文档库 最新最全的文档下载
当前位置:文档库 › 立体几何期末复习2

立体几何期末复习2

立体几何期末复习2
立体几何期末复习2

立体几何期末复习2

一、选择题(本大题共12小题,每小题5分,共60分)

1.空间四个点O 、A 、B 、C ,OA →,OB →,OC →

为空间的一个基底,则下列说法不正确的是( B )

A .O 、A 、

B 、

C 四点不共线B .O 、A 、B 、C 四点共面,但不共线 C .O 、A 、B 、C 四点中任意三点不共线

D .O 、A 、B 、C 四点不共面

2.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉等于( B )

A .30°

B .60°

C .90°

D .45°

3.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →

的夹角为( C )

A .30°

B .45°

C .60°

D .90°

4.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →

=(-1,2,-1).对

于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥ BD →

.其中正确的个数是( C )

A .1

B .2

C .3

D .4

5.以下命题中,不正确的个数为( C )

①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一的实数λ,使a =λb ;③若a·b =0,b·c =0,则a =c ;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4 D .5

6.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( D )

A .cos θ=n·a |n||a |

B .cos θ=|n·a||n||a |

C .sin θ=n·a

|n||a | D .sin θ=|n·a||n||a |

7.若两点A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB →

|取最小值时,x 的值等于( C )

A .19

B .-87 C.87D.19

14

8.如图所示,在四面体P —ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B —AP —C 的余弦值为( C )

A.22

B.33

C.77

D.57

9.如图所示,在直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,△AEB 是等腰直

角三角形,其中∠AEB =90°,则点D 到平面ACE 的距离为( B )

A.33

B.233

C.3D .2 3

10.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →

取得最小值时,点Q 的坐标为( C )

A.????12,34,13

B.????12,32,34

C.????43,43,83

D.????43,43,73

二、填空题(本大题共4小题,每小题5分,共20分)

11.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=____258____.

12.如图所示,已知正四面体ABCD 中,AE =14AB ,CF =1

4

CD ,则直线DE 和BF 所成角的

余弦值为_____4

13

___.

13.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为___.π3或

3

_____.

14.如图所示,已知二面角α—l —β的平面角为θ???

?θ∈????0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为__3-2cos θ____

三、解答题(本大题共6小题,共70分)

15.(12分)如图,在长方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.

(1)求异面直线EF 与A 1D 所成角的余弦值;

(2)证明AF ⊥平面A 1ED ;

(3)求二面角A 1—ED —F 的正弦值. 15.(1)解

如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得D (0,2,0),F (1,2,1),

A 1(0,0,4),E ????1,3

2,0. 易得EF →

=???

?0,12,1, A 1D →

=(0,2,-4),

于是cos 〈EF →,A 1D →

〉=

=-35.

所以异面直线EF 与A 1D 所成角的余弦值为3

5

.

(2)证明 易知AF →

=(1,2,1),

EA 1→=????-1,-32,4,ED →

=????-1,12,0, 于是AF →·EA 1→=0,AF →·ED →=0. 因此,AF ⊥EA 1,AF ⊥ED .

又EA 1∩ED =E ,所以AF ⊥平面A 1ED . (3)设平面EFD 的法向量u =(x ,y ,z ),

即???

1

2y +z =0,-x +1

2y =0.

不妨令x =1,可得u =(1,2,-1),

由(2)可知,AF →

为平面A 1ED 的一个法向量,

于是cos 〈u ,AF →

〉==23,

从而sin 〈u ,AF →

〉=53

.

所以二面角A 1—ED —F 的正弦值为

53

. 16.(12分)如图,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD ;

(2)若SD ⊥平面P AC ,求二面角P —AC —D 的大小;

(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.

16.(1)证明 连结BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD ,以O 点为坐标原

点,OB →、OC →、OS →

分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz 如图所示.

设底面边长为a ,则高SO =6

2

a .

于是S (0,0,62a ),D ????-22a ,0,0,C ???

?0,2

2a ,0,

B ??

?

?22a ,0,0,

OC →=??

??0,22a ,0,

SD →=??

??-22

a ,0,-62a ,

∴OC →·SD →=0.

∴OC ⊥SD ,即AC ⊥SD . (2)解 由题意知,平面P AC 的一个法向量DS →

=????22

a ,0,62a ,平面DAC 的一个法向量

OS →=?

?

??0,0,62a ,

设所求二面角为θ,则cos θ=

=3

2,

故所求二面角P —AC —D 的大小为30°.

(3)解 在棱SC 上存在一点E 使BE ∥平面P AC .

由(2)知DS →

是平面P AC 的一个法向量,

且DS →=????22a ,0,62a ,CS →

=?

???0,-22a ,62a ,

BC →=??

?

?-22a ,22a ,0,

设CE →=t CS →,

则BE →=BC →+CE →=BC →+t CS →

=????-22

a ,22a (1-t ),6

2at .

由BE →·DS →

=0,得t =13,

即当SE ∶EC =2∶1时,BE →⊥DS →

而BE 不在平面PAC 内,故BE ∥平面PAC .

17.如图,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,

且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上. (1)若P 是1DD 的中点,证明:1AB PQ ⊥;

(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为

3

7

,求四面体ADPQ 的体积.

17.解法1:由题设知,1,,AA AB AD 两两垂直。以A 为坐标原点,

1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图b 所示的空间直

角坐标系,则相关各点的坐标为1(0,0,0),(3,0,6)A B , D(0,6,0),1D (0,3,6),Q(6,m ,0),其中m=BQ,06m ≤≤

(1)若P 是1DD 的中点,则P (0,9

2

,3),9(6,,3)2

P

Q m =- 1AB =(3,0 ,6),于是1AB PQ

?

=18-18=0,所以1AB ⊥PQ

,即1AB PQ ⊥;

(2)由题设知,DQ

=(6,m-6,0),1DD =(0,-3,6)是平面PQD 内的两个不共线向量.

设1n =(x ,y ,z )是平面PQD 的一个法向量,则1110

n DQ n DD ??=???=?? ,即6(6)0360x m y y z +-=??-+=?,

取y=6,得1n =(6-m ,6,3).又平面AQD 的一个法向量是2n =(0,0,1),所以 cos<1n ,2n >=

1212||||n n n n ??

==

而二面角P-QD-A 的余弦值为37

,因此=

.解得m=4,或m=8(舍去),此时Q (6,4,0)

设1(01),DP DD λλ=<≤ 而1(0,3,6)DD =-

,由此得点(0,63,6)P λλ-,

所以因为PQ//平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1

,0)n =, 所以30PQ n ?=

,即3λ-2=0,亦即2

3λ=

,从而P (0,4,4),于是,将四面体ADPQ 视为△ADQ 为底面的三菱锥P-ADQ,则其高h =4,故四面体ADPQ 的体积111

66424332

ADQ V S h =?=????= .

解法二 (Ⅰ)如图c ,取1A A 的中点R ,连结PR,BR,因为1A A ,1D D 是梯形11A AD D 的两腰,P 是1D D 的中点,所以PR//AD ,于是由AD//BC 知,PR//BC,所以P ,R,B,C 四点共面.

由题设知,BC ⊥AB,BC ⊥1A A ,所以BC ⊥平面11ABB A ,因此BC ⊥1AB ○1

因为tan ABR ∠=

AR AB =36=1

1AB A A

=tan 11A AB ∠,所以tan ABR ∠=tan 11A AB ∠,因此 1ABR BAB ∠+∠=111A AB BAB ∠+∠=90o ,于是1AB ⊥BR ,再由○1即知1

AB ⊥平面PRBC ,又PQ ?平面PRBC ,故1AB ⊥PQ.

(Ⅱ)如图d ,过点P 作PM//1A A 交AD 于点M ,则PM//平面11ABB A .

因为1A A ⊥平面ABCD ,所以OM ⊥平面ABCD,过点M 作MN ⊥QD 于点N ,连结PN ,则PN ⊥QD ,PNM ∠为二面角P-QD-A 的平面角,所以cos PNM ∠=

37,即MN PN =37,

从而PM MN =. ○

3 连结MQ ,由PQ//平面11ABB A ,所以MQ//AB ,又ABCD 是正方形,所以ABQM 为矩形,故MQ=AB=6. 设MD=t ,则

○4过点1D 作11//D E A A 交AD 于点E ,则11AA D E 为矩形,

所以1D E =1A A =6,AE=11A D =3,因此ED=AD-AE=3,于是

16

23

D E PM MD ED ===,所以PM=2MD=2t , 再由○3○4

3,解得t=2,因此PM=4.故四面体ADPQ 的体积

111

66424332

ADQ V S PM =?=????= .

18.如图,在四棱锥中,平面平面,

,,,,,

(1)求证:平面;

(2)求直线与平面所成角的正弦值;

(3)在棱上是否存在点,使得平面

?若存在,求的值;若不存在,说明理由.

18.【解】⑴∵面PAD 面ABCD AD =

面PAD ⊥面ABCD

P ABCD -PAD ⊥ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AM

AP

∵AB ⊥AD ,AB ?面ABCD ∴AB ⊥面PAD ∵PD ?面PAD ∴AB ⊥PD 又

PD ⊥PA ∴PD ⊥面PAB

⑵取AD 中点为O ,连结CO ,PO

∵CD AC ==CO ⊥AD ∵PA PD =∴PO ⊥AD 以O 为原点,如图建系

易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,

则(111)PB =- ,,,(011)PD =-- ,,,(201)PC =- ,,,(210)CD =-- ,,

设n

为面PDC 的法向量,令00(,1)n x y = , 011,120

n PD n n PC ??=???

?=-? ????=??

,,则PB 与面PCD 夹角θ有

sin cos ,n θ=< ⑶假设存在M 点使得BM ∥面PCD 设AM AP

λ=,()0,','M y z

由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =- ,()1,1,0B ,()0,'1,'AM y z =-

有()0,1,AM AP M λλλ=?-

∴()1,,BM λλ=--

∵BM ∥面PCD ,n

为PCD 的法向量 ∴0BM n ?=

即1

02λλ-++=

∴1=4

λ

∴综上,存在M 点,即当1

4

AM AP =时,M 点即为所求.

19.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,

BD ⊥BA ,BD =1

2

AE =2,O ,M 分别为CE ,AB 的中点.

(1)求证:OD ∥平面ABC ;

(2)求直线CD 和平面ODM 所成角的正弦值;

(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 19.(1)证明 如图,取AC 中点F ,连接OF ,FB

.

∵F 是AC 中点,O 为CE 中点, ∴OF ∥EA 且OF =1

2EA .

又BD ∥AE 且BD =1

2AE ,

∴OF ∥DB 且OF =DB ,

∴四边形BDOF 是平行四边形,∴OD ∥FB . 又∵FB ?平面ABC ,OD ?平面ABC , ∴OD ∥平面ABC .

(2)解 ∵平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ?平面ABDE ,且BD ⊥BA , ∴DB ⊥平面ABC .

∵BD ∥AE ,∴EA ⊥平面ABC .

又△ABC 是等腰直角三角形,且AC =BC , ∴∠ACB =90°,

∴以C 为原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,如图所示.

∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),D (0,4,2),E (4,0,4),O (2,0,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →

=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),

则由n ⊥OD →,n ⊥MD →

,可得?

????

-2x +4y =0,-2x +2y +2z =0.

令x =2,得y =1,z =1,∴n =(2,1,1). 设直线CD 和平面ODM 所成角为θ, 则sin θ=|n ·CD →

|

|n ||CD →|=|(2,1,1)×(0,4,2)|22+12+12×02+42+22 =

66×25=30

10

.

∴直线CD 和平面ODM 所成角的正弦值为

3010

. (3)解 当N 是EM 中点时,ON ⊥平面ABDE . 由(2)设N (a ,b ,c ),

∴MN →=(a -2,b -2,c ),NE →

=(4-a ,-b,4-c ).

∵点N 在ME 上,∴MN →=λNE →

, 即(a -2,b -2,c )=λ(4-a ,-b,4-c ),

∴????

?

a -2=λ(4-a ),

b -2=λ(-b ),

c =λ(4-c ),

解得?????

a =4λ+2λ+1

b =2

λ+1,c =4λλ+1.

∴N (4λ+2λ+1,2λ+1,4λλ+1

).

∵BD →

=(0,0,2)是平面ABC 的一个法向量, ∴ON →⊥BD →

,∴4λλ+1=2,解得λ=1.

∴MN →=NE →

,即N 是线段EM 的中点, ∴当N 是EM 的中点时,ON ⊥平面ABDE .

必修2立体几何单元测试题及答案知识分享

立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误 的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点, N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .0 90 B .0 60 C .0 45 D .0 30 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A B .2S C . D .4S

必修二立体几何测试题资料

2015-2016学年第一学期立体几何测试 高二理科数学 参考公式: 圆柱的表面积公式:rl r S ππ222 +=,圆锥的表面积公式:rl r S ππ+=2 台体的体积公式h S S S S V )(3 1'' ++= ,球的表面积公式:24r S π= 圆台的表面积公式Rl rl R r S π+π+π+π=2 2,球的体积公式:33 4r V π= 一、选择题(每小题5分,共60分) 1.下列四个几何体中,是棱台的为( ) 2.如图所示为一平面图形的直观图,则此平面图形可能是( ) 3.给出下列命题: ①垂直于同一直线的两条直线互相平行; ②若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ; ③若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( ) A .1 B .2 C .3 D .4

4.空间几何体的三视图如图所示,该几何体的表面积为( ) A .96 B .136 C .152 D .192 5.若棱长为1的正方体的各棱都与一球面相切,则该球的体积为( ) A .3π2 B .2π3 C .2π12 D .π 6 6.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是( ) A .m ⊥n ,m ∥α,n ∥β B .m ⊥n ,α∩β=m ,n ?α C .m ∥n ,n ⊥β,m ?α D .m ∥n ,m ⊥α,n ⊥β 7.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .10π+96 B .9π+96 C .8π+96 D .9π+80 8.m,n 是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法: 其中正确说法的个数为 ( ) ①m ⊥α,n ∥β,α∥β?m ⊥n; ②m ⊥n,α∥β,m ⊥α?n ∥β; ③m ⊥n,α∥β,m ∥α?n ⊥β; ④m ⊥α,m ∥n,α∥β?n ⊥β. A.1 B.2 C.3 D.4

立体几何高考题_模拟试题带答案解析

. .. . 2014 高考及模拟立体几何带答案 一.解答题(共17小题) 1.(2014?)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC 的中点. (Ⅰ)求证:AP∥平面BEF; (Ⅱ)求证:BE⊥平面PAC. 2.(2014?)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形 (Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论. 3.(2014?)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2. (Ⅰ)求证:BE∥平面PAD; (Ⅱ)求证:BC⊥平面PBD; (Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°. 4.(2014?)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA∥平面DEF;

(2)平面BDE⊥平面ABC. 5.(2014?一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.(1)求证:AF∥平面PCE; (2)求证:平面PCE⊥平面PCD; (3)求四面体PEFC的体积. 6.(2014?南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点. (Ⅰ)求证:PO⊥平面ABCD; (Ⅱ)求证:OE∥平面PDC; (Ⅲ)求直线CB与平面PDC所成角的正弦值. 7.(2014?天津模拟)如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2. (1)求证:B1B∥平面D1AC; (2)求证:平面D1AC⊥平面B1BDD1.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

必修二立体几何单元测试题

立体几何单元测试 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下面四个命题: ①分别在两个平面内的两直线是异面直线; ②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( ) A.①②B.②④ C.①③ D.②③ 答案:B 2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( ) A.平行B.相交 C.平行或相交D.不相交 解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B. 答案:B 3.一直线l与其外三点A,B,C可确定的平面个数是( ) A.1个B.3个 C.1个或3个D.1个或3个或4个 解析:当A、B、C共线且与l平行或相交时,确定一个平面;当A、B、C共线且与l 异面时,可确定3个平面;当A、B、C三点不共线时,可确定4个平面.答案:D 4.若三个平面两两相交,有三条交线,则下列命题中正确的是( ) A.三条交线为异面直线 B.三条交线两两平行 C.三条交线交于一点 D.三条交线两两平行或交于一点 答案:D 5.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是( )

A.5 B.8 C.10 D.6 解析:这些直角三角形是:△PAB,△PAD,△PAC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个. 答案:B 6.下列命题正确的有( ) ①若△ABC在平面α外,它的三条边所在直线分别交α于P、Q、R,则P、Q、R三点共线. ②若三条平行线a、b、c都与直线l相交,则这四条直线共面. ③三条直线两两相交,则这三条直线共面. A.0个B.1个 C.2个D.3个 解析:易知①与②正确,③不正确. 答案:C 7.若平面α⊥平面β,α∩β=l,且点P∈α,P?l,则下列命题中的假命题是( ) A.过点P且垂直于α的直线平行于β B.过点P且垂直于l的直线在α内 C.过点P且垂直于β的直线在α内 D.过点P且垂直于l的平面垂直于β 答案:B 8.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( ) A.与AC、MN均垂直相交 B.与AC垂直,与MN不垂直 C.与MN垂直,与AC不垂直 D.与AC、MN均不垂直

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

高考试题的探究(一):鳖臑几何体的试题赏析与探究文章修改稿11.25

图 1 D P E C B A 鳖臑几何体的试题赏析与探究 岳 峻1 阮艳艳2 安徽省太和县太和中学 236600 2015年湖北高考数学之后,广大考生感言:阳马、鳖臑,想说爱你不容易;中学教师考后反思:阳马、鳖臑,不说爱你又没道理;试题评价专家说:湖北高考数学试题注重数学本质,突出数学素养,彰显数学文化. 阳马、鳖臑是什么呢? 1 试题再现 1.1 文科试题 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图1所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE . (I)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (II)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求1 2 V V 的值. 1.2 理科试题 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图2,在阳马ABCD P -中,侧棱PD ⊥底面ABCD ,且P D C D =,过棱PC 的中点E ,作E F P B ⊥交PB 于点F ,连接,,,.DE DF BD BE (I)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (II)若面DEF 与面ABCD 所成二面角的大小为π3,求DC BC 的值. 2 鳖臑的史料 2.1 史料 《九章算术·商功》:“斜解立方,得两堑堵。斜解堑堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣.” 刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云。中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.” 2.2 阐释 D F P E C B A 图2

高一必修二立体几何练习题(含答案)

《立体几何初步》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D .βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b //α D.α内的任何直线都与β平行 5、设m、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A .①和②? B.②和③? C.③和④ D.①和④ 6.点P为ΔABC 所在平面外一点,PO ⊥平面ABC,垂足为O ,若PA=PB=PC, 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D .垂心 7. 若l 、m、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( )

A .若//,,l n αβαβ??,则//l n B.若,l αβα⊥?,则l β⊥ C . 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B .2 C .1 D.0 9.(2013浙江卷)设m.n是两条不同的直线,α.β是两个不同的平面, ( ) A.若m ∥α,n ∥α,则m ∥n?B.若m ∥α,m ∥β,则α∥β C.若m ∥n,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m⊥β 10.(2013广东卷)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是?( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C.若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 二、填空题 11、在棱长为2的正方体ABCD —A1B 1C1D 1中,E ,F 分别是棱AB,BC 中点,则三棱锥B —B 1E F的体积为 . 12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC,BD=CD 则BC⊥AD;②若AB=CD,AC=BD 则BC ⊥AD;③若AB ⊥AC,B D⊥CD 则B C⊥AD;④若A B⊥CD, BD ⊥AC 则B C⊥AD;其中真命题序号是 . 13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 . 14. 如图,△ABC 是直角三角形,∠ACB=? 90,PA ⊥平面AB C, A B C P

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高一数学必修2立体几何测试题

高一数学必修2立体几何测试题 第Ⅰ卷 一、选择题(每小题3分,共30分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是 A 、A B α? B 、AB α? C 、由线段AB 的长短而定 D 、以上都不对 2、下列说法正确的是 A 、三点确定一个平面 B 、四边形一定是平面图形 C 、梯形一定是平面图形 D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 A 、l ∥a B 、l 与a 异面 C 、l 与a 相交 D 、l 与a 没有公共点 6、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取 E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上 C 、点P 必在平面ABC 内 D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于

必修二立体几何测试题

1 2013年高一数学必修二立体几何测试题 一:选择题(4分10 ?题) 1.下面四个条件中,能确定一个平面的条件是() A. 空间任意三点 B.空间两条直线 C.空间两条平行直线 D.一条直线和一个点 2. 1 l, 2 l, 3 l是空间三条不同的直线,则下列命题正确的是(). A. 12 l l ⊥, 23 l l ⊥ 13 // l l ?B. 12 l l ⊥, 23 // l l? 13 l l ⊥ C. 233 //// l l l? 1 l, 2 l, 3 l共面D. 1 l, 2 l, 3 l共点? 1 l, 2 l, 3 l共面3.已知m,n是两条不同的直线,,, αβγ是三个不同的平面,下列命题中正确的是:A.若, αγβγ ⊥⊥,则α∥β B.若, m n αα ⊥⊥,则m∥n C.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β 4.在四面体ABC P-的四个面中,是直角三角形的面至多有() A.0 个 B.1个 C. 3个 D .4个 5,下列命题中错误 ..的是 A.如果平面αβ ⊥平面,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C.如果平面αγ ⊥平面,平面βγ ⊥平面,l= β α ,那么lγ ⊥平面D.如果平面αβ ⊥平面,那么平面α内所有直线都垂直于平面β 6.如图所示正方体 1 AC,下面结论错误的是() A. 1 1 //D CB BD平面 B. BD AC⊥ 1 C. 1 1 1 D CB AC平面 ⊥ D. 异面直线 1 CB AD与角为? 60 7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是() A. ? 120 B. ? 150 C. ? 180 D. ? 240

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何创新题型及答案

(一) 创新试题 1.如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (I )求证:A 1C //平面AB 1D ; (II )求二面角B —AB 1—D 的大小; (III )求点c 到平面AB 1D 的距离. 2. 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。 (1)试确定PB P A 1的值,使得PC ⊥AB ; (2)若3 21 PB P A ,求二面角P —AB —C 的大小; (3)在(2)条件下,求C 1到平面PAC 的距离。

1解法一(I )证明:连接A 1B ,设A 1B ∩AB 1 = E ,连接DE. ∵ABC —A 1B 1C 1是正三棱柱,且AA 1 = AB ,∴四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C. ∵DE ?平面AB 1D ,A 1C ?平面AB 1D ,∴A 1C ∥平面AB 1D. (II )解:在面ABC 内作DF ⊥AB 于点F ,在面A 1ABB 1内作FG ⊥AB 1于点G ,连接DG. ∵平面A 1ABB 1⊥平面ABC , ∴DF ⊥平面A 1ABB 1, ∴FG 是DG 在平面A 1ABB 1上的射影, ∵FG ⊥AB 1, ∴DG ⊥AB 1 ∴∠FGD 是二面角B —AB 1—D 的平面角 设A 1A = AB = 1,在正△ABC 中,DF=.43在△ABE 中,82343=?=BE FG , 在Rt △DFG 中,3 6tan ==∠FG DF FGD ,所以,二面角B —AB 1—D 的大小为.36arctan (III )解:∵平面B 1BCC 1⊥平面ABC ,且AD ⊥BC , ∴AD ⊥平面B 1BCC 1,又AD ?平面AB 1D ,∴平面B 1BCC 1⊥平面AB 1D. 在平面B 1BCC 1内作CH ⊥B 1D 交B 1D 的延长线于点H , 则CH 的长度就是点C 到平面AB 1D 的距离. 由△CDH ∽△B 1DB ,得.5 511=?=D B CD BB CH 即点C 到平面AB 1D 的距离是 .55 解法二: 建立空间直角坐标系D —xyz ,如图, (I )证明: 连接A 1B ,设A 1B ∩AB 1 = E ,连接DE.设A 1A = AB = 1, 则).0,0,21(),21,43,41(),1,23,0(),0,0,0(1C E A D -),21,43,41(),1,23,21(1-=--=∴DE C A .//,211DE C A DE C A ∴-=∴ D AB C A D AB DE 111,平面平面?? ,.//11D AB C A 平面∴ (II )解:)1,0,21(),0,23,0(1-B A , )1,0,2 1(),0,23,0(1-==∴D B AD , 设),,(1r q p n =是平面AB 1D 的法向量,则0,0111=?=?D B n AD n 且, 故)1,0,2(,1.02 1,0231===-=-n r r p q 得取;同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B —AB 1—D 的大小为θ,5 15||||cos 2121=?=n n n n θ , ∴二面角B —AB 1—D 的大小为.5 15arccos

数学必修2第一章空间几何体测试题

数学必修2第一章空间几何体测试题 一、选择题 1、若一个几何体的俯视图是圆,则它不可能是( ) A 、球; B 、圆柱; C 、圆锥; D 、三棱锥。 2 有一个几何体的三视图如下图所示,这个几何体应是一个( ) A 棱台 B 棱锥 C 棱柱 D 都不对 3. 棱长都是1的三棱锥的表面积为( ) A A. B C D 4 圆台的一个底面周长是另一个底面周长的3倍,母线长为3, 圆台的侧面积为84π,则圆台较小底面的半径为( ) A 7 B 6 C 5 D 3 5、将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( ) ? D C B A C B A 5 题图 6 半径为R 的半圆卷成一个圆锥,则它的体积为( ) A 3R B 3R C 3R D 3R 7 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成 两部分的体积之比是( ) A 1:7 B 2:7 C 7:19 D 5:16 主视图 左视图 俯视图

8.图(1)是由哪个平面图形旋转得到的() A B C D 9.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为 1 V和 2 V,则 12 : V V=() A. 1:3 B. 1:1 C. 2:1 D. 3:1 10.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为: A. 2 24cm π,2 12cm π B. 2 15cm π,2 12cm π C. 2 24cm π,2 36cm π D.以上都不正确 二、填空题 11 等体积的球和正方体,它们的表面积的大小关系是S球___S正方体 12若三个球的表面积之比是1:2:3,则它们的体积之比是_____________ 13.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

立体几何测试题带答案解析

____________班级___________学号____________分数______________ 一、选择题 1 .下列说确的是 ( ) A .三点确定一个平面 B .四边形一定是平面图形 C .梯形一定是平面图形 D .平面α和平面β有不同在一条直线上的三 个交点 2 .若α//β,a//α,则a 与β的关系是 ( ) A .a//β B .a β? C .a//β或a β? D .A a =β 3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为 ( ) A .4、6、8 B .4、6、7、8 C .4、6、7 D .4、5、7、8 4 .一个体积为123 的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为 ( ) A .36 B .8 C .38 D .12 5 .若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 ( ) A .l ∥a B .l 与a 异面 C .l 与a 相交 D .l 与a 没有公共点 6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为 ( ) A .1:2:3 B .1:4:9 C .2:3:4 D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ( ) A .π12 B .π24 C .π36 D .π48 8 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是 ( ) A .相交 B .异面 C .平行 D .异面或相交 6 5 6 5

9 .设正方体的棱长为 23 3,则它的外接球的表面积为 ( ) A .π38 B .2π C .4π D .π3 4 10.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的 表面积为 A .π7 B .π14 C .π21 D .π28 11.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 ( ) A .12l l ⊥,23l l ⊥13//l l ? B .12l l ⊥,23//l l ?13l l ⊥ C .233////l l l ? 1l ,2l ,3l 共面 D .1l ,2l ,3l 共点?1l ,2l ,3l 共面 12.如图,正方体1111ABCD A B C D 中,E ,F 分别为棱AB ,1CC 的中点,在平面11ADD A 且与平面1D EF 平行的直线 ( ) A .有无数条 B .有2条 C .有1 条 D .不存在 二、填空题 13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根 据图中标出的尺寸,计算这个几何体的表面积是______. 14.如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D A B C D A 1 B 1 C 1 D 1 E F

立体几何测试题带答案解析

姓名____________班级___________学号____________分数______________ 一、选择题 1 .下列说法正确的是() A.三点确定一个平面B.四边形一定是平面图形 C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三 个交点 2 .若α//β,a//α,则a与β的关系是() A.a//βB.aβ ?C.a//β或aβ ?D.A a= β I 3 .三个互不重合的平面能把空间分成n部分,则n所有可能值为() A.4、6、8 B.4、6、7、8 C.4、6、7 D.4、5、7、8 4 .一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为 ()A.3 6B.8 C.3 8D.12 5 .若直线l∥平面α,直线aα ?,则l与a的位置关系是()A.l∥a B.l与a异面C.l与a相交D.l与a没有公共点 6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为() A.1:2:3 B.1:4:9 C.2:3:4 D.1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ()A.π 12B.π 24C.π 36D.π 48 8 .若a,b是异面直线,直线c∥a,则c与b的位置关系是() A.相交B.异面C.平行D.异面或相交 6 5 6 5

9 .设正方体的棱长为 23 3,则它的外接球的表面积为 ( ) A .π38 B .2π C .4π D .π3 4 10.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球 的表面积为 A .π7 B .π14 C .π21 D .π28 11.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 ( ) A .12l l ⊥,23l l ⊥13//l l ? B .12l l ⊥,23//l l ?13l l ⊥ C .233////l l l ? 1l ,2l ,3l 共面 D .1l ,2l ,3l 共点?1l ,2l ,3l 共面 12.如图,正方体1111ABCD A B C D -中,E ,F 分别为棱AB ,1CC 的中点,在平面11ADD A 内且与平面1D EF 平行的直线 ( ) A .有无数条 B .有2条 C .有1 条 D .不存在 二、填空题 13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成, 根据图中标出的尺寸,计算这个几何体的表面积是______. 14.如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内 A B C D A 1 B 1 C 1 D 1 E F

必修2-空间几何体测试题及答案

空间几何体测试题 一、选择题(本大题共12题,每小题5分,共60分) 1.小明在上海世博会参观时,看到一个几何体,它的轴截面一定是圆面,则这个几何体是 ( ) A .圆柱 B .圆锥 C .球 D .圆台 2.一个正三棱锥和一个正四棱锥,它们的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体可能是 ( ) A .正五棱锥 B .斜三棱柱 C .正三棱柱 D .直三棱柱 3.四棱锥的四个侧面中,直角三角形最多可能有( ) A .1个 B .2个 C .3个 D .4个 4.下列5个命题中:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形, ④如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影一定是这个三角形的平行投影的对应的中位线;⑤棱台各侧棱的延长线交于一点,正确的说法有( ) A. 1个 B. 2个 C. 3个 D. 4个 5.长方体的三个面的面积分别是2,3,6,则长方体的对角线长是( ) A .6 B .3 C .23 D .32 6.若正四棱锥S-ABCD 的三视图中,正视图、侧视图都是腰为3,底边为2的等腰三角形,俯视图是边长为2的正方形,则正四棱锥S-ABCD 的侧面积为( ) A.23 B. 43 C. 1 D.2 7.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A. 33R π B. 33R π C . 35R π D.35R π 8 .如图1,一个空间几何体的主视图(正视图)、侧视图是周长为16的一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为( ) A.8π B.12π C.16π D.20π 9.一个圆锥放在一个底面积相等、高也相等的圆柱内,若圆锥与圆柱的体 积分别为1V 和2V ,则圆柱除圆锥外的体积与圆锥的体积之比为( ) A. 2:3 B. 2:1 C. 1:3 D. 3:1 10.小蚂蚁的家住在长方体ABCD —A 1B 1C 1D 1的A 处,小蚂蚁的奶奶家住在C 1处,三条棱长分别是AA 1=1,AB=2,AD=4,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家C 1的最短矩离是 ( ) A .5 B .7 C .29 D .37 11.图3为图2所示几何体的展开图,则拼成一个棱长为6cm 的正方体如图4,需要这样的几何体( ) A. 2个 B. 3个 C. 4个 D. 5个 侧视图 图1

(完整版)高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交——有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: aβ bβ a∩b =pβ∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。

2.2.3 —2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a ∥α a β a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ=a a∥b β∩γ=b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L 2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A

相关文档
相关文档 最新文档