文档库 最新最全的文档下载
当前位置:文档库 › 整流桥堆上的符号

整流桥堆上的符号

整流桥堆上的符号
整流桥堆上的符号

整流桥堆上的符号

“~”表示交流,“+”表示正极,它和整流二极管的方向是有关的。

如何判别整流桥的好与坏?

用数字万用表的二极管档或指针表的100或1000档,测量两交流输入端到整流桥输出正端的阻值,若为开路或短路说明整流桥已坏,正常值应为400到2000欧姆,还可测正端到输入端的阻值应为无穷大,否则为已坏。负端到输入端的阻值也应为400到2000才算正常。

整流桥就是将整流管封在一个壳内了,分全桥和半桥。

全桥是将连接好的桥式整流电路的四个二极管封在一起,半桥是将两个二极管桥式整流的一半封在一起,用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路,选择整流桥要考虑整流电路和工作电压。

整流桥的原理

整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。

全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,

耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。

选择整流桥要考虑整流电路和工作电压.优质的厂家有“文斯特电子”的G系列整流桥堆,进口品牌有ST、IR等。整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。

整流桥命名规则

一般整流桥命名中有3个数字,第一个数字代表额定电流,A后两个数字代表额电压(数字*100)V。如:

KBL410,即4A,1000V;RS507,即5A,1000V。(1234567分别代表电压档的50V,100V,200V,400V,600V,800V,1000V)

有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。

整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。

应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。

针对整流桥不同冷却方式的选择和对其散热过程的详细分析,来阐述元器件厂家提供的元器件热阻(Rja和Rjc)的具体含义,并在此基础上提出一种在技术上可行、使用上操作性强的测量整流桥壳温的方法,为电源产品合理应用整流桥提供借鉴。

整流桥作为一种功率元器件,非常广泛。应用于各种电源设备。

其内部主要是由四个二极管组成的桥路来实现把输入的交流电压转化为输出的直流电压。

在整流桥的每个工作周期内,同一时间只有两个二极管进行工作,通过二极管的单向导通功能,把交流电转换成单向的直流脉动电压。对一般常用的小功率整流桥(如:RECTRON SEMICONDUCTOR的RS2501M)进行解剖会发现,该全波整流桥采用塑料封装结构(大多数的小功率整流桥都是采用该封装形式)。桥内的四个主要发热元器件——二极管被分成两组分别放置在直流输出的引脚铜板上。在直流输出引脚铜板间有两块连接铜板,他们分别与输入引脚(交流输入导线)相连,形成我们在外观上看见的有四个对外连接引脚的全波整流桥。由于该系列整流桥都是采用塑料封装结构,在上述的二极管、引脚铜

板、连接铜板以及连接导线的周围充满了作为绝缘、导热的骨架填充物质——环氧树脂。然而,环氧树脂的导热系数是比较低的(一般为0.35℃W/m,最高为2.5℃W/m),因此整流桥的结--壳热阻一般都比较大(通常为1.0~10℃/W)。通常情况下,在元器件的相关参数表里,生产厂家都会提供该器件在自然冷却情况下的结—环境的热阻(Rja)和当元器件自带一散热器,通过散热器进行器件冷却的结--壳热阻(Rjc)。

自然冷却

一般而言,对于损耗比较小(<3.0W)的元器件都可以采用自然冷却的方式来解决元器件的散热问题。当整流桥的损耗不大时,可采用自然冷却方式来处理。此时,整流桥的散热途径主要有以下两个方面:整流桥的壳体(包括前后两个比较大的散热面和上下与左右散热面)和整流桥的四个引脚。通常情况下,整流桥的上下和左右的壳体表面积相对于前后面积都比较小,因此在分析时都不考虑通过这四个面(上下与左右表面)的散热。

在这两个主要的散热途径中,由于自然冷却散热的换热系数一般都比较小(<10W/ m2C),并且整流桥前后散热面的绝对面积也比较小,因此实际上通过该途径的散热量也是十分有限的;由于引脚铜板是直接与发热元器件(二级管)相连接的,并且其材料为铜,导热性能很好,所以在自然冷却散热的情况下,整流桥的大部分损耗是通过该引脚把热量传递给PCB板,然后由PCB板扩充其换热面积而散发到周围的环境中去。具体的分析计算如下:

1、整流桥表面热阻如图所示,可以得到整流桥的正向散热面距热源的距离为1.7mm,背向散热面距热源的距离为0.9mm;

由于整流桥的上下及左右外表面积很小,因此忽约其热量在这四个表面的散发,可以得到整流桥正面和背面的传热热阻为:一个二极管的热阻为:

由于在同一时间,整流桥内的四个二极管只有两个在同时进行工作,因此整流桥正面与背面的传热热阻应分别为两个二极管热阻的并联,即:由于整流桥表面到周围空气间的散热为自然对流换热,则整流桥壳体表面的自然冷却热阻为

由上所述,可以得到整流桥通过壳体表面(正面和背面)的结温与环境的热阻分别为:则整流桥通过壳体表面途径对环境进行传热的总热阻为:

2、整流桥引脚热阻假设整流桥焊接在PCB板上,其引脚的长度为12.0mm(从二极管的基铜板到PCB板上的焊盘),则整流桥一个引脚的热阻为:

在整流桥内部,四个二极管是分成两组且每组共用一个引脚铜板,因此整流桥通过引脚散热的热阻为这两个引脚的并联热阻:

一方面由于PCB板的热容比较大,另一方面冷却风与PCB板的接触面积较大,其换热条件较好,假设其PCB板的实际有效散热面积为整流桥表面积的2倍,则PCB板与环境间的传热热阻为:

故,通过整流桥引脚这条传热途径的热阻为:

比较上述两种传热途径的热阻可知:整流桥通过壳体表面自然对流冷却进行散热的热阻()是通过引脚进行散热这种散热途径的热阻()的1.5倍。于是我们可以得出如下结论:在自然冷却的情况下,整流桥的散热主要是通过其引脚线(输出引脚正负极)与PCB 板的焊盘来进行的。因此,在整流桥的损耗不大,并用自然冷却方式进行散热时,我们可以通过增加与整流桥焊接的PCB表面的铜覆盖面积来改善其整流桥的散热状况。同时,我们可以根据上述的两条传热途径得到整流桥内二极管结温到周围环境间的总热阻,即:其实这个热阻也就是生产厂家在整流桥等元器件参数表中的所提供的结—环境的热阻。并且在自然冷却的情况,也只有该热阻具有实在的参考价值,其它的诸如Rjc也没有实在的计算依据,这一点可以通过在强迫风冷情况下的传热路径的分析得出。

强迫风冷却

当整流桥等功率元器件的损耗较高时(>4.0W),采用自然冷却的方式已经不能满足其散热的需求,此时就必须采用强迫风冷的方式来确保元器件的正常工作。采用强迫风冷时,可以分成两种情况来考虑:

a)整流桥不带散热器;

b)整流桥自带散热器。

1、整流桥不带散热器对于整流桥不带散热器而采用强迫风冷这种情况,其分析的过程同自然冷却一样,只不过在计算整流桥外壳向环境间散热的热阻和PCB板与环境间的传热热阻时,对其换热系数的选择应该按照强迫风冷情形来进行,其数值通常为20~30W/m2C。也即是:

于是可以得到整流桥壳体表面的传热热阻和通过引脚的传热热阻为:

于是整流桥的结—环境的总热阻为:

由上述整流桥不带散热器的强迫对流冷却分析中可以看出,通过整流桥壳体表面的散热途径与通过引脚进行散热的热阻是相当的,一方面我们可以通过增加其冷却风速的大小来改变整流桥的换热状况,另一方面我们也可以采用增大PCB板上铜的覆盖率来改善PCB 板到环境间的换热,以实现提高整流桥的散热能力。

2、整流桥自带散热器当整流桥自带散热器进行强迫风冷来实现其散热目的时,该种情况下的散热途径对比整流桥自然冷却和带散热器的强迫风冷散热这两种散热途径,可以发现其根本的差异在于:散热器的作用大大地改善了整流桥壳体与环境间的散热热阻。如果忽约散热器与整流桥间的接触热阻,则结合整流桥不带散热器的传热分析,我们可以得到整流桥带散热器进行冷却的各散热途径热阻分别如下:

1)、整流桥壳体表面散热热阻a)整流桥正面壳体的散热热阻:同不带散热器的强迫风冷一样:

b)整流桥背面壳体的散热热阻:假设忽约整流桥与壳体的接触热阻,则:选择散热器与环境间热阻的典型值为:

则整流桥通过壳体表面散热的总热阻为:

2)、流桥通过引脚散热的热阻:此时的热阻同整流桥不带散热器进行强迫风冷时的情形一样,于是有:

我们可以得到,在整流桥带散热器进行强迫风冷时的散热总热阻为上述两个传热途径的并联热阻:

仔细分析上述的计算过程和各个传热途径的热阻数值,我们可以得出在整流桥带散热器进行强迫风冷时的如下结论:

①在上述的三个传热途径中(整流桥正面传热、整流桥背面通过散热器的传热和整流桥通过引脚的传热),整流桥背面通过散热器的传热热阻最小,而通过壳体正面的传热热阻最大,通过引脚的热阻居中;

②比较整流桥散热的总热阻和通过背面散热器传热的热阻数值可以发现:通过壳体背面散热器传热热阻与整流桥的总热阻十分相当。其实该结论也说明了,在此种情况下,整流桥的主要传热途径是通过壳体背面的散热器来进行的,也就是整流桥上绝大部分的损耗是通过散热器来排放的,而通过其它途径(引脚和壳体正面)的散热量是很少的。

③由于此时整流桥的散热状况与散热器的热阻密切相关,因此散热器热阻的大小将直接影响到整流桥上温度的高低。由此可以看出,在生产厂家所提供的整流桥参数表中关于整流桥带散热器的热阻时,只可能是整流桥背面的结--壳(Rjc)或整流桥壳体上的总的结--壳热阻(正面和背面热阻的并联);此时的结--环境的热阻已经没有参考价值,因为它是随着散热器的热阻而显著地发生变化的。

壳温确定

整流桥在强迫风冷冷却时壳温的确定由以上两种情况三种不同散热冷却形式的分析与计算,我们可以得出:在整流桥自然冷却时,我们可以直接采用生产厂家所提供的结--环境热阻(Rja),来计算整流桥的结温,从而可以方便地检验我们的设计是否达到功率元器件的温度降额标准;对整流桥采用不带散热器的强迫风冷情况,由于在实际使用中很少采用,在此不予太多的讨论。如果在应用中的确涉及该种情形,可以借鉴整流桥自然冷却的计算方法;对整流桥采用散热器进行冷却时,我们只能参考厂家给我们提供的结--壳热阻(Rjc),通过测量整流桥的壳温从而推算出其结温,达到检验目的。在此,我们着重讨论该计算壳温测量点的选取及其相关的计算方法,并提出一种在实际应用中可行、在计算中又可靠的测量方法。

从前面对整流桥带散热器来实现其散热过程的分析中可以看出,整流桥主要的损耗是通过其背面的散热器来散发的,因此在此讨论整流桥壳温如何确定时,就忽约其通过引脚的传热量。现结合RS2501M整流桥在110V AC电源模块上应用的损耗(最大为22.0W)来分析。假设整流桥壳体外表面上的温度为结温(即150.0C),表面换热系数为50.0W/m2C(在一般情况下,强迫风冷的对流换热系数为20~40W/m2C)。那么在环境温度为55.0C时,通过整流桥正表面散发到环境中的热量为:忽约整流桥引脚的传热量,则通过整流桥背面的传热量为:由于在整流桥壳体表面上的两个传热途径上(壳体正面、壳体背面)的热阻分别为:

根据热阻的定义式有:

所以,由上式可以看出:整流桥的结温与壳体正面的温差远远小于结温与壳体背面的温差,也就是说,实际上整流桥的壳体正表面的温度是远远大于其背面的温度的。如果我们在测量时,把整流桥壳体正面温度(通常情况下比较好测量)来作为我们计算的壳温,那么我们就会过高地估计整流桥的结温了!那么既然如此,我们应该怎样来确定计算的壳温呢?由于整流桥的背面是和散热器相互连接的,并且热量主要是通过散热器散发,散热器的基板温度和整流桥的背面壳体温度间只有接触热阻。一般而言,接触热阻的数值很小,因此我们可以用散热器的基板温度的数值来代替整流桥的壳温,这样不仅在测量上易于实现,还不会给最终的计算带来不可容忍的误差。

仿真分析

整流桥在强迫风冷时的仿真分析前面本文从不同情形下的传热途径着手,用理论的方法分析了整流桥在三种不同冷却方式下的传热过程,在此本文通过仿真软件详细的整流桥模型来对带有散热器、强迫风冷下的整流桥散热问题进行进一步的阐述。

仿真计算模型如上图是仿真计算的模型外型图。在该模型中,通过解剖一整流桥后得到的相关尺寸参数来进行仿真分析模型的建立。整流桥散热器基板温度分布,上图可以看出,整流桥散热器的基板温度分布相对而言还是比较均匀的,约70 ℃左右。即使在四个二极管正下方的温度与整流桥壳体背面与散热器相接触的外边缘,也仅仅只有5 ℃左右的温差。这主要是由于散热器基板是一有一定厚度且导热性能较好的铝板,它能够有效地把整流桥背面的不均匀温度进行均匀化。

整流桥壳体正面表面的温度分布。从上图可以看出,整流桥壳体正面的温度分布是极不均匀的,在热源(二极管)的正上方其表面温度达到109 ℃,然而在整流桥的中间位置,远离热源处却只有75 ℃,其表面的温差可达到34℃左右。这主要是由于覆盖在二极管表面的是导热性能较差的FR4(其导热系数小于3.0W/m.℃),因此它对整流桥壳体正表面上的温度均匀化效果很差。同时,这也验证了为什么我们在采用整流桥壳体正表面温度作为计算的壳温时,对测温热电偶位置的放置不同,得到的结果其离散性很差这一原因。图8是整流桥内部热源中间截面的温度分布。由该图也可以进一步说明,在整流桥内部由于器封装材料是导热性能较差的FR4,所以其内部的温度分布极不均匀。我们以后在测量或分析整流

桥或相关的其它功率元器件温度分布时,应着重注意该现象,力图避免该影响对测量或测试结果产生的影响。

结论

通过前面对整流桥三种不同形式散热的分析并结合对一整流桥详细的仿真模型的分析结果,我们可以得出如下结论:

1、在计算整流桥的结温时,其生产厂家所提供的Rjc(强迫风冷时)是指整流桥的结与散热器相接触的整流桥壳体表面间的热阻;

2、器件参数中所提供的Rja是指该器件在自然冷却是结温与周围环境间的热阻;

3、对带有散热器的整流桥且为强迫风冷散热地壳温测量时,应该采用与整流桥壳体相接触的散热器表面温度作为计算的壳温,必要时可以考虑整流桥与散热器间的接触热阻。不应该采用整流桥壳体正面上的温度作为计算的壳温,不然将会引起较大的正向误差。

本文仅仅是对现已解剖的整流桥进行分析从而得出上述结论,但是本文的分析结果也能够应用于其它塑料封装的功率元器件或非塑料封装的元器件(如:一般的MOS管等)。

在具体的使用过程中请参照本文的分析方法酌情考虑。

常用的整流桥极其参数

常用的整流桥极其参数 [ 2011-5-14 16:49:00 | By: zydlyq ] 常用的整流桥极其参数 参数共四项从左到右依次为 产品型号峰值反压VRRM(V) 平均电流(A) 正向压降(V) 封装 MB1S 100 0.5 1.1 MDI MB6S 600 0.5 1.1 MDI DF02 200 1 1.1 DIP DF06 600 1 1.1 DIP DF06S 600 1 1.1 DIP-S DF1506 600 1 1.1 DIP RB155 600 1.5 1.1 WOB RB156 800 1.5 1.1 WOB KBP06 600 1.5 1.1 KBP 2W06 600 2 1.1 WOB KBPC108 800 3 1.1 KBPC1 BR36 600 3 1.1 BR3 KBL02 200 4 1.1 KBL KBL08 800 4 1.1 KBL KBL06 600 4 1.1 KBL RS502 200 5 1.1 RS5 RS506 600 5 1.1 RS5 KBL602 200 6 1.1 KBL KBL606 600 6 1.1 KBL KBJ606 600 6 1.1 KBJ KBPC602 200 6 1.1 KBPC6 KBPC606 600 6 1.1 KBPC KBJ802 200 8 1.1 KBJ KBJ806 600 8 1.1 KBJ RS802 200 8 1.1 KBU RS806 600 8 1.1 KBU KBPC802 200 8 1.1 KBPC8 KBPC806 600 8 1.1 KBPC8 KBU1002 200 10 1.1 KBU KBU1006 600 10 1.1 KBU KBJ1002 200 10 1.1 KBJ KBJ1006 600 10 1.1 KBJ BR102 200 10 1.1 BR10 KBU1502 200 15 1.0 KBU KBU1506 600 15 1.0 KBU

常用整流桥参数

常用的整流桥极其参数 参数共四项从左到右依次为 产品型号峰值反压VRRM(V) 平均电流(A) 正向压降(V) 封装MB1S 100 0.5 1.1 MDI MB6S 600 0.5 1.1 MDI DF02 200 1 1.1 DIP DF06 600 1 1.1 DIP DF06S 600 1 1.1 DIP-S DF1506 600 1 1.1 DIP RB155 600 1.5 1.1 WOB RB156 800 1.5 1.1 WOB KBP06 600 1.5 1.1 KBP 2W06 600 2 1.1 WOB KBPC108 800 3 1.1 KBPC1 BR36 600 3 1.1 BR3 KBL02 200 4 1.1 KBL KBL08 800 4 1.1 KBL KBL06 600 4 1.1 KBL RS502 200 5 1.1 RS5 RS506 600 5 1.1 RS5 KBL602 200 6 1.1 KBL KBL606 600 6 1.1 KBL KBJ606 600 6 1.1 KBJ KBPC602 200 6 1.1 KBPC6 KBPC606 600 6 1.1 KBPC KBJ802 200 8 1.1 KBJ KBJ806 600 8 1.1 KBJ RS802 200 8 1.1 KBU RS806 600 8 1.1 KBU KBPC802 200 8 1.1 KBPC8 KBPC806 600 8 1.1 KBPC8 KBU1002 200 10 1.1 KBU KBU1006 600 10 1.1 KBU KBJ1002 200 10 1.1 KBJ KBJ1006 600 10 1.1 KBJ BR102 200 10 1.1 BR10 KBU1502 200 15 1.0 KBU KBU1506 600 15 1.0 KBU KBJ1502 200 15 1.0 KBJ KBJ1506 600 15 1.0 KBJ KBJ2502 200 25 1.0 KBJ

常用的整流桥极其参数

常用的整流桥极其参数 2008-07-09 15:14:40| 分类:电子制作 | 标签: |字号大中小订阅 常用的整流桥极其参数 参数共四项从左到右依次为 产品型号峰值反压VRRM(V) 平均电流(A) 正向压降(V) 封装 MB1S 100 0.5 1.1 MDI MB6S 600 0.5 1.1 MDI DF02 200 1 1.1 DIP DF06 600 1 1.1 DIP DF06S 600 1 1.1 DIP-S DF1506 600 1 1.1 DIP RB155 600 1.5 1.1 WOB RB156 800 1.5 1.1 WOB KBP06 600 1.5 1.1 KBP 2W06 600 2 1.1 WOB KBPC108 800 3 1.1 KBPC1 BR36 600 3 1.1 BR3 KBL02 200 4 1.1 KBL KBL08 800 4 1.1 KBL KBL06 600 4 1.1 KBL RS502 200 5 1.1 RS5 RS506 600 5 1.1 RS5 KBL602 200 6 1.1 KBL KBL606 600 6 1.1 KBL KBJ606 600 6 1.1 KBJ KBPC602 200 6 1.1 KBPC6 KBPC606 600 6 1.1 KBPC KBJ802 200 8 1.1 KBJ KBJ806 600 8 1.1 KBJ RS802 200 8 1.1 KBU RS806 600 8 1.1 KBU KBPC802 200 8 1.1 KBPC8 KBPC806 600 8 1.1 KBPC8 KBU1002 200 10 1.1 KBU KBU1006 600 10 1.1 KBU KBJ1002 200 10 1.1 KBJ KBJ1006 600 10 1.1 KBJ BR102 200 10 1.1 BR10 KBU1502 200 15 1.0 KBU

一些整流桥堆的分类和型号

一些整流桥堆的分类和型号 桥式整流器品种多,性能优良,整流效率高,稳定性好,最大整流电流从0.5A到50A,最高反向峰值电压从50V到1000V。 1. 贴片系列: MB2S、MB4S、MB6S、MB8S、MB10S。 DB101S、DB102S、DB103S、DB104S、DB105S、DB106S、DB107S。 DB151S、DB152S、DB153S、DB154S、DB155S、DB156S、DB157S。 2. 板桥系列: DB101、DB102、DB103、DB104、DB105、DB106、DB107。 DB151、DB152、DB153、DB154、DB155、DB156、DB157。 3. 圆桥系列: W005、W01、W02、W04、W06、W08、W10. 2W005、2W01、2W02、2W04、2W06、2W08、2W10。 4. 扁桥2A: RS201、RS202、RS203、RS204、RS205、RS206、RS207。 KBP2005、KBP201、KBP202、KBP204、KBP206、KBP208、KBP210。 扁桥KBL4A:KBL4005、KBL401、KBL402、KBL404、KBL406、KBL408、KBL410。扁桥GBP2A:GBP2005、GBP201、GBP202、GBP204、GBP206、GBP208、GBP210。扁桥GBL4A:GBL4005、GBL401、GBL402、GBL404、GBL406、GBL408、GBL410。扁桥GBJ系列: GBJ4005、GBJ401、GBJ402、GBJ404、GBJ406、GBJ408、GBJ410。 GBJ6005、GBJ601、GBJ602、GBJ604、GBJ606、GBJ608、GBJ610。 GBJ8005、GBJ801、GBJ802、GBJ804、GBJ806、GBJ808、GBJ810。 GBJ10005、GBJ1001、GBJ1002、GBJ1004、GBJ1006、GBJ1008、GBJ1010。 GBJ15005、GBJ1501、GBJ1502、GBJ1504、GBJ1506、GBJ1508、GBJ1510。 GBJ25005、GBJ2501、GBJ2502、GBJ2504、GBJ2506、GBJ2508、GBJ2510。 GBJ35005、GBJ3501、GBJ3502、GBJ3504、GBJ3506、GBJ3508、GBJ3510。 扁桥RBV50A系列: RBV50005、RBV5001、RBV5002、RBV5004、RBV5006、RBV5008、RBV5010。 扁桥KBU系列: KBU4005、KBU401、KBU402、KBU404、KBU406、KBU408、KBU410。 KBU6005、KBU601、KBU602、KBU604、KBU606、KBU608、KBU610。 KBU8005、KBU801、KBU802、KBU804、KBU806、KBU808、KBU810。 KBU10005、KBU1001、KBU1002、KBU1004、KBU1006、KBU1008、KBU1010。 KBU15005、KBU1501、KBU1502、KBU1504、KBU1506、KBU1508、KBU1510。KBU25005、KBU2501、KBU2502、KBU2504、KBU2506、KBU2508、KBU2510。 KBU35005、KBU3501、KBU3502、KBU3504、KB32506、KBU3508、KBU3510。 扁桥GBU系列: GBU4005、GBU401、GBU402、GBU404、GBU406、GBU408、GBU410。 GBU6005、GBU601、GBU602、GBU604、GBU606、GBU608、GBU610。 GBU8005、GBU801、GBU802、GBU804、GBU806、GBU808、GBU810。

整流桥 T20XB(20~80)

T20XB(20~80) 橋式整流器Bridge Rectifier ■特徵 Features ■外形尺寸和印記 Outline Dimensions and Mark ● I o 20A 單位Unit :mm ● V RRM 200V~800V ● 玻璃鈍化芯片 Glass passivated chip ● 耐正向浪湧電流能力高 ■用途 Applications ● 作一般電源單相橋式整流用 rectifier applications ■極限值(絕對最大額定值) 2.2±0.2 T20XB60934.0±0.2 17.5±0.5 10±0.2 7.5±0.27.5±0.2 5 20±0.3 +0.15 Limiting Values (Absolute Maximum Rating ) T20XB 參數名稱 Item 符號 Symbol 單位Unit 條件 Conditions 20 40 60 80 貯存溫度 Storage Temperature T stg ℃ -40 ~+150 结温 Junction Temperature T j ℃ +150 反向重復峰值電壓 Repetitive Peak Reverse Voltage V RRM V 200 400600800 用散熱片 T c =87℃ With heatsink T c =87℃ 20 平均整流輸出電流 Average Rectified Output Current I o A 50H z 正弦波,電阻負載50H Z sine wave, R-load 無散熱片 T a =25℃ Without heatsink T a =25℃ 3.5 正向(不重復)浪涌電流 Surge(Non-repetitive)Forward Current I FSM A 50H Z 正弦波,一個周期,T a =25℃ 50H Z sine wave, 1 cycle, T a =25℃ 240 绝缘耐压 Dielectric Strength Vdis kV 端子與外殼之間外加交流電,一分鐘 Terminals to case ,AC 1 minute 2.5 安装扭矩 Mounting Torque TOR kg ·cm 推荐值:5kg ·cm Recommend torque :5kg ·cm 8 ■電特性 (T a =25℃ 除非另有規定) Electrical Characteristics (T a =25℃ Unless otherwise specified ) 參數名稱 Item 符號 Symbol 單位 Unit 測試條件 Test Condition 最大值 Max 正向峰值電壓 Peak Forward Voltage V FM V I FM =10A, 脈衝測試,單個二極管的額定值 I FM =10A, Pulse measurement, Rating of per diode 1.1 反向峰值電流 Peak Reverse Current I RRM μA V RM =V RRM ,脈衝測試,單個二極管的額定值 V RM =V RRM , Pulse measurement, Rating of per diode 10 R θJ-A 結和環境之間,無散熱片 Between junction and ambient, Without heatsink 22 R θJ-L 結和引線之間,無散熱片 Between junction and lead, Without heatsink 5 熱阻 Thermal Resistance R θJ-C ℃/W 結和管殼之間,用散熱片 Between junction and case, With heatsink 1.5

一文看懂整流桥和桥堆有什么区别

一文看懂整流桥和桥堆有什么区别 什么是整流桥整流桥就是将整流管封在一个壳内了,分全桥和半桥。全桥是将连接好的桥式整流电路的四个二极管封在一起。半桥是将两个二极管桥式整流的一半封在一起,用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路,选择整流桥要考虑整流电路和工作电压。 整流桥用途整流桥作为一种功率元器件,非常广泛。应用于各种电源设备。 整流桥工作原理整流桥内部主要是由四个二极管组成的桥路来实现把输入的交流电压转化为输出的直流电压。 在整流桥的每个工作周期内,同一时间只有两个二极管进行工作,通过二极管的单向导通功能,把交流电转换成单向的直流脉动电压。对一般常用的小功率整流桥(如:RECTRON SEMICONDUCTOR的RS2501M)进行解剖会发现,其内部的结构如图2所示,该全波整流桥采用塑料封装结构(大多数的小功率整流桥都是采用该封装形式)。桥内的四个主要发热元器件——二极管被分成两组分别放置在直流输出的引脚铜板上。在直流输出引脚铜板间有两块连接铜板,他们分别与输入引脚(交流输入导线)相连,形成我们在外观上看见的有四个对外连接引脚的全波整流桥。由于该系列整流桥都是采用塑料封装结构,在上述的二极管、引脚铜板、连接铜板以及连接导线的周围充满了作为绝缘、导热的骨架填充物质——环氧树脂。然而,环氧树脂的导热系数是比较低的(一般为0.35℃W/m,最高为2.5℃W/m),因此整流桥的结--壳热阻一般都比较大(通常为1.0~10℃/W)。通常情况下,在元器件的相关参数表里,生产厂家都会提供该器件在自然冷却情况下的结—环境的热阻(Rja)和当元器件自带一散热器,通过散热器进行器件冷却的结--壳热阻(Rjc)。 整流桥命名规则一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额定电压(数字*100),V 如:KBL410 即4A,1000V 。RS507 即5A,1000V。(1234567分别代表电压档的50V,100V,200V,400V,600V,800V,1000V)常用的国产全桥有佑风YF系列,进口全桥

桥堆

桥堆(bridge) 简化 桥堆原理图 桥堆是一种电子元件,内部由多个二极管组成。 主要作用是整流,调整电流方向。用桥堆整流是比较好的,首先是很方便,而且它内部的四个管子一般是挑选配对的,所以其性能较接近,还有就是大功率的整流时,桥堆上都可以装散热块,使工作时性能更稳定,当然使用场合不同也要选择不同的桥堆,不能只看耐压是否够,比如高频特性等。 整流桥堆产品是由四只整流硅芯片作桥式连接,外用绝缘朔料封装而成,大功率整流桥在绝缘层外添加锌金属壳包封,增强散热。整流桥品种多:有扁形、圆形、方形、板凳形(分直插与贴片)等,有GPP与O/J结构之分。最大整流电流从0.5A到100A,最高反向峰值电压从50V到1600V。 半桥是将两个二极管桥式整流的一半封在一起,用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路, 选择整流桥要考虑整流电路和工作电压.优质的厂家有广州国信电子科技有限公司(文斯特电子)的G系列整流桥堆,进口品牌有ST、IR,台系的SEP、GD等。整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。 全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、5 0A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400 V、500V、600V、800V、1000V等多种规格。整流桥命名规则

一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V; 如:KBL407即4A,1000V KBPC5010即50A,1000V(1234567,005、01、02、04、06、08、10分别代表电压档的50V,100V,200V,400V,600V,800V,1000V)。

整流桥

整流桥-桥式整流工作原理 (2009-12-31 17:11:44) 转载 标 签: 杂谈 整流桥-桥式整流工作原理 整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理

图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的) 这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同 作用就是整流,把交流电变为直流电。实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。 特点是方便小巧。不占地方。 规格型号一般直接用参数表示:50伏1安,100伏5安等等。 如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。 选择整流桥要考虑整流电路和工作电压. 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向流动,即所谓“整流”,用两只管是半泼整流,四只是全泼整流。

整流桥堆的分类和型号大全

整流桥堆的分类和型号大全 作者:东方的太阳 桥式整流器按其工作电压不同、工作电流不同以及封装形式的不同分为很多种。桥式整流器品种多,性能优良,整流效率高,稳定性好,最大整流电流从0.5A到50A,最高反向峰值电压从50V到1000V。 整流桥堆按其封装形式分类:贴片系列、板桥系列、圆桥系列、扁桥系列、方桥系列。 1.贴片系列: MB2S、MB4S、MB6S、MB8S、MB10S。 DB101S、DB102S、DB103S、DB104S、DB105S、DB106S、DB107S。 DB151S、DB152S、DB153S、DB154S、DB155S、DB156S、DB157S。 2.板桥系列: DB101、DB102、DB103、DB104、DB105、DB106、DB107。 DB151、DB152、DB153、DB154、DB155、DB156、DB157。 3.圆桥系列: W005、W01、W02、W04、W06、W08、W10. 2W005、2W01、2W02、2W04、2W06、2W08、2W10。 4.扁桥2A: RS201、RS202、RS203、RS204、RS205、RS206、RS207。 KBP2005、KBP201、KBP202、KBP204、KBP206、KBP208、KBP210。 扁桥GBP2A:GBP2005、GBP201、GBP202、GBP204、GBP206、GBP208、GBP210。 扁桥KBL4A:KBL4005、KBL401、KBL402、KBL404、KBL406、KBL408、KBL410。 扁桥GBL4A:GBL4005、GBL401、GBL402、GBL404、GBL406、GBL408、GBL410。 扁桥GBJ系列(4A-35A) GBJ4005、GBJ401、GBJ402、GBJ404、GBJ406、GBJ408、GBJ410。GBJ6005、GBJ601、GBJ602、GBJ604、GBJ606、GBJ608、GBJ610。GBJ8005、GBJ801、GBJ802、GBJ804、GBJ806、GBJ808、GBJ810。 1

整流桥与输入电容的选择

输入整流滤波器及钳位保护电路的设计 1 输入整流桥的选择 1)整流桥的导通时间与选通特性 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。 (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等

整流桥

整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理 图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的)

半波整流;全波整流;桥式整流 一、半波整流电路 图1 图1是一种最简单的整流电路。它由电源变压器B、整流二极管D和负载电阻Rfz组成。变压器把市电电压变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图2的波形图上看看二极管是怎样整流的。 图2 变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~π时间内,e2 为正半周即变压器上端为正下端为负。此时整流二极管承受正向电压而导通,e2 通过它加在负载电阻Rfz上,在π~2π 时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz上无电压。在2π~3π 时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π 时间的

过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3是全波整流电路的电原理图。 图3 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。

整流桥

整流桥 2010年11月01日星期一 10:56 A.M. 整流桥 整流桥就是将整流管封在一个壳内了.分全桥和半桥.全桥是将连接好的桥式整流电路的四个二极管封在一起.半桥是将两个二极管桥式整流的一半封在一起, 用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路, 选择整流桥要考虑整流电路和工作电压. 整流桥的原理 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。 全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 选择整流桥要考虑整流电路和工作电压.优质的厂家有“文斯特电子”的G 系列整流桥堆,进口品牌有ST、IR等。整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代 表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,1000V。(1234567分别代表电压档的50V,100V,200V,400V,600V,800V,1000V) 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。 全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流桥

常用整流桥检测方法

常用整流桥检测方法(2009/06/22 20:10) 一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P 端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。2、测试逆变电路将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。 3、上电后检测故障显示内容,并初步断定故障及原因。 4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。 三、故障判断 1、整流模块损坏

一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。 2、逆变模块损坏 一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。 3、上电无显示 一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。 4、上电后显示过电压或欠电压 一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。 5、上电后显示过电流或接地短路 一般是由于电流检测电路损坏。如霍尔元件、运放等。 6、启动显示过电流 一般是由于驱动电路或逆变模块损坏引起。 7、空载输出电压正常,带载后显示过载或过电流 该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起。

90常用整流桥堆的分类和型号 全桥、半桥

常用整流桥堆的分类和型号;桥式整流器品种多,性能优良,整流效率高,稳定性好;1.贴片系列:;MB2S、MB4S、MB6S、MB8S、MB10;DB101S、DB102S、DB103S、DB1;DB151S、DB152S、DB153S、DB1;2.板桥系列:;DB101、DB102、DB103、DB104、;DB1 51、DB152、DB153、DB154、;3 常用整流桥堆的分类和型号 桥式整流器品种多,性能优良,整流效率高,稳定性好,最大整流电流从0.5A到50A,最高反向峰值电压从50V到1000V。 1. 贴片系列: MB2S、MB4S、MB6S、MB8S、MB10S。 DB101S、DB102S、DB103S、DB104S、DB105S、DB106S、DB107S。 DB151S、DB152S、DB153S、DB154S、DB155S、DB156S、DB157S。 2. 板桥系列: DB101、DB102、DB103、DB104、DB105、DB106、DB107。 DB151、DB152、DB153、DB154、DB155、DB156、DB157。 3. 圆桥系列: W005、W01、W02、W04、W06、W08、W10. 2W005、2W01、2W02、2W04、2W06、2W08、2W10。 4. 扁桥系列:

RS201、RS202、RS203、RS204、RS205、RS206、RS207。 KBP2005、KBP201、KBP202、KBP204、KBP206、KBP208、KBP210。 扁桥KBL4A: KBL4005、KBL401、KBL402、KBL404、KBL406、KBL408、KBL410。扁桥GBP2A: GBP2005、GBP201、GBP202、GBP204、GBP206、GBP208、GBP210。扁桥G BL4A: GBL4005、GBL401、GBL402、GBL404、GBL406、GBL408、GBL410。扁桥GBJ系列: GBJ4005、GBJ401、GBJ402、GBJ404、GBJ406、GBJ408、GBJ410。 GBJ6005、GBJ601、GBJ602、GBJ604、GBJ606、GBJ608、GBJ610。 GBJ8005、GBJ801、GBJ802、GBJ804、GBJ806、GBJ808、GBJ810。 GBJ10005、GBJ1001、GBJ1002、GBJ1004、GBJ1006、GBJ1008、GBJ1010。 GBJ150 05、GBJ1501、GBJ1502、GBJ1504、GBJ1506、GBJ1508、GBJ1510。 GBJ25005、GBJ2501、GBJ2502、GBJ2504、GBJ2506、GBJ2508、GBJ2510。 GBJ35005、GBJ3501、GBJ3502、GB J3504、GBJ3506、GBJ3508、GBJ3510。扁桥RBV50A系列: RBV50005、RBV5001、RBV5002、RBV5004、RBV5006、RBV5008、RBV5010。扁桥KB U系列: KBU4005、KBU401、KBU402、KBU404、KBU406、KBU408、KBU410。 KBU6005、KBU601、KBU602、KBU604、KBU606、KBU608、KBU610。 KBU8005、KBU801、KBU802、KBU804、KBU806、KBU808、KBU810。

整流桥电路理解

整流桥电路理解 整流桥 整流桥就是将整流管封在一个壳内了.分全桥和半桥.全桥是将连接好的桥式整流电路的四个二极管封在一起.半桥是将两个二极管桥式整流的一半封在一起,用两个半桥可组成一个桥式整流电路,一个半桥也可以组成变压器带中心抽头的全波整流电路, 选择整流桥要考虑整流电路和工作电压. 整流桥的原理 整流桥堆整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。选择整流桥要考虑整流电路和工作电压.优质的厂家有“文斯特电子”的G系列整流桥堆,进口品牌有ST、IR等。整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 编辑本段命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V 。RS507 即5A,700V。(1234567分别代表电压档的50V,100V,200V,400V,600V,800V,1000V)常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。整流桥有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 一、输入整流桥的选择 1、整流桥的导通时间与选通特性 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。 (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。

S25V60整流桥参数

Unit : mm Copyright & Copy;2002 Shindengen Electric Mfg.Co.,Ltd.

Forward Voltage 1 10 100 00.20.40.60.81 1.2 1.4 1.6 S25VBx Forward Voltage V F [V] F o r w a r d C u r r e n t I F [A ]

10 20 30 40 50 60 0510******** S25VBx Forward Power Dissipation Tj = 150°C Sine wave Average Rectified Forward Current I O [A] F o r w a r d P o w e r D i s s i p a t i o n P F [W ]

5 10 15 20 25 30 020406080100120140160 S25VBx Derating Curve Sine wave R-load Free in air * with thermal compound, TOR=1N-m * θfa = 1.0°C/W without heatsink Ambient Temperature Ta [°C] A v e r a g e R e c t i f i e d F o r w a r d C u r r e n t I O [A ]

Peak Surge Forward Capability 100 200 300 400 500 110100 S25VBx 252050 Number of Cycles [cycles] P e a k S u r g e F o r w a r d C u r r e n t I F S M [A ]

整流桥技术参数理论知识KBPC3510

Single Phase Silicon Bridge Recti ?er Voltage: 50 to 1000V Current:35A FEATURES MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS OUTLINE 1). Surge overload rating: -200~400 Amperes peak 2). Low forward voltage drop 3). Mounting position: Any 4). Electrically isolaged base-1800 Volts 5). Solderable 0.25″ FASTON terminals 6). Materials used carries U/L recognition (Single-phase, half-wave, 60HZ, resistive or inductive load rating at 25 , unless otherwise stated, for capacitive load, derate current by 20%) Liujing rectifier co., Ltd. KBPC3510

RATING AND CHARACTERISTICS CURVES KBPC3510 E-mail: recti ?er@https://www.wendangku.net/doc/3a7554792.html, thyristors@https://www.wendangku.net/doc/3a7554792.html, 打造最具竞争力的电力半导体产品 LIUJING reserves the right to change limits, test conditions and dimensions. ??? ? ???? ?? ???, ??? ??, ?????? ?? ?? ???? ??? ????. YUEQING LIUJING RECTIFIER CO., LTD Sale Departmant: Liujing Building, Yueqing City, Zhejiang Province Add: Wanao Industrial Zone, Yueqing city, Zhejiang Province Tel: 0086-577-62519692 0089-577-62519693Fax: 0086-577-62518692 International Export: 0086-577-62571902Technical Support: 0086-158********After Service: 400-6606-086https://www.wendangku.net/doc/3a7554792.html, https://www.wendangku.net/doc/3a7554792.html, https://www.wendangku.net/doc/3a7554792.html,recti ?https://www.wendangku.net/doc/3a7554792.html, https://www.wendangku.net/doc/3a7554792.html, MSN: thristors@https://www.wendangku.net/doc/3a7554792.html, To be the most competitive Power Semiconductor Devices manufactory. FIG. 1 - MAXIMUM FORWARD SURGE CURRENT FIG. 2 - DERATING CURVE OUTPUT RECTIFIED CURRENT NUMBER OF CYCLES AT 60HZ TEMPERATURE, C 400350 2502001005001 10 100 500 10 20 30 40 50 100150 150300P E A K F O R W A R D S U R G E C U R R E N T A M P E R E S A V E R A G E F O R W A R D O U T P U T C U R R E N T A M P E R E S FIG. 3 - TYPICAL FORWARD CHARACTERISTICS FIG. 4 - TYPICAL REVERSE CHARACTERISTICS INSTANTANEOUS FORWARD VOLTAGE, VOLTS PERCENT OF RATED PEAK REVERSE VOLTAGE 100 10 1.0 0.1 0.01 0.4 0.6 0.8 1.0 1.2 1.4 1.6 20 0.01 0.1 1.0 10 40 60 80 100 120 140 I N S T A N T A N E O U S F O R W A R D C U R R E N T A M P E R E S I N S T A N T A N E O U S R E V E R S E C U R R E N T ,M I C R O A M P E R E S

相关文档