t T ≤< (1) 0000 1,2......1,2.......1,2........1,2........N N m m n n k k ==== 上式中,()g t 是低通脉冲波形,此处,我们为简单处理,假设()1g t =,0t T <≤,即()g t 是矩形波,以下也做同样处理。假设一共有0N (一般0N 总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这0N 个消息序列分别映射到载波的幅度m A ,频率n f 和相位k ?上,显然,必须有 0000N m n k =?? 才能实现这0N 个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1).当n f 和k ?为常数,即0000,1,1m N n k ===时,为幅度调制(ASK)。 (2).当m A 和k ?为常数,即00001,,1m n N k ===时,为频率调制(FSK)。 (3).当m A 和n f 为常数,即00001,1,m n k N ===时,为相位调制(PSK)。 我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM)。 我们把(1)式展开,可得:

相关文档