文档库 最新最全的文档下载
当前位置:文档库 › Fe~(23+)离子1s~23d-1s~2nf的跃迁能和偶极振子强度

Fe~(23+)离子1s~23d-1s~2nf的跃迁能和偶极振子强度

Fe~(23+)离子1s~23d-1s~2nf的跃迁能和偶极振子强度
Fe~(23+)离子1s~23d-1s~2nf的跃迁能和偶极振子强度

航空发动机强度与振动

航空发动机强度与振动课程设计报告 题目及要求 题目基于 ANSYS 的叶片强度与振动分析 1.叶片模型 研究对象为压气机叶片,叶片所用材料为 TC4 钛合 金,相关参数如下: 材料密度:4400kg/m3弹性模量:1.09*1011Pa 泊松比: 0.34 屈服应力:820Mpa 叶片模型如图 1 所示。把叶片简化为根部固装的等截

面悬臂梁。叶型由叶背和叶盆两条曲线组成,可由每条曲 线上 4 个点通过 spline(样条曲线)功能生成,各点位置 如图 2 所示,其坐标如表 1 所示。 注:叶片尾缘过薄,可以对尾缘进行修改,设置一定的圆角 2.叶片的静力分析 (1)叶片在转速为 1500rad/s 下的静力分析。 要求:得到 von Mises 等效应力分布图,对叶片应力分布进行分析说明。并计算叶片的安全系数,进行强度校核。 3.叶片的振动分析 (1)叶片静频计算与分析 要求:给出 1 到 6 阶的叶片振型图,并说明其对应振动类型。

(2)叶片动频计算与分析 要求:列表给出叶片在转速为 500rad/s,1000rad/s,1500rad/s, 2000rad/s 下的动频值。 (3)共振分析 要求:根据前面的计算结果,做出叶片共振图(或称 Campbell 图),找出叶片的共振点及共振转速。因为叶片一弯、二弯、一扭振动比较危险,故只对这些情况进行共振分析。 3. 按要求撰写课程设计报告 说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图,即图片背景不能为黑色。 课程设计报告 基于 ANSYS 的叶片强度与振动分析1. ANSYS 有限元分析的一般步骤 (1)前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形

发动机振动强度

发动机强度与振动 第一章课后作业 学号:姓名: 1.1 简要解释下列名词术语: (1)弯矩补偿 弯矩补偿:在叶片设计时,通过离心力弯矩来抵消一部分气动力弯矩,使叶片截面上的合成弯矩最小或达到某一数值,以减小叶片截面上的总弯曲应力值。 (2)自然补偿 自然补偿:弯曲变形后,截面重心偏离,形成附加弯矩,使离心弯矩对气动弯矩的补偿作用加大,也称附加补偿为自然补偿。 (3)罩量调整 罩量调整:罩量是叶片各截面重心相对于Z轴的偏移量;以根部截面为调整对象,对罩量进行调整为罩量调整。调整需考虑的因素有气动状态、加工和安装等。 1.2 简要回答下列问题: (1)发动机工作中转子叶片受哪些负荷? 离心力、气动力、热应力、交变载荷、随机载荷 (2)转子叶片应力计算中,至少应考虑哪些工作状态? 最大气动状态,H=0, Ma=M max,n=n max 最小气动状态,H=H max, n=n额定或n巡航 最高温度状态,T=Tmax 地面试车, 即设计状态,H=0, Ma=0, n= n max (3)航空发动机转子叶片截面上承受什么弯矩?通常采用什么方法来降低截面上的弯曲应力? 气动力弯矩和离心力弯矩;采用弯矩补偿降低截面上的弯曲应力。 (4)离心补偿,或称弯曲补偿,在转子叶片设计中如何实现?补偿系数如何确定? 使气动力弯矩和离心弯矩作用方向相反,从而减小合成弯矩。 补偿系数为0.2至0.8,应根据叶片在最常应用的工况和最危险工况下进行离心补偿设计,选择补偿系数还应考虑其他工况,以避免叶片出现过补偿现象。 (5)试用图说明在同一转子上压气机和涡轮转子叶片各截面的重心分布规律(沿周向及轴

向),并阐述其原因。 压气机 压气机对气体做功,受到的气动弯矩与航向相反,则,离心弯矩应与航向相同,故重心向左。 受到的气动弯矩与转向相反,则,离心弯矩应与转向向相同,故重心向左。 涡轮 气体对涡轮做功,涡轮叶片受到的气动力弯矩与航向相同,则离心弯矩应与航向相反,所以涡轮叶 片重心向右。 气体对涡轮做功,涡轮叶片受到的气动力弯矩与转子旋向相同,则离心弯矩应与旋向相反,所以涡轮叶片重心向右。 (6)转子叶片的叶型截面上,通常何处应力最大?为什么? 转子叶片叶根部位应力最大,因为叶根部位承受的离心力和弯矩均最大。 (7)长而薄的转子叶片,其弯曲变形对叶片应力有何影响? 弯曲变形后,截面重心偏离,形成附加弯矩,使离心弯矩对气动弯矩的补偿作用加大,也称附加补偿为自然补偿。 0,0y x ≥≤0, 0y x ≤≥

电解质溶液中离子浓度关系

电解质溶液中离子浓度关系 一、电离平衡理论和水解平衡理论 1.电离理论: ⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;例如NH3·H2O溶液中微粒浓度大小关系。 【分析】由于在NH3·H2O溶液中存在下列电离平衡:NH3·H2O NH4++OH-,H2O H++OH-,所以溶液中微粒浓度关系为: c(NH3·H2O)>c(OH-)>c(NH4+)>c(H+)。 ⑵多元弱酸的电离是分步的,主要以第一步电离为主;例如H2S溶液中微粒浓度大小关系。

【分析】由于H2S溶液中存在下列平衡:H2S HS-+H+,HS- S2-+H+,H2O H++OH-,所以溶液中微粒浓度关系为:c(H2S)>c(H+)>c(HS-)>c(OH-)。

2.水解理论: ⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。 ⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;例如(NH4)2SO4溶液中微粒浓度关系。 【分析】因溶液中存在下列关系:(NH4)2SO4=2NH4++SO42-, + 2H2O 2OH-+2H+, 2NH3·H2O,由于水电离产生的c(H+)水=c(OH-)水,而水电离产生的一部分OH-与NH4+结合产生NH3·H2O,另一部分OH-仍存在于溶液中,所以溶液中微粒浓度关系为:c(NH4+)>c(SO42-)>c(H+)>c(NH3·H2O)>c(OH-)。

轴的计算

14.3轴的强度计算 14 .3 .1 按扭转强度计算 轴不是标准零件,需要自己设计计算。在满足强度和保证轴正常工作的条件 下来设计轴。例如用于带式运输机的单级斜齿圆柱齿轮减速器的低速轴。 这种计算方法主要应用于传动轴,也可以初步估算轴的最小直径,在此基础 上进行轴的结构设计。 按扭转强度计算公式 式中,—许用扭转切应力,; —轴传递的转矩,也是轴承受的扭矩,; —轴的抗扭截面系数,; —轴传递的功率, KW; d—轴的直径, mm ; n—轴的转速, r/min 。 C—为由轴的材料和受载情况所决定的常数(见下表)。 -轴传递的转矩,也是轴承受的扭矩,单位: N.mm 按公式计算轴的直径,当轴截面上有一个键槽时,轴径应增大5%;有两个键 槽时,应增大10%。 轴常用材料的值和C值 注:当作用在轴上的弯矩比转矩小或只受转矩时,C取较小值,否则C取较 大值。 14 . 3 . 2 轴的刚度计算概念 按弯扭合成强度计算

1.作轴的受力简图 轴上零件所受的作用力,其作用点在轮毂宽度的中间点。而轴承处支承反力 作用点的位置,要根据轴承的类型和布置方式确定。 如果轴上的载荷不在同一平面内,需求出两个互相垂直平面的支承反力。 即 水平面和垂直面支承反力。 2.作弯矩图 根据受力简图分别作出水平面弯矩图和垂直面的弯矩,求出合成 弯 矩并作合成弯矩图。 3.作轴的扭矩图 4.作当量弯矩图 根据已作出合成弯矩图和扭矩图,按第三强度理论计算各剖面上的当量弯矩 ,并作当量弯矩图。 式中,—根据扭矩性质而定的校正系数,对于不变的扭矩,; 对 于脉动循环变化的扭矩,;对于对称循环变化的扭矩,。 5.轴的强度计算 求出危险截面的当量弯矩后,按强度条件计算: —轴的危险截面的抗弯截面系数,。 表 12.3 轴材料的许用弯曲应力:

振幅、加速度、振动频率三者的关系式

振动加速度、振幅、频率三者关系 在低频范围内,振动强度与位移成正比;在中频范围内,振动强度与速度成正比;在高频范围内,振动强度与加速度成正比。因为频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对较小且变化量更小,因此振动位移能够更清晰地反映出振动强度的大小;而频率高,意味着振动次数多、过程短,速度、尤其是加速度的数值及变化量大,因此振动强度与振动加速度成正比。 也可以认为,振动位移具体地反映了间隙的大小,振动速度反映了能量的大小,振动加速度反映了冲击力的大小。 振动加速度的量值是单峰值,单位是重力加速度[g]或米/秒平方[m/s2],1[g] = 9.81[m/s2]。 最大加速度20g(单位为g)。 最大加速度=0.002×f2(频率Hz的平方)×D(振幅p-pmm)f2:频率的平方值 举例:10Hz最大加速度=0.002×10*10×5=1g 在任何頻率下最加速度不可大于20g 最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×100*100)=1mm 在任何频率下振幅不可大于5mm 加速度与振幅换算1g=9.8m/s2

A = 0.002 *F2 *D A:加速度(g) F:頻率(Hz) 2是F的平方D:位移量(mm) 2-13.2Hz 振幅为1mm 13.2-100Hz 加速度为7m/s2 A=0,002X(2X2)X1 A=0.002X4X1 A=0.008g 单位转换1g=9.81m/s2 A=0.07848 m/s2, 也就是2Hz频率时。它的加速度是0.07848m/s2. 以上公式按到对应的参数输入计算套出你想要的结果

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

电解质溶液知识点总结(教师版)

电解质溶液知识点总结 一、电解质和非电解质 电解质:在水溶液里或熔融状态下能导电的化合物。 非电解质:在水溶液里和熔融状态下都不能导电的化合物。 【注意】 1.电解质和非电解质的范畴都是化合物,所以单质既不是电解质也不是非电解质。 2.化合物为电解质,其本质是自身能电离出离子,有些物质溶于水时所得溶液也能导电,但这些物质自身不电离,而是生成了一些电解质,则这些物质不属于电解质。如:SO2、SO3、CO2、NO2等。 3.常见电解质的范围:酸、碱、盐、金属氧化物、水。 二.强电解质和弱电解质 强电解质:在溶液中能够全部电离的电解质。则强电解质溶液中不存在电离平衡。 弱电解质:在溶液中只是部分电离的电解质。则弱电解质溶液中存在电离平衡。 O _ 1.强、弱电解质的范围: 强电解质:强酸、强碱、绝大多数盐 弱电解质:弱酸、弱碱、水 2.强、弱电解质与溶解性的关系: 电解质的强弱取决于电解质在水溶液中是否完全电离,与溶解度的大小无关。一些难溶的电解质,但溶解的部分能全部电离,则仍属强电解质。如:BaSO4、BaCO3等。 3.强、弱电解质与溶液导电性的关系: 溶液的导电性强弱与溶液中的离子浓度大小有关。强电解质溶液的导电性不一定强,如很稀的强电解质溶液,其离子浓度很小,导电性很弱。而弱电解质溶液的导电性不一定弱,如较浓的弱电解质溶液,其电离出的离子浓度可以较大,导电性可以较强。 4.强、弱电解质与物质结构的关系: 强电解质一般为离子化合物和一些含强极性键的共价化合物,弱电解质一般为含弱极性键的化合物。5.强、弱电解质在熔融态的导电性: 离子型的强电解质由离子构成,在熔融态时产生自由移动的离子,可以导电。而共价型的强电解质以及弱电解质由分子构成,熔融态时仍以分子形式存在,所以不导电。 三、弱电解质的电离平衡: 强电解质在溶液中完全电离,不存在电离平衡。弱电解质在溶液中电离时,不完全电离,存在电离平衡。当弱电解质的离子化速率和分子化速率相等时,则建立了电离平衡。其平衡特点与化学平衡相似。(逆、等、动、定、变) 1.电离方程式: 书写强电解质的电离方程式时常用“==,书写弱电解质的电离方程式时常用“”。 2.电离平衡常数: 在一定条件下达到电离平衡时,弱电解质电离形成的各种离子的浓度的乘积与溶液中未电离的分子的浓度之比是一个常数,这个常数称为电离平衡常数,简称电离常数。

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

水溶液中的离子平衡知识点

水溶液中的离子平衡知 识点 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

【人教版】选修4知识点总结:第三章水溶液中的离子平衡 一、弱电解质的电离 课标要求 1、了解电解质和非电解质、强电解质和弱电解质的概念 2、掌握弱电解质的电离平衡 3、熟练掌握外界条件对电离平衡的影响 要点精讲 1、强弱电解质 (1)电解质和非电解质 电解质是指溶于水或熔融状态下能够导电的化合物;非电解质是指溶于水和熔融状态下都不导电的化合物。 注:①单质、混合物既不是电解质,也不是非电解质。 ②化合物中属于电解质的有:活泼金属的氧化物、水、酸、碱和盐;于非电解质的有:非金属的氧化物。 (2)强电解质和弱电解质 ①强电解质:在水溶液中能完全电离的电解质称为强电解质(如强酸、强碱和大部分的盐) ②弱电解质:在水溶液里只有部分电离为离子(如:弱酸、弱碱和少量盐)。 注:弱电解质特征:存在电离平衡,平衡时离子和电解质分子共存,而且大部分以分子形式存在。 (3)强电解质、弱电解质及非电解的判断 2、弱电解质的电离 (1)弱电解质电离平衡的建立(弱电解质的电离是一种可逆过程) (2)电离平衡的特点 弱电解质的电离平衡和化学平衡一样,同样具有“逆、等、动、定、变”的特征。 ①逆:弱电解质的电离过程是可逆的。 ②等:达电离平衡时,分子电离成离子的速率和离子结合成分子的速率相等③动:动态平衡,即达电离平衡时分子电离成离子和离子结合成分子的反应并没有停止。 ④定:一定条件下达到电离平衡状态时,溶液中的离子浓度和分子浓度保持不变,溶液里既有离子存在,也有电解质分子存在。且分子多,离子少。

【北京大学】《医用基础化学》第二章 电解质溶液与缓冲溶液

第二章 电解质溶液与缓冲溶液 第一节 电解质溶液 电解质(electrolyte )在化学和生产中经常遇到,与人体的关系也很密切。它常以一定浓度的离子形式广泛存在于人的体液和组织液中,如Na +、K +、Ca 2+、Mg 2+、Cl ﹣、HCO 3-、HPO 42﹣、H 2PO 4﹣、SO 42﹣等,其含量与人体的生理功能密切相关。因此,研究电解质溶液的有关性质,对医学科学的学习是十分重要的。 一、解离度 电解质是指在水中或熔融状态下能够导电的化合物。可以分为强电解质(strong electrolyte )和弱电解质(weak electrolyte )。强电解质在水溶液中全部解离或近乎全部解离成离子,以水合离子的状态存在,如NaCl 和HCl 等。 NaCl ?? →Na ++Cl ﹣ HCl ?? →H ++Cl ﹣ 而弱电解质在水溶液中只有一小部分解离成离子,大部分以分子的形式存在,其解离过程是可逆的,在溶液中存在一个动态平衡,如HAc 与NH 3·H 2O 等。 HAc H + + Ac ﹣ NH 3 + H 2O NH 4+ + OH ﹣ 电解质的解离程度通常用解离度(degree of dissociation)α来表示。解离度是指电解质达到解离平衡时,已解离的分子数和原有分子总数之比,表示为: 100%α=?已解离的分子数原有分子总数 (2-1) 例如:在25℃时,0.10mol ·L -1HAc 的α=1.34%,表示在溶液中,每10000个HAc 分子中有134个解离成H +和Ac -。电解质的解离度与溶质和溶剂的极性强弱、溶液的浓度以及温度有关。 对于不同的电解质,其解离度的大小差别很大。一般将质量摩尔浓度为0.10mol ·㎏-1的电解质溶液中解离度大于30%的称为强电解质,解离度小于5%的称为弱电解质,介于30%和5%之间的称为中

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

航空发动机强度与振动课程教学大纲

《航空发动机强度与振动》课程教学大纲课程基本信息(Course Information) 课程代码(Course Code)AV432 *学时 (Credit Hours) 48 *学分 (Credits) 3 *课程名称(Course Name)(中文)航空发动机强度与振动 (英文)Structural Strength and Vibration of Aircraft Engines 课程性质 (Course Type) 专业选修类 授课对象 (Audience) 本科大三下学期 授课语言 (Language of Instruction) 中文 *开课院系 (School) 航空航天学院 先修课程 (Prerequisite) 工程热力学、空气动力学、推进原理 授课教师(Instructor) 课程网址(Course Webpage) *课程简介(Description)本课程是航空航天学院的专业选修课。主要讲授包括:航空发动机结构强度、振动的基础理论和方法;航空发动机叶片强度、轮盘强度、叶片振动、转子动力特性、转子平衡、整机振动和疲劳强度的基本概念、基础理论和分析方法;航空发动机强度与振动的设计准则和一般规律;航空发动机强度与振动测试技术。 通过本课程的学习,使学生掌握航空发动机部件及总体的强度与振动基本概念和分析方法、把握航空发动机结构强度的设计思想、初步掌握航空发动机结构强度设计方法,培养学生分析、处理航空发动机强度与振动实际问题的能力。 *课程简介(Description) This course is a specialized elective course of the School of Aeronautics and Astronautics. Major lectures include: the theory and methods of the structural strength and vibration of aircraft engines; the basic concepts, theory, and methods of the blade strength, wheel strength, blade vibration, dynamic characteristics of rotor, rotor balancing, body vibration and fatigue strength analysis; strength and vibration of aero-engine design criteria and general rules; the experimental technology of strength and vibration tests. Through this course, students will master the basic concept and analysis method of structural strength and vibration of the pieces and overall aircraft engine, grasp the structural strength of aircraft engine design, preliminary master structural strength design method of aircraft engine, grasp the ability of analysis and solving the structural strength and vibration of aircraft engines in the practice.

电解质溶液中的三大守恒和离子浓度大小的比较

电解质溶液中的三大守恒和离子浓度大小的比较 一、复习巩固 复习盐类水解的概念和水解平衡。 考点1盐类的水解 (1)盐类水解的实质:在溶液中,由于盐的离子与水电离出来的H+或OH+结合生成弱电解质,从而破坏了水的电离平衡,使水的电离平衡向电离方向移动,显示出不同的酸性、碱性或中性。 (2)盐类水解的特点:有弱才水解、无弱不水解;越弱越水解、都弱都水解;谁强显谁性、同强显中性。注意:a.弱酸弱碱盐也能水解,如CH3COONH4、(NH4)2S水解程度较NH4Cl、CH3COONa大,溶液中存在水解平衡,但不能水解完全。水解后溶液的酸、碱性由水解生成酸、碱的相对强弱决定,如CH3COO NH4溶液pH = 7。 b.酸式盐是显酸性还是显碱性,要看其电离和水解的相对强弱。若电解能力比水解能力强,则水溶液显酸性,如NaHSO3、NaH2PO4,NaHSO4只电离不水解也显酸性。若水解能力超过电离能力,则水溶液显碱性,如NaHCO3、Na2HPO4、NaHS。 考点2影响盐类水解的因素 内因:盐本身的性质 外因:温度——盐的水解是吸热反应,因此升高温度,水解程度增大。 浓度——稀释盐溶液,可以促进水解,盐的浓度越小,水解程度越大。 外加酸碱——外加酸碱能促进或抑制盐的水解。 考点3 溶液中离子浓度大小比较 (1)不同溶液中同一离子浓度的大小比较,要考虑溶液中其他离子对该离子的影响。 (2)涉及两溶液混合时离子浓度的大小比较时,要进行综合分析,如发生反应、电离因素、水解因素 等。 考点4 溶液中的三个守恒关系 电荷守恒:阴阳离子所带电荷数相等。 物料守恒:电解质溶液中,由于某些离子能水解或电离,离子种类增多,但某些关键性的原子总是守恒的。 质子守恒:即在纯水中加入电解质,最后溶液中c(H+)与其他微粒浓度之间的关系式(由以上两个守恒推出)。 考虑两个特定的组合:当c(NH4Cl)≤c(NH3·H2O)、c(CH3COONa)≤ c(CH3COOH)时,电离程度大于水解程度,水解忽略不计。 二、知识讲解 (一)理解掌握电解质溶液中的三大守恒关系?以0.1mol/L Na2S溶液为例,分析在存在的反应或平衡有

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

高中化学第三章水溶液中的离子平衡知识点和题型总结

水溶液中的离子平衡 §1 知识要点 一、弱电解质的电离 1、定义:电解质、非电解质 ;强电解质 、弱电解质 下列说法中正确的是( BC ) A 、能溶于水的盐是强电解质,不溶于水的盐是非电解质; B 、强电解质溶液中不存在溶质分子;弱电解质溶液中必存在溶质分子; C 、在熔融状态下能导电的化合物一定是离子化合物,也一定是强电解质; D 、Na 2O 2和SO 2溶液于水后所得溶液均能导电,故两者均是电解质。 2、电解质与非电解质本质区别: 在一定条件下(溶于水或熔化)能否电离(以能否导电来证明是否电离) 电解质——离子化合物或共价化合物 非电解质——共价化合物 离子化合物与共价化合物鉴别方法:熔融状态下能否导电 下列说法中错误的是( B ) A 、非电解质一定是共价化合物;离子化合物一定是强电解质; B 、强电解质的水溶液一定能导电;非电解质的水溶液一定不导电; C 、浓度相同时,强电解质的水溶液的导电性一定比弱电解质强; D 、相同条件下,pH 相同的盐酸和醋酸的导电性相同。 3、强电解质与弱电质的本质区别: 在水溶液中是否完全电离(或是否存在电离平衡) 注意:①电解质、非电解质都是化合物 ②SO 2、NH 3、CO 2等属于非电解质 ③强电解质不等于易溶于水的化合物(如BaSO 4不溶于水,但溶于水的BaSO 4全部电 离,故BaSO 4为强电解质) 4、强弱电解质通过实验进行判定的方法(以HAc 为例): (1)溶液导电性对比实验; (2)测0.01mol/LHAc 溶液的pH>2; (3)测NaAc 溶液的pH 值; (4)测pH= a 的HAc 稀释100倍后所得溶液pH

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

透平机械强度与振动复习题道及答案

动力机械强度与振动复习题 (2013-05-30) 1 对于叶片较长、径高比<10的级,为什么要采用变截面扭叶片? 采用变截面是为了降低叶型截面上的离心应力。 2 常见的汽轮机叶片的叶根有哪些型式?各有什么特点? T 型叶根: 结构简单,加工方便,增大受力面积,提高承载能力,多用于短叶片,加有 凸肩的可用于中长叶片。凸肩T 型叶根 枞树型叶根: 承载截面按等强度分布,适应性好。但加工复杂,精度要求高。 叉型叶根:强度高,适应性好。同时加工简单,更换方便。 3 围带、拉金有几种形式,各有什么作用? 围带的型式:整体围带结构型式,铆接围带结构形式 (采用围带或拉金可增加叶片刚性,) 围带:增加叶片刚性,减少级内漏气损失。降低叶片蒸汽力引起的弯应力,调整叶片频率。 拉金:增加叶片刚性,改善振动性能。 4 等截面叶片的横截面积是由哪些强度因素确定的?等截面叶片的离心拉应力与那些因素有关? 等截面叶片的截面积是根据许用弯曲应力确定的,与拉伸应力无关。 等截面叶片的离心应力 (材料密度,截面积,叶高,转速) 5 离心力在什么情况下引起弯应力?什么是叶片的最佳安装值? 等截面叶片,各截面形心的连线是一条直线。该直线如果与离心力辐射线重合,则离心力引起的弯曲应力等于零;如果不重合,就产生弯曲应力 2 m C FlR ρω=

变截面叶片,各截面的形心连线通常是一条空间曲线,不可能使其与离心力辐射线完全重合,因此离心力必然引起弯应力。 最佳安装值:叶片应力最大的截面中,其合成应力为最小时的安装值。 6 什么是蠕变,什么叫蠕变极限?请解释 的意义。 零件在高温和应力作用下长期工作时,虽然应力没有超过屈服极限,也会产生塑性变形,而且这种变形随时间不断增长,这种现象称为蠕变。 蠕变极限:通常把一定温度下、在一定时间间隔内引起一定数量的相对蠕变变形量的应力称为蠕变极限。 指当温度为550℃ 、蠕变速度为1X10-5%/h 对应的应力为90MPa 。 7 蠕变分哪几个阶段?什么叫持久强度极限?请解释 的意义。 蠕变分成三个阶段: 1 初始阶段(AB 段):蠕变速度由大到小,金属变形强化。 2 恒定阶段(BC 段):蠕变速度保持不变,材料的变形强化与再结晶软化趋势达到平衡。 3 破断阶段(CD 段):应力值由颈缩现象而增加,蠕变速度加快,直到发生断裂 持久强度极限:在一定温度下,经过一定时间间隔后引起试件断裂的应力叫持久强度极限。 05 5502 11090MN/m σ -?=05 5502 10160MN/m σ =0 5 5502 11090MN/m σ -?=0 5 5502 10160MN/m σ =

2019年高考化学二轮复习 专题10 电解质溶液与离子平衡(讲)(含解析).doc

2019年高考化学二轮复习专题10 电解质溶液与离子平衡(讲)(含解 析) 考向一弱电解质的电离与水的离子积 (1)考纲要求 1.了解电解质在水溶液中的电离,以及电解质溶液的导电性。了解电解质的概念。了解强弱电解质的概念。 2.了解弱电解质在水溶液中的电离平衡。 3.了解水的电离,水的离子积常数。 4.了解溶液pH的定义。了解测定溶液pH的方法。能进行pH的简单计算。 (2)命题规律 水溶液中的离子平衡是化学平衡的延伸和应用,也是高考中考点分布较多的内容之一。电离平衡重点考查弱电解质电离平衡的建立,电离方程式的书写,外界条件对电离平衡的影响,酸碱中和反应中有关弱电解质参与计算等等。抓好基础知识的复习,理解电离平衡的本质,是解决此类问题的关键。 【例1】【2016年高考上海卷】能证明乙酸是弱酸的实验事实是()A.CH3COOH溶液与Zn反应放出H2 B.0.1mol/L CH3COONa溶液的pH大于7 C.CH3COOH溶液与NaCO3反应生成CO2 D.0.1 mol/L CH3COOH溶液可使紫色石蕊变红 【答案】B 【考点定位】考查酸性强弱比较的实验方法。 【名师点睛】强酸与弱酸的区别在于溶解于水时是否完全电离,弱酸只能部分发生电离、水溶液中存在电离平衡。以CH3COOH为例,通常采用的方法是:①测定0.1mol/LCH3COOH溶液pH>1,说明CH3COOH没有完全电离;②将pH=1CH3COOH溶液稀释100倍后测定3>pH>1,说明溶液中存在电离平衡,且随着稀释平衡向电离方向移动;③测定0.1mol/L CH3COONa溶液的pH>7,说明CH3COONa是强碱弱酸盐,弱酸阴离子CH3COO-水解使溶液呈碱性。

2020届高考化学:电解质溶液、水溶液中的离子平衡练习及答案

2020届高考化学:电解质溶液、水溶液中的离子平衡练习及答案 *电解质溶液、水溶液中的离子平衡* 一、选择题 1、已知:25℃时,K sp[Zn(OH)2]=1.0×10-18,K a(HCOOH)=1.0×10-4。该温度下,下列说法错误的是() A. Zn(OH)2溶于水形成的饱和溶液中c(Zn2+)>1.0×10-6 mol·L-1 B.HCOO-的水解常数为1.0×10-10 C.向Zn(OH)2悬浊液中加入HCOOH,溶液中c(Zn2+)增大 D.Zn(OH)2+2HCOOH===Zn2++2HCOO-+2H2O的平衡常数K=100 答案:A 解析:Zn(OH)2溶于水形成的饱和溶液中,令锌离子浓度为x mol·L-1,x×(2x)2=1.0×10-18,x≈6.3×10-7,c(Zn2+)<1.0×10-6 mol·L-1,A错误;HCOO-的 水解常数K h=K w K a= 1×10-14 1.0×10-4 =1.0×10-10,B项正确;向Zn(OH)2悬浊液中加 入HCOOH,溶液中OH-减小,溶解平衡正向移动,溶液中c(Zn2+)增大,C项正确;Zn(OH)2+2HCOOH===Zn2++2HCOO-+2H2O的平衡常数K= c2(HCOO-)×c(Zn2+)×c2(OH-)×c2(H+) c2(HCOOH)×c2(OH-)×c2(H+)= K2a×K sp K2w=100,D项正确。 2、(2020新题预测) 已知:25 ℃,NH3·H2O的电离平衡常数K b=1.76×10-5。25 ℃,向1 L 0.1 mol/L 某一元酸HR溶液中逐渐通入氨,若溶液温度和体积保持不变,所得混合溶液 的pH与lg c(R-) c(HR)变化的关系如图所示。下列叙述正确的是()

相关文档
相关文档 最新文档