文档库 最新最全的文档下载
当前位置:文档库 › 制程能力计算说明

制程能力计算说明

制程能力计算说明
制程能力计算说明

製程能力計算說明

Cpk 綜合製程能力指數 Process Capability Index Ca 準確度 Process Accuracy Cp 精密度 Process Capability

Pp 初期精密度 Primary Process Capability Pa 初期準確度 Primary Process Accuracy

Ppk 初期綜合製程能力 (長久的Cpk) Primary process capability index

σ

?6LSL

USL Cp -=

(規格界線) 1?6--=n LCL UCL Cp σ(管制界限)

%100*)

(*5.0)

(LSL USL T X Ca o --=

Cp Ca Cpk *1-= Cp 之標準差僅考慮組內之變異(因為僅考慮到R 或s )

未正式生產前之量產試作或小批量生產,其Cp , Ca , Cpk 分別稱為 Pp , Pa , Ppk

%100*)

(*5.0)

(LCL UCL T X Pa o --=

σ

?6LCL

UCL Pp -=

Pp Pa Ppk *1-= Pp 之標準差,考慮組間與組內變異 2

2內間σσσ+=

製程能力精密度指數)(Pp Cp

製程能力準確度指數)(Pa Ca

綜合製程能力指數)(Ppk Cpk

EX :孔徑尺寸管制 30±0.5 A 、B 兩機台各加工30pcs 工件。 A 機台加工孔徑 2.30=A X 15.0=A σ

11.19

.00

.115.0*60.1*65.295.30===-=

A Cp σ, %404.05.02.05.032.30===-=

Ca 666.06.0*11.1)4.01(*11.1)1(*==-=-=Ca Cp Cpk

B 機台加工孔徑 1.30=B X 10.0=B σ

67.16.00.11.0*60.1*65.295.30===-=A Cp σ, %202.05

.01.05.0301.30===-=Ca

336.18.0*67.1)2.01(*67.1)1(*==-=-=Ca Cp Cpk

整體製程能力:

15.3060

1

.30*302.30*3060*30*30=+=+=

B A X X X

2236.005.01.02.0222

2==+=+=B A σσσ

7454.03416

.10

.12236.0*60.1*65.295.30===-=σCp ,

%303.05

.015

.05.03015.30===-=

Ca

5218.07.0*7454.0)3.01(*7454.0)1(*==-=-=Ca Cp Cpk

Pp 、Pa 、Ppk 計算

Ca Pa ==30% 計算方式相同

2

2內間σσσ+=

2449.006.0)1.02.0(1.02.0)(222222==-++=-++=B A B A σσσσσ

6805.04694

.10

.12449.0*60.1*65.295.30===-=

σPp

4764.07.0*6805.0)3.01(*6805.0)1(*==-=-=Pa Pp Ppk

制程能力知识分析讲解

e 1999年对公司来说,可定义为OEM品质年,此话怎讲?因为从去年HP的PIGLET开始生产后,陆陆续续接到OEM客户的订单,诸如NEC、PANASONIC、广宇、以及最近的通用、INTEL等等;我们可以从过去的经验与事实,去观察与分析OEM 客户非常重视产品的品质管制,认为供货商是产品生产系统的源头或重要的一部份,足以影响产品是否能及时推上市,获得好评的重要关键之一。 因此对于品质管制手法的使用,一直是OEM客户注意的焦点。尤其是制程能力分析(Analysis for Process Capability) 的应用,大家都视为是一新开发产品导入量产阶段的指针, 所以本文的主题将针对制程能力分析来进行研讨。 接下来将透过下列几个问题,来切入正题: 一、制程能力是个什么东西?

二、制程能力分析在什么时候实施是正确的? 三、执行制程能力分析前有那些步骤? 四、制程能力分析的数据要如何评价? 五、制程能力分析的数据要如何应用? 六、究竟要量测多少个样品才能计算Cpk? 七、Cpk 是否能监测连续生产之制程? 一、制程能力是个什么东西? 所谓『制程能力』就是一个制程在固定的生产因素(条件)及稳定管制下所展现的品质能力。 那些是「固定的生产因素(条件)」;如设计的品质、模治具、机器设备、作业方法与作业者的训练、作业照明与环境、检验设备、检验方法与检验者的训练….等等皆属之。 什么是「稳定管制」;就是以上因素加以标准化设定后,并彻底实施后,且该制程之测定值,都是

在稳定的管制状态之下,此时的品质能力才可说是该制程的制程能力。 制程能力如何表示: 1.制程准确度Ca (Capability of accuracy) 2.制程精确度Cp (Capability of precision ) 3.综合评价(不良率p ) 4.制程能力指数Cpk 以上最常用的是Cpk、Cp、Ca,而p比较少有人使用。 1.制程准确度Ca (Capability of accuracy) 凡从制程中所获得之数据(实绩),其平均值

产能分析报告

产能分析报告 一、产能修改记录及主要产品信息 注:产能分析报告——修改记录 1)产能发生变化时以便及时追踪。如进行增产以达到完全生产能力,此时生产线通过一系列步骤可以达到完全生产能力,则应记录下这些变化。填写论证产能时也应同时填写日期。 2)此次产能分析报告均记作初次提交。 注:产品信息 1)完成产能分析报告的首先要明确需要分析的产品的详细信息。包括产品名称、型号、产能概况、客户需求信息等。 2)必要时应完善产品主要零部件供应商信息,以便及时掌握配套商供货情况,平衡零部件供货影响系数。 二、现有设备产能核算 1、预订工作时间标准

注: 1)单班时间:每班总时间-每班的总计可用小时数。 2)班次:表示的是每天每个工艺操作的班次数。 3)作业率:(总工时-无效工时)/总工时。 人员休息-如果在人员休息的时候,机器也停止运转,则输入每班中机器不运转的时间长度。 计划的维修时间-这是计划的每班中机器停机用于维护的时间长度。 4)年出勤时间:年出勤天数-表示的是每年的工艺运作的天数(扣除法定节假日、双休日)。 5)计算举例:每班8小时、每天2班次、作业率80%、年出勤302天,净可用时间=8*2*80%*302=时。 2、代表产品制程/线能力计算

注: 1)代表产品:所谓代表产品指产品制程包含其他所有产品制造过程包含的所有工艺过程;如存在两种以上产品包含不同工艺过程、需分别取各类型产品代表产品制程并进行线能力分析。 2)评价瓶颈工序应排除可用外协、其他生产线可用设备借代等因素影响。 3)每条生产线选取一种或2种产品作为代表说明制程及瓶颈工序即可,其他产品可直接计算毛产能。3、毛产能核算 注: 1)毛产能核算过程没有排除产品合格率、设备故障率、人员负荷等因素对产能的影响,不能作为需求平衡分析的依据,需进一步平衡。 2)其他产品可根据代表产品计算方法计算出出毛产能。

制程能力管理办法

1.目的:为稳定制程管理及改善制程,藉由制程能力管理办法的建立使其有量化资料 作设计、制程改善、选择设备或作业方法改进等的依据与参考,其能经由 统计技术之应用,即早发现变异,适时矫正以减少失误而订定本作业办法。 2.范围:凡新产品试作阶段及量产中之制程系统皆适用之,包含信赖性质量管制、 外观检验管制、重要特性、特殊特性及制程能力等须管制之项目。 3.定义: 3.1 准确度(Ca):指量测仪器实际量测值(或量测平均值)与待测值之真值的接近程度,亦 即实际量测值偏离真实值之程度。 3.2 精密度(Cp):指量测仪器对同一待测物,以相同量测过程作重覆量测时,其各量测结 果的差异程度。 3.3 初期制程能力(Ppk) :指于新产品开发或变更后之制程,其能符合客户要求的早期制程 绩效统计资料,其计算方式与相同Cpk。 3.4 制程能力(Cpk):指于量产制程中呈现稳定管制状态之程度或数据分怖接近于规格界限 中心的程度,亦称制程能力。 3.5 计量值:凡本公司可藉由量具实测而得到之数据值(具连续性性质者),称为计量值。 3.6 计数值:凡本公司可藉由单位计数而得到之数据值(具间断性性质者),称为计数值。 3.7 SPC: Statistical Process Control 统计制程管制。 4. 权责: 4.1品保单位:管制项目之数据量测、搜集、统计图表、判读分析,并提供各项量测仪 器与设备的定期校验。 4.2技术单位:针对指定之制程条件或产品之质量特性加以分析,及改善对策计划 提出。 4.3制造单位:改善对策计划执行。 5. 作业内容: 5.1 建立制程管制管理系统: A.依据『绩效管理与持续改善程序』(API-P2-0008)建立制程管制管理系统。 B.并依据『管制计划管理办法』选定管制制程参数与质量特性项目。 C.执行时机: (1)新产品开发时。 (2)导入新设备或新制程条件时。 (3)产品或制程变更时。 (4)制造场所变更时,使用新的或重新装置生产设备或模治具时。 5.2管制图之应用依管制项目之不同区分为计量值及计数值两种,制程能力管制 项目之来源: A.客户指定、图面或法规(C.C)要求之项目。

CPK 制程能力分析讲解

CPK为什么要定1,1.33,1.67,这几个值? CPK:Complex Process Capability index 的缩写,是现代企业用于表示制程能力的指标。现今下产品的质量要求越来越高,产品的质量也不是仅仅能保证在公差范围内就能满足要求,因此对产品的质量关注从原来的被动检查产品尺寸转换到对产品加工过程的控制,那么如何来评价某个过程对产品加工质量的控制能力,利用统计学的原理按照一定的时间规律、抽样方案对加工生产出的产品进行数据统计,通过计算其产品数据的离散度、标准差等数据来表达这个过程中产品的质量波动情况,CPK就在这种情况应运而生。 CPK用数值来表示,该值反映的是制造加工过程控制能力的大小,数值越大表示该过程的控制能力越好,产品的一致性越好,产品的尺寸变化波动越小越靠近中间值;而数值越大表示该过程的控制能力越差,产品的一致性越差,产品的尺寸变化波动越大离散度越大,甚至容易超出两边极限公差。 CPK的计算数据由至少125组数据组成,抽取的数据也有一定的要求(每5件为一组连续数据,每组之间按一定的时间间隔进行),抽取数据时制程必须是无任何异常状态下进行,所以CPK值反应的是某个制程在正常工作状态下的过程控制能力。 下面分别用4张正态图、柱状图辅助理解这样更直观一些(两侧的竖直线表示产品的尺寸极限,中间的竖直线表示产品的中间值): 上图的CPK值为0.656,接近0.67,从柱状表示可以看出,虽然产品的尺寸都在极限范围以内,但大部分的产品数据分列在靠近极限值的两端,产品的离散度大;如果某过程的CPK计算数值在0.67左右,意味作该过程的控制能力并不稳定,具有超出产品极限的风险,如果数值小于0.67,加工过程中可能已经有超差极限值得产品存在。

电子制程行业分析报告

电子制程行业分析报告

目录 一、行业主管部门、监管体制和主要法律法规及政策 (5) 1、行业主管部门和监管体制 (5) 2、产业政策 (6) (1)《电子信息产业调整和振兴规划》 (6) (2)《信息产业科技发展“十一五”规划和2020年中长期规划纲要》 (7) (3)《高技术产业“十一五”规划》 (7) (4)《当前优先发展的高技术产业化重点领域指南(2007 年度)》 (8) (5)《电子信息产品污染控制管理办法》 (8) 二、行业基本情况 (9) 1、电子信息产业基本情况 (9) 2、电子制程行业的基本情况 (9) (1)电子制程行业的产生 (9) (2)电子制造行业的发展趋势对电子制程行业的影响 (11) (3)电子制程行业的产业链关系与电子制程行业的服务内容 (12) (4)我国电子制程行业的未来发展 (13) (5)中国电子制程行业的市场容量 (15) ①电子制程产品在电子信息产品总成本中的比重 (15) ②市场规模及增长情况 (16) ③2009-2011年市场需求预测及增长 (16) 三、行业竞争状况 (17) 1、行业总体竞争格局及市场化状况 (17) (1)与供应商竞争 (18) (2)电子制程技术 (18) (3)合格供应商资格认证 (18) 2、行业内的主要企业 (19) (1)国内的主要企业综合竞争实力排名 (19)

(2)国外实力企业简要情况 (19) 3、进入本行业的主要障碍 (21) (1)技术壁垒 (21) (2)供应商壁垒 (22) (3)人力资源壁垒 (22) (4)客户壁垒 (23) (5)销售渠道及规模壁垒 (24) 4、市场供求状况 (24) 5、行业利润水平的变动趋势和原因 (24) 四、影响行业发展的有利和不利因素 (25) 1、有利因素 (25) (1)电子行业整体水平和产业集中度的提高 (25) (2)电子信息产业整体规模将继续保持上升势头 (27) (3)电子制造业竞争的加剧和产品更新换代速度提高 (27) (4)国内GDP将继续保持快速增长 (27) 2、不利因素 (28) (1)经济周期对下游行业造成了短期负面影响 (28) (2)国内电子行业对电子制程的重要性和意义认识不足 (30) 五、行业技术特点及技术水平、行业特征 (30) 1、行业技术特点与水平 (30) 2、行业经营模式 (31) 3、行业发展趋势 (32) (1)兼并趋势 (32) (2)一体化趋势 (33) 4、行业的区域性 (34) 六、上、下游行业之间的关联性 (35) 1、本行业与上游行业的相关性 (35)

制程能力分析 Cpk Cp Ca

CPK (Process Capability Index )的定义:制程能力指数; CPK的意义:制程水平的量化反映;(用一个数值来表达制程的水平)制程能力指数:是一种表示制程水平高低的方便方法,其实质作用是反映制程合格率的高低。 与CPK相关的几个重要概念: USL (Upper Specification Limit): 即规格上限; LSL (Lower Specification Limit): 即规格下限; C (Center Line):规格中心; =(X1+X2+……+Xn)/n 平均值;(n为样本数) T=USL-LSL:即规格公差; δ(sigma)为数据的标准差。标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B 组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 (Excel中的“STDEV”函数自动计算所取样数据的标准差(σ) ) 样本: 从总体中随机抽取的若干个个体的总和称为样本。组成样本的每个个体称为样品。 样本标准偏差S: 因为标准偏差是用数据整体计算,所以当数据量大太时,就不便以操作,而且不符合现场需要。所以一般情况下, 会用样本标准偏差S来代替σ。 S ≈σ Ca (Capability of Accuracy):制程准确度,Ca 衡量的是“实际平均值“与“规格中心值”的一致性; 1.对于单边规格,不存在规格中心,因此也就不存在Ca;

CPK制程能力分析讲解

C P K为什么要定1,1.33,1.67,这几个值? CPK:ComplexProcessCapabilityindex的缩写,是现代企业用于表示的指标。现今下产品的质量要求越来越高,产品的质量也不是仅仅能保证在公差范围内就能满足要求,因此对产品的质量关注从原来的被动检查产品尺寸转换到对产品加工过程的控制,那么如何来评价某个过程对产品加工质量的控制能力,利用统计学的原理按照一定的时间规律、对加工生产出的产品进行数据统计,通过计算其产品数据的离散度、标准差等数据来表达这个过程中产品的质量波动情况,CPK就在这种情况应运而生。 CPK用数值来表示,该值反映的是制造加工过程控制能力的大小,数值越大表示该过程的控制能力越好,产品的一致性越好,产品的尺寸变化波动越小越靠近中间值;而数值越大表示该过程的控制能力越差,产品的一致性越差,产品的尺寸变化波动越大离散度越大,甚至容易超出两边极限公差。 CPK的计算数据由至少125组数据组成,抽取的数据也有一定的要求(每5件为一组连续数据,每组之间按一定的时间间隔进行),抽取数据时制程必须是无任何异常状态下进行,所以CPK值反应的是某个制程在正常工作状态下的过程控制能力。 下面分别用4态图、柱状图辅助理解这样更直观一些(两侧的竖直线表示产品的尺寸极限,中间的竖直线表示产品的中间值): 上图的CPK值为0.656,接近0.67,从柱状表示可以看出,虽然产品的尺寸都在极限范围以内,但大部分的产品数据分列在靠近极限值的两端,产品的离散度大;如果某过程的CPK计算数值在0.67左右,意味作该过程的控制能力并不稳定,具有超出产品极限的风险,如果数值小于0.67,加工过程中可能已经有超差极限值得产品存在。 上图的CPK值为1.078,与CPK值为0.656的图形对比可以看出,产品的尺寸的波动范围比前一副图约小一点,更趋近中间值。因此当CPK值增大时,该图反应出的过程控制能力就比CPK值为0.656的过程控制能力要好,那么产品超差两端极限的情况也就更小。 下面分别为CPK值为1.33和1.67左右的图形 从上列4张图片的对比不难看出,当CPK值越大时,过程控制能力越强,加工出的产品越靠近中间值且波动范围越小,产品互换性好质量越高。

制程能力分析

制程能力分析 緒言 在產品生產周期內統計技朮可用來協助制造前之開發活動、制程變異性之數量化、制程變性相對于產品規格之分析及協助降低制 程內之變異性。這些工作一般稱為制程能力分析(process capability analysis)。制程能力是指制程之一致性,制程之變異性可用來衡量制程輸出之一致性。 我們一般是將產品品質特性之6個標准差范圍當做是制程能力之量測。此范圍稱為自然允差界限(natural tolerance limits)或稱為制程能力界限(process capability limits)。圖9-1顯示品質特性符合常態分配且平均值為μ,標准差為σ之制程。制程之上、下自然允差界限為 UNTL=μ+3σ上自然允差界限 LNTL=μ-3σ下自然允差界限 對于一常態分配,自然允差界限將包含99.73%之品質數據,或者可說是0.27%之制程輸出將落在自然允差界限外。如果制程數據之分配不為常態,則落在μ±3σ外之機率將不為0.27%。

(例) 產品外徑之規格為5±0.015cm,由樣本資料得知X=4.99cm,σ=0.004cm,試計算制程之自然允差界限。 (解): UNTL=4.99+3(0.004)=5.002 LNTL=4.99-3(0.004)=4.978 制程能力分析可定議為估計制程能力之工程研究。制程能力分析通常是量測產品之功能參數而非制程本身。當分析者可直接觀察制程及控制制程數據之收集時,此種分析可視為一種真的制程能力分析。因為經由數據收集之控制及了解數據之時間次序性,可推論制程之穩定性。若當只有品質數據而無法直接觀測制程時,這種研究稱為產品特性分析(product characterization)。產品特性分析只可估計產品品質特性之分布,或者是制程之輸出(不合格率),對于制程之動態行為或者是制程是否在管制內則無法估計。這種性形通常是發生在分析供應商提供之品質數據或者是進貨檢驗之品質資料。

制程能力分析程序(含表格)

制程能力分析程序 1.目的: 为使产品的制程能力能够正常且稳定的受到控制,既使有异常出现亦能在问题出现初期就被相关人员了解并设法解决,使得质量系统能适切、有效的运作,进一步能提升制程能力。 2.范围: 凡本公司各生产制程为生产条件、成品、半成品所做的资料收集以任何形式的控制图做管控、归档、保存与处理均在本程序的规范之列。 3.权责: 品质部负责制定控制计划、制程能力分析的实施。 4.名词定义:无 5.作业流程:(见附件) 6.作业内容 6.1 控制图的选用 6.1.1 根据制程上的考虑选择需要的制程站别及管控项目。 6.1.2 依据管控项目及控制图特性选择适用的控制工具。 6.1.3 将控制项目及控制方法标示于《控制计划》上。 6.2 初期制程能力分析

6.2.1 根据《控制计划》进行收集检验与量测的数据。 6.2.2 绘制直方图,判断产品是否在规格范围内,如不在规格范围内,则持续制程改善与数据收集至产品合于规格内。 6.2.3 若产品合于规格范围内,则正式将资料绘制成解析用的控制图。 6.2.4 计算解析用控制图之Ppk值并据此判断制程能力是否充足,若否,则持续制程改善与数据收集至产品制程能力充足。 6.3 统计制程控制 6.3.1 若产品制程能力充足,则根据解析用控制图计算制定控制界限。 6.3.2 对欲控制的制程或产品进行检验并绘控制用控制图。 6.3.3 所有异常情形(如:点超出控制界限;连续七点上升或下降;连续七点位在中心线的上方或下方)皆须标注制程事件。 6.4 制程能力分析及改善行动: 6.4.1 评估该制程稳定或正常否。若正常,则计算Cpk值;若否,则计算Ppk 值。 6.4.2 根据前项计算所得评估制程能力符合否。若Cpk或Ppk值大于等于1.67,则制程正常,可继续生产;若Cpk或Ppk值介于1.33至1.67之间,则可继续生产,但须订定改善目标及执行计划;若Cpk或Ppk值小于1.33,则须修改控制计划或抽样计划针对产品加严抽样或全检,以剔除不合格品。 6.4.3 制程能力不足时,应于制程改善后再从收集检验量测资料步骤重新开始。

CPK(过程能力分析报告方法)

过程能力分析 过程能力也称工序能力,是指过程加工方面满足加工质量的能力,它是衡量过程加工内在一致性的,最稳态下的最小波动。当过程处于稳态时,产品的质量特性值有99.73%散布在区间[μ-3σ,μ+3σ],(其中μ为产品特性值的总体均值,σ为产品特性值总体标准差)也即几乎全部产品特性值都落在6σ的范围内﹔因此,通常用6σ表示过程能力,它的值越小越好。 为什么要进行过程能力分析 进行过程能力分析,实质上就是通过系统地分析和研究来评定过程能力与指定需求的一致性。之所以要进行过程能力分析,有两个主要原因。首先,我们需要知道过程度量所能够提供的基线在数量上的受控性;其次,由于我们的度量计划还相当"不成熟",因此需要对过程度量基线进行评估,来决定是否对其进行改动以反映过程能力的改进情况。根据过程能力的数量指标,我们可以相应地放宽或缩小基线的控制条件。 工序过程能力分析 工序过程能力指该工序过程在5M1E正常的状态下,能稳定地生产合格品的实际加工能力。过程能力取决于机器设备、材料、工艺、工艺装备的精度、工人的工作质量以及其他技术条件。过程能力指数用Cp 、Cpk表示。 非正态数据的过程能力分析方法 当需要进行过程能力分析的计量数据呈非正态分布时,直接按普通的计数数据过程能力分析的方法处理会有很大的风险。一般解决方案的原则有两大类:一类是设法将非正态数据转换成正态数据,然后就可按正态数据的计算方法进行分析;另一类是根据以非参数统计方法为基础,推导出一套新的计算方法进行分析。遵循这两大类原则,在实际工作中成熟的实现方法主要有三种,现在简要介绍每种方法的操作步骤。 非正态数据的过程能力分析方法1:Box-Cox变换法 非正态数据的过程能力分析方法2:Johnson变换法 非正态数据的过程能力分析方法3:非参数计算法

制程能力分析及评价程序

PE制程能力分析及评价程序 1 目的 本程序为收集数据,统计、分析制程能力,从而使制程得到有效的管理和监控,确保制程能力之提升之依据。 2 适用范围 适用于本公司之重要制程和制程中之重要参数。 3 术语和定义 PE:Process Engineer制程工程师 4 职责 制程工程师是制定整个生产流程,分配各个部门的任务,负责制造过程中的各个细节(标准作业指导书),对制程进行管理与控制; 负责模块生产制程良率的提升与制程改善;负责模块生产线,不良品的制程分析与异常处理及改善 5 程序内容 5.1 新产品导入 根据客户要求,制作新产品的生产工艺流程,标准工时的计算,帮忙安装和调试新产品所需要的设备,撰写SOP以及各类制程管控文件,用以明确生产流程步骤 5.2 试产/批量生产 各个环节严格按照各工序的作业指导书进行作业 5.3 管控方法 5.3.1 IPQC巡检时抽查,每1个小时测量10 PCS数据,并测量的结果输入电脑。 5.3.2 监控时机:各项作业条件均检查正常,首件被确认合格后开始收集。 5.3.3 监控频率:每1个小时测量10 PCS数据,根据以下情况做适当的调整: 5.3.4 任一工序若制程能力不足须通知生产停线,工程协同提出改善对策 5.3.5 监控频率:原则上每1个小时测量10 PCS数据,根据以下情况做适当的调整: A 若连续监控1个小时后,制程能力表现非常优秀,可将频率调整为2个小时1PCS B 若连续监控1个小时后,制程能力表现一般,则将频率调整为2个小时15PCS

若连续监控10分钟,制程能力表现差劲,则将频率调整为每个整机都要测试一次。 5.3.6 当监控批出现异常PQC通知生产作出调整,若调整无效,知会PE分析原因并提出 改善对策 5.3.7 将此改善方案(计划)一起,PE联合相关部门解决问题,再次待IPQC确认改善对策 执行有效后,PE并将异常原因和改善对策记录电脑系统 5.3.7 每天统计产品的良率,及时发现良率低的原因并提出解决方案 6 记录 7 相关文件 8 流程图

spc制程能力分析

SPC 概述Statistical Process Control

SPC Introduction 统计性统计管理(SPC = Statistical Process Control)? ? Statistical ... ?统计性方法是用Sampling的Data Monitoring 、分析Process 变动时使用。 Process ... ?反复性的事情或者阶段 (SIPOC : Supplier → Input → Process → Output → Customer) Control ... ? Process正在变化的事实早期警报。 警报是指最终Output出来之前纠正问题,能够具有充分的时间 (管理图 : 随着时间工程散布的变化) SPC –对某个 Process掌握品质规格和工程能力状态, 利用统计性资料和分析技法, 在所愿的状态下一直能管理下去的技法。 2

SPC 的发展历史 SPC 的特征:控制过程,防患于未然。 重点在于预防

?電視機彩色密度 投机?美國:無不合規格產品出廠,注意力在符合規格?日本: 0.3% 超出產品規格,致力於命中目標

製程- 產品-顧客 產品 (Output) Measurement 製程(過程)(Process) 展開 特性 特徵 顧客 滿意 Man Machine Material Method Environmental 4M1E

製程,程序 影響工作結果之所有原因的集合,亦即為達成工作 結果之製造過程中所有活動的集合 管制,控制 確保達到要求標準,必要時採取矯正行動 何謂製程管制 (程序控制) 工作 結果 原材料 方法 環境 機器 人員 原因 手段 特性 目的

制程能力的评价分析

制程能力的评价 制程能力与规格之比较,可就制程平均值与规格中心及分散宽度与规格容许范围两方面比较,亦可直接计算超出规格的不良率来表示。将制程能力与规格之比较用简单的数字及等级评定的方法,谓之制程能力评价。 工程准确度指数(Capability of Accuracy)的评价设定工程规格中心值的目的,在于希望该工程制造出来的各种产品的实绩值,能以规格中心为中心,成左右对称的常态分配,而制造时也应以规格中心值为目标。工程准确度平价之目的就在于衡量制程平均与规格中心之一制程度,有时工程准确度指数又称为正确度指数。 (1)K的计算 制程平均值()与规格中心值 之间偏差程度,称为工程准确 度,其指数K之计算公式如下:

T=Su-Sl=规格上限-规格下限 由上是可知当M与差愈小,也确实是质量接近规格要求的水平。K值为负时,表示实绩值偏低,K值为 正时表示偏高。在单边规格的情形,即只有规格上限Su或只有规格下限Sl的情形,因没有规格中心值, 故不能计算工程准确度指数。 (2)K之等级评定 K等级评定标准 (3)等级评定后之处置原则 ?A级:作业员遵守作业标准操作,接着维持。 ?B级:有必要时尽可能改善为A级。

?C级:作业员可能看错规格,不按作业标准操作,须加强训练,检讨规格及作业标准。 ?D级:应采取紧急措施,全面检讨所有可能阻碍 的因素,必要时得停止生产。 K不良时其对策方法以制造单位为主技术单位为副品管单位为辅有时又以Ca表之。 工程能力指数Cp(Capability of Process)之评价 设定工程上下限的目的,在于希望制造出来的各个产 品之特性值,能在规格上下限之容许范围内。工程能 力的评价之目的就在于衡量产品分散宽度符合公差 的程度。工程能力指数又可称为工程周密度指数 (capability of Precision) (1)Cp之计算 由上式可知产品分散宽度愈大时,Cp值愈小,表示制 程能力差,反之表示能力好。前者系用于计算双边规 格之Cp,而后者用于计算单边规格之Cp。与所

产能分析报告及指标明细

产能分析报告及指标明细 The document was prepared on January 2, 2021

产能分析报告模板及指标明细 一、产能修改记录及主要产品信息 注:产Array能分析 报告— —修改 记录 1) 产能发 生变化 时以便 及时追踪。如进行增产以达到完全生产能力,此时生产线通过一系列步骤可以达到完全生 产能力,则应记录下这些变化。填写论证产能时也应同时填写日期。 2)此次产能分析报告均记作初次提交。 注:产品信息 1)完成产能分析报告的首先要明确需要分析的产品的详细信息。包括产品名称、型号、产能概况、客户需求信息等。 2)必要时应完善产品主要零部件供应商信息,以便及时掌握配套商供货情况,平衡零部件供货影响系数。 二、现有设备产能核算

1、预订工作时间标准 注:Array 1)单班 时间:每 班总时间 -每班的 总计可用 小时数。 2)班 次:表示 的是每天 每个工艺操作的班次数。 3)作业率:(总工时-无效工时)/总工时。 人员休息-如果在人员休息的时候,机器也停止运转,则输入每班中机器不运转的时间长度。 计划的维修时间-这是计划的每班中机器停机用于维护的时间长度。 4)年出勤时间:年出勤天数-表示的是每年的工艺运作的天数(扣除法定节假日、双休日)。 5)计算举例:每班8小时、每天2班次、作业率80%、年出勤302天,净可用时间 =8*2*80%*302=时。 2、代表产品制程/线能力计算

1)代 表产 品:所 谓代表 产品指 产品制 程包含 其他所 有产品 制造过 程包含 的所有 工艺过 程;如 存在两种以上产品包含不同工艺过程、需分别取各类型产品代表产品制程并进行线能力分析。2)评价瓶颈工序应排除可用外协、其他生产线可用设备借代等因素影响。 3)每条生产线选取一种或2种产品作为代表说明制程及瓶颈工序即可,其他产品可直接计算毛产能。 3、毛产能核算

制程能力分析与研究

制程能力分析与研究( ) 一、何谓制程能力 制程能力( )又称工序能力,在的核心工具之一的《统计过程控制》()中解释为“一个稳定过程的固有变差总范围”,其实也就是指处于稳定状态下的工序实际加工能力,即产出品质能够符合工程规格上能力或程度。工序实施的前后过程均应标准化,在非稳定生产状态下的工序所测得工序能力是设有意义的,且工序能力的测定一般是在成批生产状态下进行的,工序能力分析与研究一般应用于产品的开发,设计,试产及量产中,在制程中的关键工序或重要工序也有必要的用到。 还是先看看管制界限、规格值与个别值分配之关系吧!通过图示说明以便让我们对制程能力有一个感性的认知: + ※自然公差遠小於規格公差(σ≤)時, 当σ≤ -时,是最理想情况。如上图所示,个别值分配和规格的关系最佳,因为规格比制程变异大很多,即使制程平均值有很大移动,也不易超出规格界限;至于分配的变异比分配大,但所有个别值仍在规格内;而分布所显示的变异又更大,但仍在规格内。为符合经济上的效益,允许制程平均值适度地偏离规格中心(譬如:分配和),而不至于产生不良品。如此可避免时常调整机具或寻找非机遇因素等造成之延误成本。甚至考虑减少抽样次数,或者取消使用管制图。 ※自然公差差不多等于规格公差(σ)时, X __ +σX __ -σX __ 规格上限() 规格下限()

当σ,如果制程的次数分配与相同则有的产品符合规格;但是当制程平均移动时(如分布)或变异增大时(如分布),则不良率可能远大于。只有分布的是处于统计管制内,不良品的发生率在可接受的范围之内,可是一但发生非机遇因素的变异,应立即加以矫正。 ※自然公差大于规格公差(σ>)时, 当σ>时,表示制程处于非常不理想的状况下,如上图次数分布,超出规格的上下限的不良率在不可接受的范围内;换句话说,制程无制造符合规格产品的能力。 二、制程能力主要指数及判定处理 客户在参观工厂或企业时,往往会问到“”,“不合格品率”,“直通率”或“σ”(西格玛)值,及某些工序的其实这些都是衡量制程能力,产品质量的一种指标。 鉴于制程能力指一定时间得于控制状态下的实际力的能力,能力越高,则产品品质特性的分散就小;能力越低,则产品品质特性分散就越大。过程能力反映普遍原因引起的变差,并且对系统采取管理措施来提高能力。有许多技术可用来评定处于统计控制状态过程的能力,当分布图形是正态的,则可用下述的技术,该技术只包括以控制图上的数据为基础的简单的计算。用过程均值作为分布的位置,用标准偏差来表示测量的分布宽度,标准差是用包含平均极差的简单公式计算出来。 能力指数可分为两类:长期的和短期的。短期能力的研究是从一个操作循环中获取的测量为基础的。这些数据用控制图分析后作为判定该过程是否存在统计控制状态下运行的依据。若未发现特殊原因,可以计算短期的能力指数。这种研究通常用于由客户提出过程中生产出来的首批产品。还有一种用途是机器设备的能力研究,是用来验证一个新的或经过修改的过程实际性能是否合乎工程参数。长期能力研究包括通过很长一段时间内所进行的测量应在足够长的时间内收集数据。同时这些数据应能包含所有能预计到的变差的原因,很多变差原因可能在短期研究时还没有观察到。当收集足够的数据后,将这些数据画在控制图上。若未发现变差的特殊原因,便可以计算长期的能力和性能指数。 所有的能力量度指数必须满足以下四个条件: .产生的数据的过程必须受控,即处于统计稳定状态; .过程的数据的单个测量值基本处于正态分布; .规范是以顾客要求为基础的; .存在一种将计算的指数看成“真实”的指数的意愿。

相关文档