文档库 最新最全的文档下载
当前位置:文档库 › 光纤通信常识知识

光纤通信常识知识

光纤通信常识知识
光纤通信常识知识

一、阶跃型折射率光纤的单模传输原理是什么?

答:当归一化频率v小于二阶模

11

LP归一化截止频率,即0

二、光纤中有哪几种色散,并解释其含义?

1、模式色散:在多模光纤中存在许多传输模式,即使在同一波长,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。

2、材料色散:由于光线材料的折射率是波长λ的非线性函数,从而使光的传输速度随波长的变化而变化,由此而引起的色散称做材料色散。

3、波导色散:同一模式的相位常数β

随波长λ而变化,即群速度随波长而变化,由此而

引起的色散称为波导色散。

4、偏振模色散:由于实际的光纤总是存在一定的不完善性,使得沿着两个不同方向偏振的

同一模式的相位常数β

不同,从而导致着两个模式传输不同步,形成色散。

三、光纤非线性效应对光纤通信系统有什么影响?

四、单模光纤有哪几类?

答:非色散位移单模光纤,色散位移单模光纤,截止波长位移单模光纤,非零色散位移单模光纤。

五、单模光纤及其截止波长。

答:①单模光纤是指在给定的工作波长上只传输单一基模的光纤。适用于长距离、大容量的光纤通信系统。②单模光纤的截止波长是指光纤的第一个高阶模LP11模截止时的波长。六、光纤的分类。

答:①按光纤横截面的折射率分布分类:阶跃折射率分布光纤(简称阶跃光纤)和渐变折射率分布光纤(简称渐变光纤)。

②按光纤中的传导模式数量分类:单模光纤和多模光纤两类。

③按光纤构成的原材料分类:石英系光纤、多组分玻璃光纤、塑料包层光纤、全塑光纤。

④按光纤的套塑层分类:紧套光纤、松套光纤。

一、光与物质间的作用有哪三种基本过程及其原理?它们各自的特点是什么?

答:①自发辐射:处于高能级电子的自发行为,与是否存在外界激励作用无关,产生的光子仅仅能量相同而彼此无关,是一种非相干光。

②受激辐射:感应光子的能量等于向下跃迁的能级之差,受激辐射产生的光子与感应光子是全同光子,它们是相干的,受激辐射过程实质上是对外来入射光的放大过程。

③受激吸收:受激吸收时需要消耗外来光能,受激吸收过程对应光子被吸收,生成电子—空穴对的光电转换过程。

二、什么是粒子数反转分布?

E的电子密度2N 低能级1E的电子密度1N是一种处于非热平衡状态下的答:高能级

2

反常情况,称为粒子数反转分布,必须通过外界的泵浦才能实现。

三、构成激光器必须具备哪些功能部件?

答:

①有源区(又称为增益区)

有源区是实现粒子数反转分布、有光增益的区域

②光反馈装置

在光学谐振腔内提供必要的正反馈以促进激光振荡

③频率选择元件

用来选择由光反馈装置决定的所有纵模中的一个模式

④光束的方向选择元件

光反馈装置可以选择激光器光束的方向

⑤光波导

用于对所产生的光波在器件内部进行引导

四、哪些方法可以实现光学谐振腔?与之对应的激光器的类型是什么?

答:⑴用晶体天然的理解面形成法布里—珀罗谐振腔(F—P腔),当光在谐振腔中满足一定的相位条件和谐振条件时,建立起稳定的光振荡。⑵利用有源区一侧的周期性波纹结构提供光耦合来形成光振荡。

五、激射的一般条件是什么?

答:1、有源区里产生足够的粒子数反转分布

2、存在光学谐振机制,并在有源区里建立起稳定的激光振荡。

六、比较半导体激光器(LD)和发光二极管(LED)的异同?

答:不同之处:工作原理不同,LD发光石受激辐射光,LED发光的自发辐射光。LED不需要光学振荡腔,而LD需要。和LD相比,LED输出光功率小,光谱较宽,调制频率较低,但发光二极管性能稳定,寿命长,输出功率线性范围宽,而且制造工艺简单,价格低廉,所以LED主要应用场合是小容量、短距离通信系统,而LD主要用于长距离、大容量通信系统。相同之处:使用的半导体材料相同,结构相似,LED和LD大多使用双异质结构,把有源层夹在P型和N型限制层中间。

光纤通信-重要知识点总结

光纤通信重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。 2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。 3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。 光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF 电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。 4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的 5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。 6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。 6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺少

光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解 第1章 1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm 2、光纤通信系统的基本组成:P5 图1-3 目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。 各部件功能: 电发射机:对来自信源的信号进行模/数转换和多路复用处理; 光发送设备:实现电/光转换; 光接收机:实现光/电转换; 光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。 3、光纤通信的特点:(可参照P1、2) 优点:(1),传输容量大。(2)传输损耗小,中继距离长。 (3)保密性能好:光波仅在光纤芯区传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。(5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。 4、适用光纤:P11 G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。常见的结构有阶跃型和下凹型单模光纤。 G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。难 以克服FWM混频等非线性效应带来的影响。 G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm 处。可以尽量克服FWM混频等非线性效应带来的影响。 补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。 2、数字光纤通信系统有准同步数字体系(PDH)和同步数字体系(SDH)两种传输体制。

光纤通信复习重点

光纤通信复习重点 题型:填空、选择、判断(30’)、问答(40’)、计算(30’) 第一章 概论 1、2、2 光纤通信的优点(☆☆) 1)容许频带很宽,传输容量很大 2)损耗很小,中继距离很长,且误码率很小 3)重量轻,体积小 4)抗电磁干扰性能好 5)泄露小,保密性能好 6)节约金属材料,有利于资源合理使用 1、3 光纤通信系统的基本组成 基本光纤传输 接 收发 射 作用: 1)信息源:把用户信息转换为原始电信号,这种信号称为基带信号 2)电发射机:把信息源传递过来的模拟信号转换成数字信号(PCM) 3)光发射机:把输入电信号转换为光信号,并用耦合技术吧光信号最大限度地注入光纤线路。 4)光纤线路:把来自光发射机的光信号,以尽可能小的失真与衰减传输到光接收机。 5)光接收机:把从光纤线路输出、产生畸变与衰减的微弱光信号转换为电信号,并经其后的电接收机放大与处理后恢复成基带电信号。光接收机由光检测器、放大器与相关电路组成,光检测器就是光接收机的核心。光接收机最重要的特性参数数灵敏度; 6)电接收机:把接收的电信号转换为基带信号,最后由信息宿恢复用户信息; 说明:光发射机之前与光接收机之后的电信号段,光纤通信所用的技术与设备与电缆通信相同,不同的只就是由光发射机、光纤线路与光接收机所组成的基本光纤传输系统代替了电缆传输; 注:计算题3个,全来自第二第三章的课后习题 第二章 光纤与光缆 2、1、1 光纤结构 光纤就是由中心的纤芯与外围的包层同轴组成的圆柱形细丝。(相对折射率差典型值△=(n1-n2)/n1,△越大,把光能量束缚在纤芯的能力越强,但信息传输

容量确越小) 2、1、2 光纤类型(三种基本类型) 图2、2 突变型多模光纤:纤芯折射率为n1保持不变,到包层突然变为n2。这种光纤一般纤芯直径2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播,特点就是信号畸变大。 渐变型多模光纤:纤芯中心折射率最大为n1,沿径向r 向外围逐渐变小,直到包层变为n2。这种光纤一般纤芯直径2a 为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点就是信号畸变小。 单模光纤:折射率分布与突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。因为这种光纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。 2、2 光纤传输原理 (展宽 衰减的原因) 2、2、1几何光学方法(几个基本物理量的计算、效应、单模就是重点) 1)突变型多模光纤 数值孔径:定义临界角θc 的正弦为数值孔径(NA) NA 表示光纤接收与传输光的能力,NA(或θc)越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高。对于无损耗光纤,在θc 内的入射光都能在光纤中传输。NA 越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好。但NA 越大经光纤传输后产生的信号畸变越大,因而限制了信息传输容量。 时间延迟: 这种时间延迟差在时域产生脉冲展宽,或称为信号畸变。由此可见,突变型多模光纤的信号畸变就是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的。 2)渐变型多模光纤 渐变型多模光纤具有能减小脉冲展宽、增加带宽的优点。 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但就是最终都会聚在同一点上。渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚在同一点上,而且这些光线的时间延迟也近似相等。 2、2、2 光纤传输的波动理论 单模光纤的模式特性 1)单模条件与截止波长 ?≈-=212212n n n NA ?≈==?c L n NA c n L c n L c 12121)(22θτ

光纤通信期末复习重点

一. 1 光纤通信的基础:利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信。 光纤通信的载波是光波。光纤通信用的近红外光(波长为0.7-1.7um)频率约为300THZ 频带宽度约为200THZ,在常用的1.31um和1.55um两个波长窗口频带宽度也在20THZ以上. 2 光纤通信的优点:(1)容许频带很宽,传输容量很大(2)损耗很小,中继距离很长且误码率很小(3)重量轻,体积小(4)抗电磁干扰性能好(5)泄漏小,保密性能好(6)节约金属材料,有利于资源合理使用. 二 1 光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝. 纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输. 纤芯和包层的折射率若分别为n1和n2,光能量在光纤中的传输的必要条件:n1>n2 2 按折射率分类:突变型,浙变型按传输模式分:多模光纤,单模光纤 光纤的三种基本类型: (1)突变型多模光纤:纤芯直径2a=50-80um,光线以拆线形状沿纤芯中心轴线方向传播,特点是信号畸变大. 适用于小容量,短距离传输. (2)渐变型多模光纤:纤芯直径2a为50um,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小,适用中等距离传输,中等容量 (3)单模光纤:纤芯直径只有8-10um,光线以直线型状沿纤芯中心轴线方向传播. 信号畸变小,适合长距离传输方式. 3 光纤传输原理:全反射 数值孔径NA=√(n1*n1-n2*n2)=n1√2△纤芯和包支的相对折射率差△=(n1-n2)/n1 NA表示光纤接收和传输光的能力,NA越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高。NA越大,经光纤传输后产生的信号畸变越大,因而限制了信息传输容量. 时间延迟:θ不大时:τ=n1L/c=(n1L/c )*(1+θ1的平方/2) c为光速 最大入射角θc和最小入射角0: △τ=θc的平方L/2n1c=(NA*NA)L/2n1c=△n1L/c 4 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在P点上渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚集在同一点上,而且这此光线的时间延迟也近似相等。 5 归一化频率:V=√(n1*n1-n2*n2)*2πa/λ 对于光纤传输模式有模式截止,模式远离截止 6 M是模式总数 M=(g/g+2)(akn1)的平方△=(g/g+2)V*V/2 单模传输条件:V=√(n1*n1-n2*n2)*2πa/λ<=2.405 临界波长(截止波长)λc λ<λc 多模传输>单模传输 7 光纤传输特性:(1)损耗(2)色散 色散是在光纤中传输的光信号,包括:

光纤通信基础知识

光纤通信基础知识 基本光纤通信系统 最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。下面是光通信系统图。 光通信系统图 数字光纤通信系统 光纤传输系统是数字通信的理想通道。与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。 电发射端机 主要任务是PCM编码和信号的多路复用。 多路复用是指将多路信号组合在一条物理信道上进行传输,到接收端再用专门的设备将各路信号分离出来,多路复用可以极大地提高通信线路的利用率。 在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulsecodemodulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。

抽样是指从原始的时间和幅度连续的模拟信号中离散地抽取一部分样值,变换成时间和幅度都是离散的数字信号的过程。 抽样所得的信号幅度是无限多的,让这些幅度无限多的连续样值信号通过一个量化器,四舍五入,使这些幅度变为有限的M种(M为整数),这就是量化。由于在量化的过程中幅度取了整数,所以量化后的信号与抽样信号之间有一个差值(称为量化误差),使接收端的信号与原信号间有一定的误差,这种误差表现为接收噪声,称为量化噪声。码位数M越多,分级就越细,误差越小,量化噪声也越小。 编码是指按照一定的规则将抽样所得的M种信号用一组二进制或者其它进制的数来表示,每种信号都可以由N个2二进制数来表示,M和N满足M=2N。例如如果量化后的幅值有8种,则编码时每个幅值都需要用3个二进制的序列来表示。需要注意的是,此处的编码仅指信源编码,这和后面提到的信道编码是有所区别的。 现以话音为例来说明这个过程。我们知道话音的频率范围是300~3,400Hz,在抽样的时候,要遵循所谓的奈奎斯特抽样率,实际中按8,000Hz的速率进行抽样。为了保证通话的质量,在长途干线话路中采用的是8位码(28=256个码组)。这样量化值有256种,每一种量化值都需要用8位二进制码编码,那么每一个话路的话音信号速率为8×8=64kbps。 奈奎斯特抽样定理:要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。 多路复用技术包括:频分多路复用(FDM)、时分多路复用(TDM)、波分多路复用(WDM)、码分多址(CDMA)和空分多址(SDMA)。 时分多路复用:当信道达到的数据传输率大于各路信号的数据传输率总和时,可以将使用信道的时间分成一个个的时间片(时隙),按一定规则将这些时间片分配给各路信号,每一路信号只能在自己的时间片内独占信道进行传输,所以信号之间不会互相干扰。 频分多路复用:当信道带宽大于各路信号的总带宽时,可以将信道分割成若干个子信道,每个子信道用来传输一路信号。或者说是将频率划分成不同的频率段,不同路的信号在不同的频段

(完整版)光纤通信基本知识

一、光纤通信的基本知识 (一)光纤通信的概念 1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。 这些现象引起了丁达尔的注意,经过他的研究,发现这是由于全反射的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。 后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。(视频) 光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。(视频) (二)光纤通信的发展

光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。中国光纤通信已进入实用阶段。 (三)光纤通信的优缺点 1、光纤通信的优点 现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点: ①频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。 ②损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多

光纤通信技术知识点简要(考试必备)

光纤通信. 1.光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。 2.光纤主要有三种基本类型: 突变型多模光纤,渐变型多模光纤, 单模光纤. 相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤 3.光纤主要用途:突变型多模光纤只能用于小容量短距离系统。渐变型多模光纤适用于中等容量中等距离系统。单模光纤用在大容量长距离的系统。1.55μm 色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。 4.分析光纤传输原理的常用方法:几何光学法.麦克斯韦波动方程法 5.几何光学法分析问题的两个出发点: 〓数值孔径〓时间延迟. 通过分析光束在光纤中传播的空间分布和时间分布. 几何光学法分析问题的两个角度: 〓突变型多模光纤〓渐变型多模光纤. 6.产生信号畸变的主要原因是光纤中存在色散,损耗和色散是 光纤最重要的传输特性:损耗限 制系统的传输距离, 色散则限制 系统的传输容量. 7.色散是在光纤中传输的光信 号,由于不同成分的光的时间延 迟不同而产生的一种物理效 应. 色散的种类:模式色散、材 料色散、波导色散. 8. 波导色散纤芯与包层的折射 率差很小,因此在交界面产生全 反射时可能有一部分光进入包 层之内,在包层内传输一定距离 后又可能回到纤芯中继续传输。 进入包层内的这部分光强的大 小与光波长有关,即相当于光传 输路径长度随光波波长的不同 而异。有一定谱宽的光脉冲入射 光纤后,由于不同波长的光传输 路径不完全相同,所以到达终点 的时间也不相同,从而出现脉冲 展宽。具体来说,入射光的波长 越长,进入包层中的光强比例就 越大,这部分光走过的距离就越 长。这种色散是由光纤中的光波 导引起的,由此产生的脉冲展宽 现象叫做波导色散。 9. 偏振模色散:实际光纤不可避 免地存在一定缺陷,如纤芯椭圆 度和内部残余应力,使两个偏振 模的传输常数不同,这样产生的 时间延迟差称为偏振模色散或 双折射色散。 10. 损耗的机理包括吸收损耗和 散射损耗两部分。吸收损耗是 由SiO2材料引起的固有吸收和 由杂质引起的吸收产生的。散射 损耗主要由材料微观密度不 均匀引起的瑞利散射和由光纤 结构缺陷(如气泡)引起的散射产 生的。瑞利散射损耗是光纤的固 有损耗,它决定着光纤损耗的最 低理论极限。 11.光线的损耗:(1)吸收损耗: a.本征吸收损耗:紫外吸收损 耗,红外吸收损耗b.杂质吸收损 耗c.原子缺陷吸收损耗(2)散 射损耗 a线性散射损耗:瑞利散 射,光纤结构不完善引起的散射 损耗(3)弯曲损耗 a.宏弯:曲 率半径比光纤的直径大得多的 弯曲 b.微弯:微米级的高频弯 曲,微弯的原因:光纤的生产过 程中的带来的不均;使用过程中 由于光纤各个部分热胀冷缩的 不同;导致的后果:造成能量辐 射损耗. 与宏弯的情况相同,模 场直径大的模式容易发生微弯 损耗 12. 柔性光纤的优点:1. 对光的 约束增强 2. 在任意波段均可实 现单模传输:调节空气孔径之间 的距离 3. 可以实现光纤色散的 灵活设计 4. 减少光纤中的非线 性效应5. 抗侧压性能增强 13. 光纤的制作要求(1)透明(2) 能将其拉制成沿长度方向均匀 分布的具有纤芯-包层结构的细 小纤维;(3)能经受住所需要 的工作环境。光纤是将透明材料 拉伸为细丝制成的。 14. 光纤预制棒简称光棒,是一 种在横截面上有一定折射率分 布和芯/包比的的透明的石英玻 璃棒。根据折射率的不同光棒可 从结构上分为芯层和包层两个 部分,其芯层的折射率较高,是 由高纯SiO2材料掺杂折射率较 高的高纯GeO2材料构成的,包 层由高纯SiO2材料构成。制作 方法: 外部气相沉积法;气相轴 相沉积法;改进的化学气相沉积 法;等离子化学气相沉积法。 15. 光缆基本要求:保护光纤固 有机械强度的方法,通常是采用 塑料被覆和应力筛选。光纤从高 温拉制出来后,要立即用软塑料 进行一次被覆和应力筛选,除去

光纤通信(第二版)期末复习知识点

第一章 1.光纤通信的优缺点。 答:优点:一是通信容量大。光载波的中心频率很高,约为,最大可用带宽一般取载波频率的10%。二是中继距离长。三是抗电磁干扰,光纤通信系统具有良好的电磁兼容性。四是传输误码率极低。缺点:一是有些光器件比较昂贵。二是光纤的机械强度差。三是不能传送电力。四是光纤断裂后的维修比较困难,需要专用的工具。 3.光纤通信系统的应用。 答:一通信网,包括全球通信网、各国的公共电信网、各种专用通信网、特殊通信手段。二计算机局域网和广域网。三有线电视的干线和分配网。四综合业务光纤接入网,分为有源接入网和无源接入网。 4.未来光网络的发展趋势及关键技术 答:发展趋于智能化、全光化。关键技术:长波长激光器、低损耗单模光纤、高效光放大器、WDM复用技术和全光网络技术。 第二章光纤和光缆 1光纤结构和分类 答:光纤是由中心的纤心和外围的包层同轴组成的圆柱形细丝。类型:突变型多模光纤、渐变型多模光纤、单模光纤、双包层光纤、三角芯光纤、椭圆芯光纤 2损耗和色散是光纤最重要的传输特性。损耗限制系统的传输距离,色散限制系统的传输带宽。色散包括模式色散、材料色散、波导色散,其中单模色散只包括后两者。 第三章通信用光器件 1.光源有半导体激光器和发光二极管。其中半导体激光器是向半导体PN结注入电流,实现粒子数反转分布,产生受激辐射,再利用光学谐振腔的正反馈,实现光放大而产生激光的振荡 2.光与物质间的互相作用过程。 答:一受激吸收。在正常状态下,电子处于低能级,在入射光的作用下,它会吸收光子的能量跃迁到高能级上,这种跃迁称为受激吸收。二、自发辐射。在高能级的电子是不稳定的,即使没有外界的作用,也会自动跃迁到低能级上与空穴复合,释放的能量转换为光子辐射出去,这种跃迁称为自发辐射。三、受激辐射、在高能级的电子,受到入射光的作用,被迫跃迁到低能级上与空穴复合,释放的能量产生光辐射,称为受激辐射。 3.比较半导体激光器和发光二极管的异同。 答:不同之处:工作原理不同,LD发射的是受激辐射光,LED发射的是自发辐射光。LED不需要光学谐振腔,而LD需要。和LD相比,LED输出光功率小,光谱较宽,调制频率较低。但发光二极管性能稳定,寿命长,输出功率线性范围窄,制造工艺简单,价格低廉。LED主要应用于小容量的短距离通信系统,LD主要应用于长距离大容量通信系统。相同之处:使用的半导体材料相同、结构相似,LED和LD大多此阿勇双异质结结构,把有源层夹在P型和N型限制层中间。 4.光检测器是光接受机关键器件,功能室把光信号转换为电信号。光检测器有PIN光电二极管和雪崩光电二极管APD。PIN 主要特性有量子效率和光谱特性、响应时间和频率特性、噪声。APD新引入参数是倍增因子和附加噪声指数 5、APD和PIN在性能上的区别 答:APD具有雪崩增益,灵敏度高,有利于延长系统的传输距离,APD的响应时间短。APD的雪崩效应会产生过剩噪声,因此要适当控制雪崩增益。APD要求较高的工作电压和复杂的温度补偿电路,成本较高。 6.光检测过程有哪些噪声。 答:包括由光生信号电流和暗电流产生的散粒噪声以及负载电阻产生的热噪声。热噪声来源于电阻内部载流子的不规则运动。散粒噪声源于光子的吸收或光生载流子的产生,具有随机起伏的特性,光生信号电流产生的散粒噪声,称为量子噪声,这种噪声的功率与信号成正比。在没有外界入射光的作用下,光检测器中仍然存在少量载流子的随机运动,从而形成很弱的散粒噪声,称为暗电流噪声。所以在有信号光作用的时间内,主要考虑量子噪声和热噪声; 而在没有信号光的作用下,主要考虑暗电流噪声和热噪声。 7.什么是粒子数反转,什么情况下实现光放大。 答:假设能级E1和E2上的粒子数分别为N1和N2,在正常的热平衡状态下,低能级E1上的粒子数是大于高能级上的粒子数

光纤通信基本知识

光纤通信基本知识 光纤通信发展简史 光是电磁波 载波频率=〉带宽=〉传输信息 1960年新光源-激光器——〉光通信开端 70年贝尔lab-连续震荡半导体激光器——〉发展 美国康宁-20dB/km衰减-光纤——〉突破 79年-衰耗〈0.5dB/km 89年-今-掺铒光纤放大器(EDFA) 镓铝砷,铟镓砷磷半导体激光器——〉主流 展望-全光时代-光放大,光集成,光分插复用,光交叉连接和光交换。 光纤通信特点 1.巨大的传输容量 1014~1015Hz数量级〉微波104~105倍 梯度多模----------数吉Hz/公里 单模----------数百太Hz/公里 2.极底的传输衰耗 传输中继距离长得多 单模----1310μm-------0.35dB/km 1550μm-------0.2dB/km 回轴电缆----60MHz ------19 dB/km 市话-----4MHz ------20 dB/km 3.抗电磁干扰 介电材料=〉电力输配,电气化铁路,雷击多发区,核试验等特殊环境。 4.信道串扰小,保密性好 少汇漏-〉无串扰-〉保密性高 5.光缆尺寸小,重量轻,可挠性好 外径-125μm 套塑〈1mm 24芯≈(18mm) 质量=1/3~1/10电缆 弯曲直径数毫米 =〉易敷设 =〉公用,军用-导弹,舰船,飞机,潜艇通信控制系统… 资源丰富,成本低廉 不锈蚀,耐高温,光纤接头不会产生电火花放电 =〉适用于易燃易爆,有锈蚀环境。适宜化工厂,矿井及水下通信控制系统。 光器件寿命-百万小时

光纤通信应用类型 通信系统的基本组成 信源-〉发送机-〉传输通道-〉接收机-〉信宿 光纤传输方式图 光纤传输方式 1.传输信号类型 光线模拟通信系统 =〉广播,TV(color),工业监视,交通监控 光纤数字通信系统 PCM数字信号 =〉广泛 2.光调制的方式 强度调制直接检测系统 用电信号强度调制光源,接收端用光检器直接检测—IM-DD系统 光纤模拟/数字通信系统均为此类型 通信容量受限 外差光纤通信系统=无线通信的外差接受技术 在发送端用电信号调制广源发出的单频光载波 单模光纤传输 在接收端与接收机内部产生的本振光源混频 光检测器检出光载波和本振光之差频的中频电信号 解调出信号 3.光纤的传输特性 多模光纤通信系统 传输媒质-石英多模梯度光纤 带宽受限〈140Mbit/s =〉数据网络,专用网络 单模光纤通信系统 传输媒质-石英单模光纤 传输容量大,无中继传输距离长 =〉长途干线网及本地网光纤通信系统 4.光波长 短波长光纤通信系统 800~900nm 中继距离短 =〉计算机局域网,用户接入网 长波长光纤通信系统 1000~1600nm 1310nm------石英多模/单模光纤 1550nm------石英单模光纤----中继距离较长(衰耗最低)超长波长光纤通信系统 非石英系光纤,卤化物 〉2000nm------衰耗10-2~10-5dB/km

光纤通信复习重点

光纤通信复习重点 题型:填空、选择、判断(30'、问答(40'、计算(30' 第一章概论 1.2.2 光纤通信的优点(少^) 1)容许频带很宽,传输容量很大 2)损耗很小,中继距离很长,且误码率很小 3)重量轻,体积小 4)抗电磁干扰性能好 5)泄露小,保密性能好 6)节约金属材料,有利于资源合理使用 1.3 光纤通信系统的基本组成 发射U ______ 基本光纤传输系统_ 接收 电信号光信号光信号电信号 作用: 1)信息源:把用户信息转换为原始电信号,这种信号称为基带信号 2)电发射机:把信息源传递过来的模拟信号转换成数字信号(PCM 3)光发射机:把输入电信号转换为光信号,并用耦合技术吧光信号最大限度地注入光纤线路。 4)光纤线路:把来自光发射机的光信号,以尽可能小的失真和衰减传输到光接收机。 5)光接收机:把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号, 并经其后的电接收机放大和处理后恢复成基带电信号。光接收机由光检测器、放 大器和相关电路组成,光检测器是光接收机的核心。光接收机最重要的特性参数数灵敏度; 6)电接收机:把接收的电信号转换为基带信号,最后由信息宿恢复用户信息;说明:光发射机之前和光接收机之后的电信号段,光纤通信所用的技术和设备和电缆通信相同,不同的只是由光发射机、光纤线路和光接收机所组成的基本光纤传输系统代替了电缆传输; 注:计算题3个,全来自第二第三章的课后习题 第二章光纤和光缆 2.1.1 光纤结构 光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。(相对折射率差 典型值△ = (n 1-n2)/n1,△越大,把光能量束缚在纤芯的能力越强,但信息传输

光电子技术期末考试试卷及其知识点大汇总(可编辑修改word版)

一、选择题(20 分,2 分/题) 1、光电子技术在当今信息时代的应用主要有(abcd ) A.信息通信 B.宇宙探测 C.军事国防 D.灾害救援 2、激光器的构成一般由(a )组成 A.激励能源、谐振腔和工作物质 B.固体激光器、液体激光器和气体激光器 C.半导体材料、金属半导体材料和PN 结材料 D. 电子、载流子和光子 3、光波在大气中传播时,引起的能量衰减与(abcd )有关 A.分子及气溶胶的吸收和散射 B.空气折射率不均匀 C.光波与气体分子相互作用 D.空气中分子组成和含量 4、2009 年10 月6 日授予华人高锟诺贝尔物理学奖,提到光纤以SiO2为材料的主要是由于( a ) A.传输损耗低 B.可实现任何光传输 C.不出现瑞利散射 D.空间相干性好 5、激光调制器主要有(abc ) A.电光调制器 B.声光调制器 C.磁光调制器 D.压光调制器 6、电光晶体的非线性电光效应主要与(ac )有关 A.外加电场 B.激光波长 C.晶体性质 D.晶体折射率变

化量 7、激光调制按其调制的性质有(cd ) A.连续调制 B.脉冲调制 C.相位调制 D.光强调制 8、光电探测器有(abc ) A.光电导探测器 B.光伏探测器 C.光磁电探测器 D.热电探测元 件 9、CCD 摄像器件的信息是靠( b )存储 A.载流子 B.电荷 C.电子 D.声子 10、LCD 显示器,可以分为(abcd ) A. TN 型 B. STN 型 C. TFT 型 D. DSTN 型 二、判断题(20 分,2 分/题,对用“√”、错用“×”标记) 11、世界上第一台激光器是固体激光器。 ( T ) 12、在辐射度学中,辐射能量Q 是基本的能量单位,用J(焦耳)来度量。 ( T ) 13、在声光晶体中,超声场作用像一个光学的“相位光栅”,其光栅常数等于光 波 波 长

光纤通信知识点归纳

第1章概述 1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。 光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。 2、光纤通信系统的基本组成:(P2图1-3) 目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。 1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。 2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。 3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。特性参数:灵敏度 4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD 小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED 5)光纤线路系统: 功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。组成:光纤、光纤接头和光纤连接器 要求:较小的损耗和色散参数 3、光纤通信的特点: 优点:(1),传输频带宽,通信容量大。(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。(5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)不能远距离传输;2)传输过程易发生色散。 4、(1)光纤通信在通信网中的未来发展趋势:GFP、ASON、全光网 (?波分复用技术(WDM)?相干光通信?超长波长光纤通信?光集成技术息 源 电 发 射 机 光 发 射 机 光 接 收 机 电 接 收 机 信 息 宿 光纤线路 接 收发 射 电信号 输入 光信号 输出 光信号 输入 电信号 输出

光纤通信基础知识.docx

1 ?光纤通信概论 L1光纤通信概论 光纤通信:以光作为信息载体,利用光纤传输携带信息的光波,以达到通信 之目 的。 数字光纤通信系统的基本组成:光发送机、光接收机、光纤。 典型的数字光纤通信系统方框图: 数字光纤通信系统 发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调 制发送机中的光源器件LD,输出发出携带信息的光波。光波经光纤传输后到达 接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数 /模转换,恢复成原来的信息。 携带信息的光波:数字信号为T”时,光源器件发送一个”传号”光脉冲;当数 字信号为”0”时,光源器件发送一个”空号”(不发光)。 1.2光纤通信优点 1) 、通信容量大 一根光纤同时传输24万个话路,比传统的明线、同轴电缆、微波等要高出 几十乃至上千倍。波分复用技术的采用,把一根光纤当作几根、几十根光纤使用, 通信容量近乎无限。 2) 、中继距离长 光纤具有极低的衰耗系数,目前商用化石英光纤已达0.19dB/km 以下,配 以适当的光发送与光接收设备,中继距离达数百公里以上,特别适用于长途一、 二级干线通信。 光纤通信基础 电端机 (A/D ) 匚n 中继器 电端机 (D/A ) 模拟信号 模拟倍号 光发送机 匚^光接收机

3)、保密性能好。 4)、抗干扰能力强 光波在光纤中传输时只在其芯区进行,不存在传统的电磁波辐射,因此其保密性能极好,同时也不怕外界强电磁场的干扰,抗干扰能力强。 5)、便于施工和维护 体积小、重量轻。光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。 2光纤与光缆 2」光纤的构造 光纤呈圆柱形是由单根玻璃纤维、紧靠纤心的包层、一次涂履层以及套塑保护层组成。 2.2光纤的导光原理 光是一种频率很高的电磁波,而光纤本身是一种介质波导。 我们从几何光学的角度来简单讨论光纤的导光原理 全反射原理: 光线在均匀介质中是以肓线传播的,但在两种不同介质的分界面会产生反射和折射现象,如图所示:

最新光纤通信技术知识点简要(考试必备)

光纤通信. 1. 光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。 2. 光纤主要有三种基本类型:突变型多模光纤,渐变型多模光纤,单模光纤.相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤 3. 光纤主要用途:突变型多模光 纤只能用于小容量短距离系统。渐变型多模光纤适用于中等容量中等距离系统。单模光纤用在大容量长距离的系统。 1.55 gm 色散移位光纤实现了10 Gb/s容 量的100 km的超大容量超长距离系统。色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。 4. 分析光纤传输原理的常用方 法:几何光学法.麦克斯韦波动方 程法 5. 几何光学法分析问题的两个岀发点:=数值孔径=时间延迟.通过分析光束在光纤中传播 的空间分布和时间分布.几何光学法分析问题的两个角度:=突变型多模光纤=渐变型多模光纤. 6. 产生信号畸变的主要原因是光纤中存在色散,损耗和色散是光纤最重要的传输特性:损耗限制系统的传输距离,色散则限制系统的传 输容量. 7. 色散是在光纤中传输的光信 号,由于不同成分的光的时间延迟 不同而产生的一种物理效应.色散 的种类:模式色散、材料色散、波 导色散. 8. 波导色散纤芯与包层的折射率 差很小,因此在交界面产生全反射 时可能有一部分光进入包 层之内,在包层内传输一定距离后 又可能回到纤芯中继续传输。进入 包层内的这部分光强的大小与光波 长有关,即相当于光传输路径长度 随光波波长的不同而异。有一定谱 宽的光脉冲入射光纤后,由于不同 波长的光传输路径不完全相同,所 以到达终点的时间也不相同,从而 出现脉冲展宽。具体来说,入射光 的波长越长,进入包层中的光强比 例就越大,这部分光走过的距离就 越长。这种色散是由光纤中的光波 导引起的,由此产生的脉冲展宽现 象叫做波导色散。 9. 偏振模色散:实际光纤不可避 免地存在一定缺陷,如纤芯椭圆度 和内部残余应力,使两个偏振模的 传输常数不同,这样产生的时间延 迟差称为偏振模色散或双折射色 散。 10. 损耗的机理包括吸收损耗和 散射损耗两部分。吸收损耗是 由SiO2材料引起的固有吸收和由 杂质引起的吸收产生的。散射损 耗主要由材料微观密度不均匀引 起的瑞利散射和由光纤结构缺陷 (如气泡)引起的散射产生的。瑞 利散射损耗是光纤的固有损耗,它 决定着光纤损耗的最 低理论极限。 11. 光线的损耗:(1)吸收损耗: a.本征吸收损耗:紫外吸收损耗, 红外吸收损耗b.杂质吸收损耗c.原 子缺陷吸收损耗(2)散射损耗a 线性散射损耗:瑞利散射,光纤结 构不完善引起的散射损耗(3)弯 曲损耗a.宏弯:曲率半径比光纤的 直径大得多的弯曲b.微弯:微米级 的高频弯曲,微弯的原因:光纤的 生产过程中的带来的不均;使用过 程中由于光纤各个部分热胀冷缩的 不同;导致的后果:造成能量辐射 损耗.与宏弯的情况相同,模场直 径大的模式容易发生微弯损耗 12. 柔性光纤的优点:1.对光的约 束增强2.在任意波段均可实现单模 传输:调节空气孔径之间的距离3. 可以实现光纤色散的灵活设计4.减 少光纤中的非线性效应5.抗侧压性 能增强 13. 光纤的制作要求(1 )透明 (2)能将其拉制成沿长度方向均 匀 分布的具有纤芯-包层结构的细小 纤维;(3 )能经受住所需要的工 作环境。光纤是将透明材料拉伸为 细丝制成的。 14. 光纤预制棒简称光棒,是一种 在横截面上有一定折射率分布和芯 /包比的的透明的石英玻璃棒。根 据折射率的不同光棒可从结构上分 为芯层和包层两个部分,其芯层的 折射率较高,是由高纯SiO2材料 掺杂折射率较高的高纯GeO2材料 构成的,包层由高纯SiO2材料构 成。制作方法:外部气相沉积法; 气相轴相沉积法;改进的化学气相 沉积法;等离子化学气相沉积法。 15. 光缆基本要求:保护光纤固有 机械强度的方法,通常是采用塑料 被覆和应力筛选。光纤从高温拉制 岀来后,要立即用软塑料进行一次 被覆和应力筛选,除去断裂光纤, 并对成品光纤用硬塑料进行二次被 覆。二次被覆光纤有紧套、松套、 大套管和带状线光纤四种,应力筛 选条件直接影响光纤的使用寿命。 16. 光缆

现代通信技术考试知识点.

第一章 1、通信的概念和目的 答:信息传递和交换的过程即为通信。 目的:完成从一地到另一地的信息的传递和交换。 2、通信系统模型框图以及其中六部分的功能 模型中各部分的功能如下: (1)信源:是指发出信息的信息源,或者说是信息的发出者。 (2)变换器:变换器的功能是把信源发出的信息变换成适合在信道上传输的信号。 (3)信道:信道是信号传输媒介的总称。 (4)反变换器:反变换器是变换器的逆变换。 (5)信宿:是指信息传送的终点,也就是信息接收者。 (6)噪声源:噪声源并不是一个人为实现的实体,但在实际通信系统中又是客观存在的 3、通信分类 答、按传输信号形式不同:模拟通信和数字通信 按信道具体形式:有线通信和无线通信 按通信工作频率:长波、中波、短波、微波、光通信 按通信具体业务与内容:语音、图像、多媒体、无线寻呼、可视电话、电报等。 按收信者是否在运动中完成通信:移动、固定 4、通信传输方式 答、按消息传送的方向与时间分类,单工、半双工和双工通信。 按数字信号排列顺序不同分类,串序传输和并序传输。 按通信的网络形式不同分类,两点间直通方式、分支方式和交换方式。 5、衡量通信质量好坏的指标 答、衡量通信质量的好坏主要有两个指标:有效性和可靠性。 有效性指通信系统中信息传输的快慢问题,可靠性指信息传输的好坏问题。 模拟通信系统中,有效性用单位时间内传送信息量的多少来衡量,可靠性用信噪比或均方误差来衡量。 数字通信系统中,有效性用码元传输速率、信息传输速率、消息传输速率等传输速率来衡量,可靠性用误码率、误比特率等来衡量。 第二章 1、什么是光纤通信,光纤通信的工作区域 答、利用光导纤维传输光波信号的通信方式,称为光纤通信。 光纤通信的工作区域在近红外区,其波长是0.8~1.8μm ,对应的频率为167~375THz 。 2、光纤通信的优缺点 答、优点:传输频带宽,通信容量大 中继距离远 抗电磁干扰能力强,无串话 缺点:光纤在生产过程中光纤表面存在微裂纹,从而使光纤的抗拉强度低; 光纤的连接比较困难,必须使用专门的工具和仪表; 光分路、耦合不是十分方便; 光纤弯曲半径不能太小等。 信源 变换器 信道 反变换器 信宿 噪声源

相关文档