文档库 最新最全的文档下载
当前位置:文档库 › LiNbO_3_Fe晶体中双光束耦合衍射效率的研究

LiNbO_3_Fe晶体中双光束耦合衍射效率的研究

LiNbO_3_Fe晶体中双光束耦合衍射效率的研究
LiNbO_3_Fe晶体中双光束耦合衍射效率的研究

第36卷第2期

2007年3月内蒙古师范大学学报(自然科学汉文版)Journal o f Inner M ongo lia N o rmal U niversity (Natura l Science Editio n )V ol.36N o.2M ar.2007

收稿日期:2006-09-18

基金项目:国家自然科学基金资助项目(60467002);内蒙古自然科学基金资助项目(200408020111)

作者简介:陆改玲(1980-),女,内蒙古包头市人,内蒙古师范大学硕士研究生;杨立森(1953-),男,内蒙古锡林浩特市人,内蒙古师范大

学教授,主要从事非线性光学研究.

LiN bO 3:Fe 晶体中双光束耦合衍射效率的研究

陆改玲,杨立森,陈玉和,陈宝东

(内蒙古师范大学物理与电子信息学院,内蒙古呼和浩特010022)

摘 要:对两束相干光写入稳态相位栅的衍射效率进行数值模拟,发现在某一角度范围内衍射效率有一最

大值存在.测定了双光束耦合时不同入射角度光子晶格的衍射效率,实验曲线表明,衍射效率随写入角度(光子晶

格周期)的变化也有极大值存在,并且与数值模拟所对应的角度是吻合的.由于衍射效率与写入的光子晶格的折

射率调制度Δn 成线性关系,因而证实了不同写入角度的光子晶格有不同的折射率调制度,并有极大值存在.

关键词:双光束耦合;衍射效率;写入角度;折射率调制度

中图分类号:O 437 文献标识码:A 文章编号:1001--8735(2007)02--0150--03

光折变光子晶格是利用光折变效应在光折变晶体内写入与光场分布相一致的折射率周期变化的光子元件,在光学领域中有诸多应用.由于光折变光子晶格的光致折射率的调制度较低,因而限制了它的应用范围.探究光致折射率的调制度与哪些因素有关,以及如何提高光折变光子晶格折射率的调制度是制作光折变光子晶格必须考虑的.本文以LiNbO 3:Fe 晶体为对象,从理论和实验两个方面进行了研究:①理论上从带输运模型方程组出发,考虑了LiNbO 3晶体中光生伏打场的存在,导出双光束耦合过程中空间电荷场的解析式,并利用双光束耦合形成稳态相位栅的衍射效率,数值模拟了衍射效率随写入角度的变化;②实验上测得了双光束耦合时衍射效率随写入光子晶格的两束光之间的夹角的变化关系.将理论结果与实验曲线相比较,说明衍射效率随写入角度有一个极大值存在.

1 双光束耦合空间电荷场的理论分析

1.1 空间电荷场的解析式

设同偏振的两束相干光的光场分别为A 1e

i (wt -k 1 r )和A 2e i (wt-k 2 r ),两束光的合光场为

E =A 1e i (w t-k 1 r )+A 2e i (w t-k 2 r ).它们对称地入射到光折变晶体中,并在晶体中发生干涉,其光强分布为

I (z )=I 0(1+m co s k r )=I 0(1+m 2

e i k r +c.c )其中:I 0=I 1+I 2;m =2I 1I 2/I 0为调制度;

k =2π/Λ为光栅波矢;光子晶格周期Λ=λ/(2n sin θ),λ是真空中的波长,θ是介质中的入射角.

这里讨论稳态解的情况,此时带输运模型中的速率方程和连续性方程

[1] N +D / t =0, n / t =0,于是有 (sI +m )(N D -N D +)-γn N +D =0,

J = (q μn E +k B T μ n +J ph )=0,

(εE )=q (N D +-N A -n ).

(1)空间电荷场的一阶分量的大小为

[2] E 1=-m E 0+i E D +E ph 1+E D E q -i E 0+(N A /N D )E p h E q ,(2)

 第2期陆改玲等:LiN bO 3:F e 晶体中双光束耦合衍射效率的研究 当外场E 0=0时,E 1的大小可表示为[3]:

E 1=E q E 2ph +E 2D

[(N A /N D )E p h ]2+(E D +E q )212,(3)

其中:E D =k B Tk /q ;E q =qN A (N D -N A )/εk N D ;E ph =k αI /σ.

理论计算用到的符合实验条件的参数如下:N [4]D =1.0×1019cm -3, N [3]A =N D -αh νσ, α[5]=1L ln I 1(0)I 2(0)I 1(d )I 2(d )

=3.0cm -1,n 0=2.286, ε=78ε0, T =300K , L =3.2mm , r 33=31pm /V , I =15mW /cm 2,

λ=632.8nm , σ[6]=(1.5×10-14+1.4×10-12I )(Ψ cm )-1, k =3.0×10-9A cm /W .

1.2 衍射效率随写入角度的变化

两束相干光写入稳态相位栅在非同时读写过程的衍射效率为[1,2]

η=I s (L )I R (0)=2m 1+m ex p (ΓL /2-αL /cos θ)(cosh (ΓL /2)-cos (Γ′L ))1+m ex p (ΓL )

,(4)其中:Γ=4πΔn λco s θsin φ为光强耦合系数;Γ′=2πΔn λcos θcos φ为相位耦合系数;Δn =12

n 30r 33E 1;m =1.由于LiNbO 3晶体是局域响应介质,所以空间相位移φ为0或π,则(4)式可简化为

η=1

2

exp (-αL /cos θ)(1-cos (Γ

′L )).(5)

根据(5)式数值模拟的衍射效率随写入角度的变化曲线如图1a 所示.图1 衍射效率η随写入角度θ的变化曲线(a 理论曲线,b 实验曲线)

图2 衍射效率测量光路[7]

2 双光束耦合实验

2.1 实验装置

实验装置如图2所示,相干光源为单横模,功率为

20m W 的He -Ne 激光器,其中BS 为光束分束镜,M

为平面反射镜,B 为曝光定时器,S 为可调衰减器,L 为

晶体,T 1和T 2为功率探测器.实验所用晶体为掺铁浓

度为0.03w t %的LiNbO 3:Fe 晶体,厚度为3.2mm .

2.2 衍射效率η与θ的关系

将等强度的两束光I p 0和I s 0对称入射到

LiNbO 3:Fe 晶体上,使两束光在晶体内耦合.待耦合达到饱和时,用曝光定时器自动切断一条光路,另一束光按原方向入射到晶体上作为读出光,因其写入了光子晶格,所以会产生衍射光,衍射光的方向沿被挡光束的方向传播.在衍射光的方向放一功率探测器测定衍 151

内蒙古师范大学学报(自然科学汉文版)第36卷 

射光的功率I pη,由η=I pη

I p0

测量其生成光子晶格的衍射效率.实验采用分光仪测定两束光之间的夹角2θ,实

验曲线如图1b所示.

3 结论

图1中的理论曲线和实验曲线仅取了衍射效率最大值所在的角度范围,从图1可以看出,实验曲线在θ=22°时衍射效率最高,与理论曲线在θ=24°时衍射效率有最大值基本相符.由于衍射效率与写入的光子晶格的折射率调制度Δn成线性关系,因此我们从理论和实验上证明了写入的光子晶格的折射率调制深度与写入光子晶格时的两束光的夹角有关,且随角度的改变有一极值存在,这在不同掺杂浓度的晶体中写入折射率对比度高的光子晶格是非常有用的.

理论与实验存在一定差异的原因可能是光轴并不严格在入射平面内,另外实验用分光仪测量两束光夹角时存在一定误差,而取r ef f≈r33也会影响最终结果.如能在上述几方面加以改进,理论与实验结果会吻合的更好.

参考文献:

[1] 刘思敏,郭儒,许京军.光折变非线形光学及其应用[M].北京:科学出版社,2004:39-42.

[2] Cook G,Duig nan I P,Jones D C.Pho to vo ltaic co ntribution to co unter-pr opgating tw o-beam coupling in photo refractiv e

lithium niobate[J].Opt Commun,2001,192:393.

[3] Geo ffrey W Bur r,Deme tri P saltis.Effect o f the oxida tion sta te of L iN bO3:F e o n the diffr action efficiency o f multiple ho l-

og rams[J].J Electro n M a t,1974(3):601.

[4] Peithma nn K,Wiebrock A,Buse K.Pho toref ractive pro pe rties of highly-do ped lithium niobate cry stals in the v isible a nd

near-infr ared[J].Appl P hy s B,1999,68:777-784.

[5] 吉选芒,刘劲松.同时测量Ce:K NSBN晶体两波耦合指数增益和吸收系数的一种方法[J].量子电子学报,2003,

20(4):505-507.

[6] G lass A M,V onder Linde,N eg ran T J.H ig h-v oltage bulk pho tovo ltaic effect and the pho tor efractiv e process in LiN bO3

[J].A ppl Phy s Lett,1974,25:233.

[7] 朱云,陈抗生.Ce:K N SBN晶体中双光束耦合的研究[J].光子学报,1997,26(12):1111-1113.

S tudy on Diffraction Efficiency in the

LiN bO3:Fe Crystal U sing T wo Wave M ixing

LU G ai-ling,YANG Li-sen,CH EN Yu-he,CH EN Bao-dong

(College of Phy sics and Electronic I n f ormation,I nner Mongolia Normal University,H uhhot010022,China)

A bstract:Diffractio n efficiency w as simulated theoretically in the stable state phase during the double coherent lig ht co upling and a maxim um value of diffraction efficiency was disco vered in some angle sco pe. Experim entally,diffraction efficiency of pho to n cry stal lattice w as measured in diffe rent read-in ang le.The results indicated that it reach the ex treme value w hen the read-in ang le has the value co rresponding to the diffraction efficiency in theo ry.Considering simple linear relatio nship betw een the diffraction efficiency and refractive index m oudulation deg ree,it can be co nfirmed that the photon cry stal with different read-in angle really have the different refractive index mo udulation deg ree,and has the maxim um value.

Key words:tw o-w ave m ixing;diffractio n efficiency;read-in ang le;refractive index moudulatio n

【责任编辑陈汉忠】152

X射线衍射和倒格子

第二章 X 射线衍射和倒格子 大多数探测晶体中原子结构的方法都是以辐射的散射概念为基础的。早在1895年伦琴发现X 射线不久,劳厄在1912年就意识到X 射线的波长量级与晶体中原子的间距相同,大约是0.1nm 量级,晶体必然可以成为X 射线的衍射光栅。随后布拉格用X 射线衍射证明了NaCl 等晶体具有面心立方结构,从而奠定了用X 射线衍射测定晶体中的原子周期性长程有序结构的地位。随着科学技术的不断发展,电子、中子衍射有为人类认识晶体提供了有效的探测方法。但到目前为止,X 射线衍射仍然是确定晶体结构、甚至是只具有短程有序的无定形材料结构的重要工具。本章以X 射线衍射为例介绍晶体的衍射理论,引入倒格子的概念,在此基础上介绍原子形状因子和几何结构因子,并介绍几种确定晶格结构的实验方法。 §2.1 晶体衍射理论 一、布拉格定律 (Bragg ’s Law ) X 射线是一种可以用来探测晶体结构的辐射,其波长可以用下式来估算 012.4()() hc E h A E KeV νλλ==?= (2.1.1) 能量为2~10KeV 的X 射线适用于晶体结构的研究。 在固体中,X 射线与原子的电子壳层相互作用,电子吸收并重新发射X 射线,重新发射的X 射线可以探测得到,而原子核的质量相对较大,对这个过程没有响应。X 射线的反射率大约是10-3~10-5量级,在固体中穿透比较深,所以X 射线可以作为固体探针。1912年劳厄(https://www.wendangku.net/doc/3c13130350.html,ul )等发现了X 射线通过晶体的衍射现象之后,布拉格(W.L.Bragg )父子测定了NaCl 、KCl 的晶体结构,首次给出了晶体中原子规则排列的实验数据,发现了晶态固体反射X 射线特征图像,推导出了用X 射线与晶体结构关系的第一个公式,著名的布拉格定律(Bragg ’s Law )。布拉格对于来自晶体的衍射提出了一个简单的解释。假设入射波从晶体中的平行晶面作镜面反射,每个平面反射很少的一部分辐射,就像一个轻微镀银的镜子一样。在这种反射中,其反射角等于入射角。当来自平行晶面的反射发生干涉相长时,就得出衍射束,图2.1是X 射线分别在相邻两个晶面反射的情况。我们考虑的是弹性散射,X 射线的能量在反射中不变。

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

第一章晶体结构和倒格子

第一章 晶体结构和倒格子 1. 画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。 (1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 2. 对于六角密积结构,初基元胞基矢为 → 1a =→→+j i a 3(2 →→→+-=j i a a 3(22 求其倒格子基矢,并判断倒格子也是六角的。 3.用倒格矢的性质证明,立方晶格的[hkl]晶向与晶面(hkl )垂直。 4. 若轴矢→→→c b a 、、构成简单正交系,证明。晶面族(h 、k 、l )的面间距为 2222) ()()(1c l b k a h hkl d ++= 5.用X 光衍射对Al 作结构分析时,测得从(111)面反射的波长为1.54?反射角为θ=19.20 求面间距d 111。 6.试说明:1〕劳厄方程与布拉格公式是一致的; 2〕劳厄方程亦是布里渊区界面方程; 7.在图1-49(b )中,写出反射球面P 、Q 两点的倒格矢表达式以及所对应的晶面指数和衍射面指数。 8.求金刚石的几何结构因子,并讨论衍射面指数与衍射强度的关系。 9.说明几何结构因子S h 和坐标原点选取有关,但衍射谱线强度和坐标选择无关。 10. 能量为150eV 的电子束射到镍粉末上,镍是面心立方晶格,晶格常数为3.25×10-10m,求最小的布拉格衍射角。 附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s 第二章 晶体结合 1.已知某晶体两相邻原子间的互作用能可表示成 n m r b r a r U +-=)( (1) 求出晶体平衡时两原子间的距离; (2) 平衡时的二原子间的互作用能; (3) 若取m=2,n=10,两原子间的平衡距离为3?,仅考虑二原子间互作用则离解能为4ev ,计算a 及b 的值; (4) 若把互作用势中排斥项b/r n 改用玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作 用势能具有相同的贡献,求n 和p 间的关系。 2. N 对离子组成的Nacl 晶体相互作用势能为 ??????-=R e R B N R U n 024)(πεα

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

X射线多晶衍射法物相分析

X 射线多晶衍射法物相分析 1 目的要求 (1) 掌握X 射线多晶衍射法的实验原理和技术。 (2) 学会根据X 射线衍射图,使用X 射线粉末衍射索引和卡片进行物相分析。 2 基本原理 若以 代表晶体的一族晶面的指标, 是这族晶面中相邻两平面的间距,入射X 射线与这族晶面的夹角 满足下面布拉格方程时,就可产生衍射。 式中n 为整数,表示相邻两晶面的光程差为n 个波,所以n 又叫衍射级数,式中 常 用 表示, 称为衍射指标,它和晶面指标是整数位关系。 当单色X 射线照到多晶样品上时,由于多晶样品中含有许许多多小晶粒,它们取向随机地聚集在一起,同样一族晶面和X 射线夹角为θ的方向有无数个,产生无数个衍射,形成以 入射线为中心, 为顶角的衍射圆锥,它将对应于X 射线衍射图谱的一个衍射峰。多晶样品中有许多晶面族,当它们符合衍射条件时,相应地会形成许多以入射线为中心轴张角不同的衍射线。不同的晶面其晶面间距不同,可见晶面间距决定了衍射峰的位置,而晶面间距d 是晶胞参数的函数,所以衍射峰的位置是由晶胞参数所决定的。至于衍射峰的强度I 与结构因子|F |2成正比,而|F |2是晶胞内原子的种类、数量、坐标的函数,因此,衍射强度是由晶胞的结构所决定的。由于每一种晶体都有它特定的结构,不可能有两种不同的晶体物质具有完全相同的晶胞参数和晶胞结构,也就不会有两种不同的物质具有完全相同的衍射图,晶体衍射图就象人的指纹一样各不相同,即每种晶体都有它自己的“d/n ~I ”数据,可以据此来鉴别晶体物质的物相。若一物质含有多种物相,这几种物相给出各自的衍射图,彼此独立,互不相干,即由几种物相组成的固体样品的衍射图,是各个物相的衍射图,按各物相的比例,简单叠加在一起构成的。这样就十分有利于对多相体系进行全面的物相分析了。 国际粉末衍射标准联合会(JCPDS)已收集了几万种晶体的衍射标准数据,并编制了一套X 射线粉末衍射卡片(PDF ,其内容和检索方法见附2)。实际工作中只要测得试样的多晶衍射数据,再去查对粉末衍射卡片,即可鉴定试样,进行物相分析。 3 仪器 试剂 X 射线衍射仪 玛瑙研钵 分样筛 粉末样品板 选择若干合适晶体的未知物样品 4 实验步骤 (1)预习:有条件的情况下,利用附1介绍的X 射线多晶衍射法物相分析的模拟软件,预习X 射线多晶衍射法进行物相分析的基本过程。 (2)制样:用玛瑙研钵将样品研细后,通过325目筛,将筛下物放在样品板的槽内,略高于槽面,用不锈钢片适当压紧样品,且表面光滑平整,必要时可滴一层酒精溶液(或溶有少量苯乙烯的甲苯溶液),然后将样品板轻轻地插在测角仪中心的样品架上。 (3)测试: ①首先打开冷却水阀门和总电源及计算机稳压电源。 ②打开X 射线发生器总电源,将稳压、稳流调节至最小值,关好防护罩门,调整好水量,)(l k h '''l k h d ' ''l n k n h n ' ''θλθn d l n k n h n l k h ='''''' sin 2l n k n h n '''hkl hkl θ4

17 X射线多晶衍射法物相分析

实验十七 X 射线多晶衍射法物相分析 1 目的要求 (1) 掌握X 射线多晶衍射法的实验原理和技术。 (2) 学会根据X 射线衍射图,使用X 射线粉末衍射索引和卡片进行物相分析。 2 基本原理 若以 代表晶体的一族晶面的指标, 是这族晶面中相邻两平面的间距,入射X 射线与这族晶面的夹角 满足下面布拉格方程时,就可产生衍射。 式中n 为整数,表示相邻两晶面的光程差为n 个波,所以n 又叫衍射级数,式中 常 用 表示, 称为衍射指标,它和晶面指标是整数位关系。 当单色X 射线照到多晶样品上时,由于多晶样品中含有许许多多小晶粒,它们取向随机地聚集在一起,同样一族晶面和X 射线夹角为θ的方向有无数个,产生无数个衍射,形成以 入射线为中心, 为顶角的衍射圆锥,它将对应于X 射线衍射图谱的一个衍射峰。多晶样品中有许多晶面族,当它们符合衍射条件时,相应地会形成许多以入射线为中心轴张角不同的衍射线。不同的晶面其晶面间距不同,可见晶面间距决定了衍射峰的位置,而晶面间距d 是晶胞参数的函数,所以衍射峰的位置是由晶胞参数所决定的。至于衍射峰的强度I 与结构因子|F |2成正比,而|F |2是晶胞内原子的种类、数量、坐标的函数,因此,衍射强度是由晶胞的结构所决定的。由于每一种晶体都有它特定的结构,不可能有两种不同的晶体物质具有完全相同的晶胞参数和晶胞结构,也就不会有两种不同的物质具有完全相同的衍射图,晶体衍射图就象人的指纹一样各不相同,即每种晶体都有它自己的“d/n ~I ”数据,可以据此来鉴别晶体物质的物相。若一物质含有多种物相,这几种物相给出各自的衍射图,彼此独立,互不相干,即由几种物相组成的固体样品的衍射图,是各个物相的衍射图,按各物相的比例,简单叠加在一起构成的。这样就十分有利于对多相体系进行全面的物相分析了。 国际粉末衍射标准联合会(JCPDS)已收集了几万种晶体的衍射标准数据,并编制了一套X 射线粉末衍射卡片(PDF ,其内容和检索方法见附2)。实际工作中只要测得试样的多晶衍射数据,再去查对粉末衍射卡片,即可鉴定试样,进行物相分析。 3 仪器 试剂 X 射线衍射仪 玛瑙研钵 分样筛 粉末样品板 选择若干合适晶体的未知物样品 4 实验步骤 (1)预习:有条件的情况下,利用附1介绍的X 射线多晶衍射法物相分析的模拟软件,预习X 射线多晶衍射法进行物相分析的基本过程。 (2)制样:用玛瑙研钵将样品研细后,通过325目筛,将筛下物放在样品板的槽内,略高于槽面,用不锈钢片适当压紧样品,且表面光滑平整,必要时可滴一层酒精溶液(或溶有少量苯乙烯的甲苯溶液),然后将样品板轻轻地插在测角仪中心的样品架上。 (3)测试: ①首先打开冷却水阀门和总电源及计算机稳压电源。 ②打开X 射线发生器总电源,将稳压、稳流调节至最小值,关好防护罩门,调整好水量,)(l k h '''l k h d ' ''l n k n h n ' ''θλθn d l n k n h n l k h ='''''' sin 2l n k n h n '''hkl hkl θ4

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个- Cl ,每个- Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +-a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1 121=?+,晶体中Na +数与Cl -数之比为1:1 2. 氯化铯晶体 每个Cs +紧邻8个-Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3 ,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,- Cl 在晶胞内其数目为8, 晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 1 6818=?+? 。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=?,拥有的C-C 键数为16 1 6=?,则C 原子数与C-C 键数之比为 2:11:2 1 =。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

固体物理倒格子的原理

倒格子 摘要:倒格子是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。为此为了研究的方便,结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处理上具有优越性。和正格子相比,它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。因此倒格子具有很重要的物理意义,及其所组成的倒易点阵,更是研究晶格性质的重要手段。 关键词:倒格子正格子点阵布里渊区 一、倒格子的定义及其相关概念: (1)倒格子:亦称倒易格子(点阵),倒格子就是和布拉发矢量(晶格矢量)共轭的另一组矢量基,俗称动量空间,适合于用来描述声子、电子的晶格动量。它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。晶格振动及晶体中电子的运动都是在倒格子空间中的描述。 (2)倒格子的定义: 已知有正格子基矢,定义倒格矢基矢为: ;说明b1垂直于a2和a3所确定的面。 ;说明b2垂直于a3和a1所确定的面。 ;说明b3垂直于a1和a2所确定的面。 正格子体积: (3)相关概念: ①倒格点:平移操作所产生的格点叫。 ②倒格矢:为。 ③倒格子:倒格点的总体叫。 ④倒格基矢:一组。

二、倒格子的性质: (1) 正点阵晶胞的体积与倒易点阵晶胞的体积成倒数关系: 倒格子体积: , (2) 正格子与倒格子间的关系:倒格矢与任一个正格矢 的乘 积必等于, 即 = 。 (3) 正格子中一族晶面(321h h h )和倒格子基失矢正交,即晶面的弥勒指数是垂直于该晶面的最短倒格矢坐标。 (4) 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向;倒格矢的大小正比于晶面族(h1h2h3)的面间距的倒数: d G π2//= 三、倒格子原胞和布里渊区: 倒格子原胞,作由原点出发的诸倒格矢的垂直平分面,这些平面完全 封闭形成的最小的多面体(体积最小)------第一布里渊区。 同理。第一布里渊区以外,封闭的三角形的体积----------------第二布里 渊区。依次可以得到第三布里渊区。 四、正格子和倒格子的比较: 20世纪80年代STM 问世前,人们无法直接观测到正格子空间,只能通过

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP C)。(单位已设为

倒格子讲解

中文名称:倒格子 英文名称:Reciprocal lattice 术语来源:固体物理学 倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。 1定义 假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义 b1 = 2 π ( a2× a3) /ν b2 = 2 π ( a3× a1) /ν b3 = 2 π ( a1× a2) /ν 其中 v = a1· ( a2× a3 ) 为正点阵原胞的体积,新的点阵的基矢b1、b2、b3是不共面的,因而由b1、b2、b3也可以构成一个新的点阵,我们称之为倒格子,而b1、b2、b3 称为倒格子基矢。 2性质 1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。 2. 由倒格子的定义,不难得到下面的关系 a i · b j = 2 πδij 3. 设倒格子与正点阵(格子)中的位置矢量分别为 G = αb1+ βb2 + γb3 R = ηa1 + θa2 + λa3 (α,η,β,θ,γ,λ皆为整数) 不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。

4. 设倒格子原胞体积为ψ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到ψ v = ( 2 π )^3. 5. 正格子晶面族(αβγ)与倒格子矢量G = αb1+ βb2 + γb3 正交 (具体的内容及证明过程,请参考文献[1]) 3倒格子引入的意义 这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格衍射的问题是极为直观和简便的。 另外,在固体物理中比较重要的布里渊区,也是在倒格子下定义的。相关的内容可以参考文献[1-2] 。

X射线多晶衍射法物相分析.

X 射线多晶衍射法物相分析 1 (1) 掌握 X (2) 学会根据X 射线衍射图,使用X 射线粉末衍射索引和卡片进行物相分析。 2 若以 代表晶体的一族晶面的指标, 是这族晶面中相邻两平面的间距,入射X 射线与这族晶面的夹角 满足下面布拉格方程时,就可产生衍射。 式中n 为整数,表示相邻两晶面的光程差为n 个波,所以n 又叫衍射级数,式中 常 用 表示, 当单色X 射线照到多晶样品上时,由于多晶样品中含有许许多多小晶粒,它们取向随机地聚集在一起,同样一族晶面和X 射线夹角为θ的方向有无数个,产生无数个衍射,形成以 入射线为中心, 为顶角的衍射圆锥,它将对应于X 射线衍射图谱的一个衍射峰。多晶样品 中有许多晶面族,当它们符合衍射条件时,相应地会形成许多以入射线为中心轴张角不同的衍射线。不同的晶面其晶面间距不同,可见晶面间距决定了衍射峰的位置,而晶面间距d 是晶胞参数的函数,所以衍射峰的位置是由晶胞参数所决定的。至于衍射峰的强度I 与结构因子|F |2成正比,而|F |2是晶胞内原子的种类、数量、坐标的函数,因此,衍射强度是由晶胞的结构所决定的。由于每一种晶体都有它特定的结构,不可能有两种不同的晶体物质具有完全相同的晶胞参数和晶胞结构,也就不会有两种不同的物质具有完全相同的衍射图,晶体衍射图就象人的指纹一样各不相同,即每种晶体都有它自己的“d/n ~I ”数据,可以据此来鉴别晶体物质的物相。若一物质含有多种物相,这几种物相给出各自的衍射图,彼此独立,互不相干,即由几种物相组成的固体样品的衍射图,是各个物相的衍射图, 按各物相的比例, 国际粉末衍射标准联合会(JCPDS)已收集了几万种晶体的衍射标准数据,并编制了一套X 射线粉末衍射卡片(PDF ,其内容和检索方法见附2)。 实际工作中只要测得试样的多晶衍射数 3 仪器 X 射线衍射仪 分样筛 选择若干合适晶体的未知物样品 4 (1)预习:有条件的情况下,利用附1介绍的X 射线多晶衍射法物相分析的模拟软件,预习 X (2)制样:用玛瑙研钵将样品研细后,通过325目筛,将筛下物放在样品板的槽内,略高于槽面,用不锈钢片适当压紧样品,且表面光滑平整,必要时可滴一层酒精溶液(或溶有少量苯乙烯的甲苯溶液) (3) ②打开X 射线发生器总电源,将稳压、稳流调节至最小值,关好防护罩门,调整好水量, )(l k h '''l k h d ' ''l n k n h n ' ''θλθn d l n k n h n l k h ='''''' sin 2l n k n h n '''hkl hkl θ4

晶体衍射实验的基本方法

晶体衍射实验的基本方法 晶体衍射实验的基本方法包括以下三种: 1.劳厄法 劳厄法是用波长可连续变化的X 射线,射击入固定的单晶体而产生衍射的一种方法。装置如图2 所示。由于X 光管中加速电压的限制,所用的X 射线有一最小波长限λ min;同样,由于X 光管窗玻璃的吸收作用,X光波长也有一最大长波限λ max.有效的连续X 射线谱在λ min与λmax之间的变化,对应于λ min的反射球半径最大,而对应于λ max 的反射球半径最小。于是对应于λ min与λ max之间的任一波长的反射球半径介于这两个反射球半径之间,所有反射球的球心都在入射线方向上,如图1 所示。 图1 劳厄法的反射球 由上面的讨论可知,X 射线的入射波矢k0 与反射波矢k 的矢量关系为 .由于,则反射波矢k的末端落在了以为半径的反射球上,若k0 的末端取为倒格点,如图1 所示,则波矢k 的末端也必定是倒格点。这说明,当X 光波长和入射方向一定时,由球心到球面上的倒格点连线方向,都是X 光衍射极大方向,或称光的反射方向。对应于半径为2π/λmax和2π/λ min的两个球之间任一倒格点与k0末端连线的中垂面在入射方向上的直径上的交点,与该倒格点的连线,即是衍射极大方向。由晶体出射的衍射线束在底片上形成的一系列斑点,称为劳斑点。所有的劳厄斑点构成晶体的X 射线衍射图样。可见劳厄斑点与倒格点一一对应,劳厄斑点的分布可以反映出倒格点的分布信息。倒格矢是晶体相应晶面的法线方向,晶格的对称性与倒格子的对称性相对应。当X 光入射方向与晶体的某对称轴平行时,劳厄斑点的对称性即反映出晶格的对称性。因此,劳厄法不便于研究晶体的晶格常数,而特别适用于确定晶体的对称性。 2.旋转单晶法 医学教谕网整理旋转单晶法的特点是X 射线波长不变,使晶体转动,从而倒格子也转动。由于λ 不变,所以只有一个反射球,且固定不动。但样品单晶在转动,这样其倒格子将相对的反射球转动,于是就有倒格点不断转到反射球上,从而发生布喇格反射。由于倒

相关文档