文档库 最新最全的文档下载
当前位置:文档库 › 公平的席位分配(MATLAB程序)

公平的席位分配(MATLAB程序)

公平的席位分配(MATLAB程序)
公平的席位分配(MATLAB程序)

席位分配问题的MATLAB程序

说明:

1.本程序用三种方法,分别是惯例法、d’honht分配法和Q值法。

2.可以模拟出任意一种分配情况,即可以推广到N种情形。

3.三种分配方案供你选择,相互比较。

4.请务必阅读注意事项。

注意:

1.以下包含两个程序,下载完后把程序拷贝到matlab的M文件中,

2.第一个程序可以任意命名,只要符合规范就可以(本人以”xiweifenpei”命名,

这样便于查看),第二个程序一定要命名为“xiwei”,因为程序中要用到函数。

3.下载完后先把程序拷贝到txt文件中,再从txt拷贝到M文件中,这样可以避免乱

码。

程序一:

clear all

clc

disp('席位分配:')

P=1000

p=[235 333 432]

N=10

[x,y]=size(p);

zu=x*y;

disp('惯例分配方法:')

for i = 1:zu

n(i) =p(i)*N/P;

end

n;

m=n-fix(n);

for i=1:zu

if n(i)==max(m)+fix(n(i)) n(i)=fix(n(i))+1;

else

n(i)=fix(n(i));

end

end

disp('惯例分配人数:')

n

disp('d’honht方法:')

pp=[];

for i=1:N

pi=p/i;

pp=[pp; pi];

end

pp

m=zeros(1,zu);

for i=1:N

[x,y]=find(pp==max(pp(:))); pp(x,y)=0;

m(y)=m(y)+1;

end

pp

disp('d’honht分配人数:')

m

disp('Q值法分配方法:')

q=ones(1,zu);

Q=[];

p;

for i=1:zu

Q(i)=p(i)*p(i)/(q(i)*(q(i)+1));

end

Q;

xiwei(p,q,Q,N,zu)

程序二:

再次提醒,以“xiwei”为文件名保存,

function xiwei(p,q,Q,N,zu)

if sum(q)==N

disp('Q值法分配人数:')

q

return;

else

for i=1:zu

if Q(i)==max(Q)

q(i)=q(i)+1;

Q(i)=p(i)*p(i)/(q(i)*(q(i)+1)); break;

end

end

end

xiwei(p,q,Q,N,zu)

公平的席位分配论文

题目:公平的席位分配问题 摘要 数学问题中离不开分配问题,下面我就以公平的席位分配问题进行分析。在以下的分析中,我会先按照比例的分配方法分配,再按照比例家惯例的方法进行分配,表示不公平的席位分配,最后我们利用Q值法对题目进行重新分配,以Q 值的特性使得对其席位的分配更加公平。比例法是我们生活中必不可少的分配方法,但是在有的时候使用Q值法会得到更加的公平分配。 关键词:席位分配比例法比例加惯例 Q值法 一、问题的重述与分析 1.1 问题的重述 某学校有3个系学生共200名,其中甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,三个系分别为10,6,4个席位。现因学生转系,三系人数分别为103,63,34名,问20席如何分配。若增加为21席,又如何分配。 1.2 问题的分析 本题讲将有200名学生,甲103、乙63、丙34,现有20个或21个席位,那我们应该怎么来分配呢?看到这个题,首先想到的是用比例加惯例法,得出:20个席位,三系仍分别占有10,6,4个席位;21个席位,三系分别占有11,7,3个席位。显然这个结果对丙不太公平,因为总席位增加1席,而丙系却由4席减为3席,最后通过比较,还是Q值法分配相对公平。 二、符号设定

1、各系的人数:p i(i=1,2,3……) 2、各系分配到的席位数:n i(i=1,2,3……) 3、各系不公平程度的指标:r i(i=1,2,3……) 4、各系Q值:Q i (1,2,3……) 三、模型的建立与求解 3.1 比例加惯例分配 如下表 分配的席位取整数, 20席位时,甲、乙、丙系分到的席位数分别为10,6,4;可 是总席位增加1个席位时,丙系却由4席减为3席,这显然对丙席不公平。所以按照各系人数所占比例大小分配,有的时候是不公平的。 不妨设A、B方人数分别为p 1、p 2 ,席位分别为n1、n2 当p 1 /n1=p2/n2时,分配公平 当p 1 /n1>p2/n2时,对A不公平 p 1 /n1-p2/n2~对A的绝对不公平度 如:p 1 =150,n1=10,p1/n1=15 p1=1050,n1=10,p1/n1=105 p 2 =100,n2=10,p2/n2=10 p2=1000,n2=10,p2/n2=100

公平的席位分配

公平的席位分配 姓名:仇嘉程 班级:数学与应用数学(2)班 学号:0907022010 摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部 门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、 等的具体座位。本文讨论了席位公平分配问题以使席位分配方案达到最公平状 态。我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相对 不公平度的定义,采用了最大剩余法模型和Q 值法模型,通过检验2种模型的 相对不公平度来制定比较合理的分配方案。 关键词:不公平度指标、Q 值法、最大剩余法 一、问题的提出: 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。 问题一:若学生代表会议设20个席位,如何公平席位分配? 问题二:丙系有6名学生转入甲乙两系,其中甲系转入3人,乙系转入3人, 又将如何公平的分配20个学生代表会议席位? 三、模型的建立: 模型1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配办 法是按学生人数比例分配: 某单位席位分配数 = 某单位总人数比例′总席位 即: (1,2,3...)i i p P i n N N ==,其中1n i i N N ==∑ 1n i i P P ==∑ 但是在实际生活中,若按模型1来计算,由于席位数不同,很难使得到的结果为 整数,因此模型1难以成立,即绝对公平难以成立,我们需要寻求可能相对公平 的分配方案。

模型2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数学生数100 60 40 200学生人数比例100/200 60/200 40/200 席位分配10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为 系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200 按比例分配席位10.3 6.3 3.4 20按惯例席位分配10 6 4 20 由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名甲乙丙总数 学生数103 63 34 200学生人数比例103/200 63/200 34/200 按比例分配席位10.815 6.615 3.57 21 按惯例席位分配11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,我们需要建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型3——Q值法

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

1.实验11-1-公平的席位分配(参照惯例的席位分配方法)-实验11-2-公平的席位分配(Q值方法).doc

河北大学《数学模型》实验 实验报告 班级专业 15计科2班 姓名 张宇轩 学号 20151101006 实验地点 C1-229 指导老师 司建辉 成绩 实验项目 1. 实验11-1 公平的席位分配(参照惯例的席位分配方法) 2. 实验11-2 公平的席位分配(Q 值方法) 一、实验目的 了解参照惯例的席位分配方法和Q 值方法的区别,明确Q 值的意义,学会使用这两种方法解决问题。掌握在MATLAB 下,席位分配问题的调用,熟悉循环的使用,floor 、sort 等函数的使用,学会使用最佳定点或浮点格式(5位数字)控制命令format short g 。 二、实验要求 1. 公平的席位分配(参照惯例的席位分配方法) 参照惯例的席位分配方法:(参考P278-279) n 为席位总数,p1,p2,…,pm为各单位人数。 步骤: a. 按比例各单位所得席位为n*pi/(p1+p2+,…,pm),i=1,2,…,m(结果可能含有小数)。 b. 对各单位所得席位取整。 c. 若对各单位所得席位取整数之和

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

公平的席位分配问题

公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数= 某单位总人数比例总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数100 60 40 200 学生人数比例100/200 60/200 40/200 席位分配10 6 4 20 " 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为 系名甲乙丙总数 学生数103 63 34

200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20 由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 ( 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A p 1 n 1 11n p 单位B p 2 n 2 22n p

music 方位估计 实验报告三 MATLAB 代码

实验报告三 实验目的: 实现常规波束形成及基于MUSIC 方法的方位估计。 实验内容: 1)若干阵元的接收阵,信号频率为10KHz ,波束主轴12度,仿真给出常规波束形成的波束图。 2)16个阵元的均匀线列阵,信号频率为10KHz ,信号方位为12度,用MUSIC 方法完成目标定向,信噪比-5dB ,0dB ,5dB 。 i) 波束形成时的阵型设计为两种,一种是均匀线列阵,阵元16个;一种是均匀圆阵,阵元数为16个,比较这两种阵型的波束图。 ii )比较不同信噪比下MUSIC 方法估计的性能(统计100次)。 实验原理: i)常规波束形成: 如图所示,基阵的输出),(θt v 。 ∑∑=*=* ==M m i i M m i i w t x t x w t v 1 1 ) ()()()(),(θθθ 采用向量符号则有, )()()()(),(H H θθθw x x w t t t v == 式中,x(t)和w(q )分别为观测数据向量和加权系数向量, ) ,(θt v 图 1 波束形成器基本原理图

T M 21])()()([)(t x t x t x t Λ=x T M 21])()()([)(θθθθw w w Λ =w 基阵输出端的空间功率谱表示为: ) ()( )()]()([)( )]()()()([ )],(),([ ] ),([)(H H H H H *2 θθθθθθθθθθRw w w x x w w x x w =====t t E t t E t v t v E t v E P 式中,R 为观测数据的协方差矩阵。 ii )基于MUSIC 方法的方位估计: )()()()(1 t n t s a t x i d i +=∑=θ T M 21])()()([)(t x t x t x t Λ =x )()()()(t n t s A t x +=θ 假设: (1 ) 信号源的数目d 是已知的, 且d < M ; (2 ) 各信号的方向矢量是相互独立的, 即)(θA 是一个列满秩矩阵; (3 ) 噪声)(t n 是空间平稳随机过程, 为具有各态历经性的均值为零、方差为σ2n 的高斯过程; (4 ) 噪声各取样间是统计独立的。 在上述假设条件下, 基阵输出的协方差矩阵可表示为: I A AR t x t x E R H s H 2])()([α+== 其中, R s 为信号的协方差矩阵;I 为单位矩阵。对R 进行特征分解, 并以特 征值降值排列可得 H m m M d m m H m m d m m e e e e R ∑∑+==+ =1 1λ λ 信号子空间与噪声子空间正交。 若噪声子空间记为E N , 即 ∑+== M d m H m m N e e E 1

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

数学建模对公平的席位分配问题的一点补充

对公平的席位分配问题解法的一点补充 222008314011010 刘欢 08数统一班 为叙述简单,仍然采用书中的例子如下 一.提出问题: 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲、乙、丙三系分别应占有10,6,4个席位。现在丙系有3名学生转入甲系, 3名学生转入乙系,仍按比例分配席位出现了小数,三系同意,在将取得整数的19席位分配完毕后,剩下的1席位参照所谓惯例分给比例中小数最大的丙系,于是三系仍分别占有10,6,4个席位。按比例并参照惯例的席位分配。 由于20个席位的代表会议在表决时可能出现10∶10的局面,会议决定下一届增加1席,按照上述方法重新分配席位,计算结果是甲、乙、丙三系分别应占有11,7,3个席位。显然这个结果对丙系太不公平了,因总席位增加1席,而丙系却由4席减为3席。 请问:如何分配才算是公平? 二.书中模型 用Q 值法求解如下 设A ,B 两方,人数分别为1p 和2p ,占有席位分别是1n 和2n ,当1122=p n p n 时席位的分配公平。但人数为整数,通常1122≠p n p n 。这时席位分配不公平,且 /p n 较大的一方吃亏。 当1122>p n p n 时,定义 1122 1222 -= (,)A p n p n r n n p n (1) 为对A 的相对不公平值。

当1122

p n p n ,即对A 不公平,当再分配一个席位时,有以下三种情况: (1) 当 22 1>+11p p n n 时,说明即使给A 增加1席,仍然对A 不公平,所以这一席显然应给A 方. (2)当 22 1<+11p p n n 时,说明给A 增加1席后,变为对B 不公平,此时对B 的相对不公平值为 211212 11-1 ++= () (,)B p n r n n p n (3) (3)当 221 >+11p p n n 时,这说明给B 增加1席,将对A 不公平,此时对A 的相对不公平值为 121221 11-1 ++= () (,)A p n r n n p n (4) 因为公平分配席位的原则是使相对不公平值尽可能小,所以如果 121211 +<+(,)(,)B A r n n r n n (5) 则这1席给A 方,反之这1席给B 方. 由(3)(4)可知,(5)等价于 2 1222211< 11++() () p p n n n n (6) 不难证明上述的第(1)种情况 22 1>+11p p n n 也与(6)式等价,于是我们的结论是当(6)式成立时,增加的1席应给A 方,反之给B 方。 若记 2, =1,2 1= +() i i i i p Q i n n

(完整版)MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK % Pe=zeros(1,26); jishu=1; for snr=-10:0.5:15 max = 10000; s=round(rand(1,max));%长度为max的随机二进制序列 f=100;%载波频率 nsamp = 1000;每个载波的取样点数 tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同 cm=zeros(1,nsamp*max); cp=zeros(1,nsamp*max); mod=zeros(1,nsamp*max); for n=1:max; if s(n)==0; m=zeros(1,nsamp); b=zeros(1,nsamp); else if s(n)==1; m=ones(1,nsamp); b=ones(1,nsamp); end end c = sin(f*tc); cm((n-1)*nsamp+1:n*nsamp)=m; cp((n-1)*nsamp+1:n*nsamp)=b; mod((n-1)*nsamp+1:n*nsamp)=c; end tiaoz=cm.*mod;%2ASK调制 t = linspace(0,length(s),length(s)*nsamp); tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调 [N,Wn]=buttord(0.2,0.3,1,15); [b,a]=butter(N,Wn); dpsk=filter(b,a,jiet);%低通滤波 % 抽样判决,判决门限为0.5 depsk = zeros(1,nsamp*max); for m = nsamp/2:nsamp:nsamp*max; if dpsk(m) < 0.5; for i = 1:nsamp depsk((m-500)+i) = 0; end

公平席位分配模型

数 学 建 模 论 文单位:湖南信息职业技术学院系别: 信息工程系 班级: 信息0903 作者: 贺际嵘

公平的席位分配问题 [摘要]我们用公平席位分配模型,解决了10人委员会人员组成问题并保证对A.B.C的相对都公平.首先,我们用人们常用的惯例分配席位的方法来分配10个席位得出结果如表1-1;再假定情况1,也用惯例分配席位的方法来分配得出结果如表2-2;由以上两步的结果可以判定此种按照人数比例分配的惯例分配方法在这里应用分配的结果是不公平的,导致总席位数N增加一个,A的席位数反而减少了一个;此后,我们在寻找一个更为公平的分配方案,经过对问题的深入了解,逐步分析并结合各种情况的共同性建立我们日常寻求的更为公平的分配方案—Q值法;最后,我们通过Q值法求的本问题的最佳分配结果,也进一步,把这一以Q值法为为方法的公平席位分配模型推广到我们的日常生活中所遇到的席位分配问题.通过公平席位分配模型对席位的分配,不难检验出惯例分配席位的方法是不公平的,总席位数为N=10 的公平分配结果是: A是n1=2, B是n2=3,C是 n3=5. [关键字]公平分配;Q值法;模型.

1 问题重述 我们日常生活之中经常会面对席位分配的问题,如某学校共1000学生,235人住在A楼,333人住在B楼,432住在C楼. 学生要组织一个10人委员会,我们可以试用惯例分配方法和Q值方法分配各楼的委员数,并比较结果,试得出更为公平的分配方案及结果. 事先我们可以对问题进行假设与符号定义;然后进行我们的问题分析,先用惯例分配分配席位的方法分析:①可以先人们常用的惯例分配席位的方法来分析公平分配10个席位并得出结果;②也可以再假定情况1,也用惯例分配席位的方法来分析并得出结果;两种结果进行分析以初步得出惯例分配席位的方案是不公平的,并思考怎样才能得出更为公平的分配方案;然后,我们把模型建立方面的分析及其模型建立放在模型建立里面再分析. 2 问题的假设与符号定义 1.1问题的假设: 1.席位是以整数计量的,并且为有限个,设为N个; 2.每个单位有有限个人,席位是按各集体的人员多少来分配的;3.每个单位的每个人都具有相同的选举权利; 4.每个单位至少应该分配到一个名额,如果某个单位,一个名额也 不应该分到的话,则应将其剔除在分配之外; 5.在名额分配的过程中,分配是稳定的,不受任何其他因素所干扰.

公平的席位分配论文

公平的席位分配论文 This manuscript was revised on November 28, 2020

题目:公平的席位分配问题 摘要 数学问题中离不开分配问题,下面我就以公平的席位分配问题进行分析。在以下的分析中,我会先按照比例的分配方法分配,再按照比例家惯例的方法进行分配,表示不公平的席位分配,最后我们利用Q值法对题目进行重新分配,以Q值的特性使得对其席位的分配更加公平。比例法是我们生活中必不可少的分配方法,但是在有的时候使用Q值法会得到更加的公平分配。 关键词:席位分配比例法比例加惯例 Q值法 一、问题的重述与分析 问题的重述 某学校有3个系学生共200名,其中甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,三个系分别为10,6,4个席位。现因学生转系,三系人数分别为103,63,34名,问20席如何分配。若增加为21席,又如何分配。 问题的分析 本题讲将有200名学生,甲103、乙63、丙34,现有20个或21个席位,那我们应该怎么来分配呢看到这个题,首先想到的是用比例加惯例法,得出:20个席位,三系仍分别占有10,6,4个席位;21个席位,三系分别占有11,7,3个席位。显然这个结果对丙不太公平,因为总席位增加1席,而丙系却由4席减为3席,最后通过比较,还是Q值法分配相对公平。

二、符号设定 1、各系的人数: p i (i=1,2,3……) 2、各系分配到的席位数: n i (i=1,2,3……) 3、各系不公平程度的指标:r i (i=1,2,3……) 4、各系Q 值:Q i (1,2,3……) 三、模型的建立与求解 比例加惯例分配 如下表 分配的席位取整数,20席位时,甲、乙、丙系分到的席位数分别为10,6,4;可是总席位增加1个席位时,丙系却由4席减为3席,这显然对丙席不公平。所以按照各系人数所占比例大小分配,有的时候是不公平的。 不妨设A 、B 方人数分别为 p 1、p 2,席位分别为 n 1、n 2 当p 1/n 1=p 2/n 2时,分配公平 当p 1/n 1>p 2/n 2时,对A 不公平 p 1 /n 1-p 2 /n 2~对A 的绝对不公平度 如:p 1=150,n 1=10,p 1/n 1=15 p 1=1050,n 1=10,p 1/n 1=105 p 2 =100,n 2=10,p 2/n 2=10 p 2=1000,n 2=10,p 2/n 2=100

公平的席位分配

席位公平分配问题 —Q值法的改进 摘要:本文为建立席位分配问题的公平合理方案.对经典Q 值法进行了研究并提出改进,构造了衡量相对不公平程度的新标准量。通过对书本中的经典席位分配问题实例的计算,比较分析了多种席位分配方法的求解结果,并与经典的Q值法进行了公平性的比较。结果表明改进的标准量更为合理,从而验证了该方法的有效性和合理性。 一、问题背景 席位分配问题是人类社会生活中相当普遍的一类资源分配问题,是数学在政治领域中应用的典型实例,其目标是在一个大集体对小集体进行某种资源分配时试图尽可能做到公平合理。席位分配问题最关键之处是它的悖论观,无论选择怎样的分配方案,总会产生这样或那样的矛盾,著名的有以下几种悖论:亚拉巴马悖论、人口悖论和新州悖论。同时,席位公平分配的关键是提出衡量公平度的一个量,即满足下述5条公理: 公理1(人口单调性):一方的人口增加不会导致它失去一个名额。 公理2(无偏性):在整个时间平均,每一方应接受到它自己应分摊的份额。 公理3(名额单调性):总名额的增加不会使某一方的名额减少。

公理4(公平分摊性):任何一方的名额都不会偏离其比例份额数。 公理5(接近份额性):没有从一方到另一方的名额转让会使得这两方都接近于它们应得的份额。 然而,1982年M .L .Balinski 和H .P .Young 证明了一个B —Y 不可能定理,即绝对公平的分配(满足公理1~公理5)方案是不存在的,既然绝对公平的分配方案不存在,人们便致力于席位分配问题的相对公平的研究。著名的Q 值法是1982年由 D .N .Burghes 和I .Hunttey 等人提出的一种相对不公平衡量标准,该方法简单易行,且克服了其他方法的一些矛盾,被广泛的应用于资源公平分配问题中。但不足之处是未考虑名额分配后的整体状况,而首先给每一方分配一个名额也是没有道理的。基于此考虑,这里提出了一种新的衡量相对不公平的标准,不需要事先给每一方分配一个名额,其计算量与Q 值法相当,但比Q 值法更趋于公平。通过实例比较了该方法与Q 值法及其它方法的求解结果,从而验证该方法的合理性和有效性。 二公平标准的构造 1.1席位分配问题描述 席位分配问题是指:假设有m 方参加N 个可供分配的席位, 其中第i 方的人数为i p (i=1,2,…,m),m 方的总人数为1m i i p p ==∑, 第i 方所分配的席位为n i ,(i=1,2,…,m),如何寻找一组整数

公平席位的分配

公平席位的分配 数学(2)班学号 0907022029 郭子龙 摘要:讨论公平席位分配的模型已有很多。本文首先用比例加惯例法、Q值法、D’hondt法对问题中名额进行了分配,再对D’hondt法的合理性进行了分析,并在Q值法对绝对尾数(绝对不公平度)的处理方式基础上,提出了相对尾数模型,并讨论了其满足Young公理的1,3,4条 关键词:分配相对尾数 Balinsky & Young不可能定理 正文 1 问题复述 公平的席位分配问题是一个非常有趣而重要的问题,它在政治学、管理学和对策论等领域具有广泛的应用价值。处理这个问题的最早的方法是Hamilton法,即比例加惯例法;后来出现了Q值法;1974年M.L.Balinski和H.P.Young引入了席位分配问题的公理体系研究方法,并于1982年证明了同时满足五个公理的席位分配方法是不存在的;因此,我们只能根据实际建立在一定公平准则下成立并尽量多的满足Young公理的算法。这里,我们需要理解并运用比例加惯例法、Q 值法、D’hondt法对宿舍委员会名额进行分配,继而提出更优的公平分配席位的方法。 2 模型假设 2.1 合理假设 1.比例加惯例法、Q值法等分配模型均为已知; 2.各个宿舍相互独立互不影响,人数保持不变; 3.委员分配以各宿舍人数为唯一权重。 2.2 符号约定

3 模型的建立与求解 3.1按比例加惯例模型分配 根据比例加惯例分配模型的原理表 3.2按Q 值法模型分配 首先用比例分配法对名额进行初步分配,再根据表达式 )1(2 += i i i i m m n Q C B A i ,,=对剩下的名额进行分配 3.3 D ’hondt 模型 3.3.1 模型建立 设n ,m 分别表示宿舍总人数和总分配席位数,i n (1,2,3i =)表示各宿舍人数,

公平的席位分配问题建模作业

公平的席位分配问题 ——数学建模报告 20094865,陈天送 20094862,陈铁忠 20094854,朱海

公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。 符号设定: N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系) P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系) i Q :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系) Z :目标函数 方法一,比例分配法:即: 某单位席位分配数 = 某单位总人数比例?总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。 方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若 2211n p n p > 则称 1122122221 1-=-n p n p n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若 2211n p n p < 则称 121121 1 11 22-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。 确定分配方案: 使用不公平值的大小来确定分配方案,不妨设1 1 n p > 2 2n p ,即对单位A 不公平,再分配一个席 位时,关于11n p ,22n p 的关系可能有 1. 111+n p >22 n p ,说明此一席给A 后,对A 还不公平; 2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为 1)1(11),1(21211111 222 1-?+=++-=+n p p n n p n p n p n n r B 3. 1 1 n p > 1 22+n p ,说明此一席给B 后,对A 不公平,不公平值为

公平的席位分配(MATLAB程序)

席位分配问题的MATLAB程序 说明: 1.本程序用三种方法,分别是惯例法、d’honht分配法和Q值法。 2.可以模拟出任意一种分配情况,即可以推广到N种情形。 3.三种分配方案供你选择,相互比较。 4.请务必阅读注意事项。 注意: 1.以下包含两个程序,下载完后把程序拷贝到matlab的M文件中, 2.第一个程序可以任意命名,只要符合规范就可以(本人以”xiweifenpei”命名, 这样便于查看),第二个程序一定要命名为“xiwei”,因为程序中要用到函数。 3.下载完后先把程序拷贝到txt文件中,再从txt拷贝到M文件中,这样可以避免乱 码。

程序一: clear all clc disp('席位分配:') P=1000 p=[235 333 432] N=10 [x,y]=size(p); zu=x*y; disp('惯例分配方法:') for i = 1:zu n(i) =p(i)*N/P; end n; m=n-fix(n); for i=1:zu if n(i)==max(m)+fix(n(i)) n(i)=fix(n(i))+1; else n(i)=fix(n(i)); end end disp('惯例分配人数:') n disp('d’honht方法:') pp=[]; for i=1:N pi=p/i; pp=[pp; pi]; end pp m=zeros(1,zu); for i=1:N [x,y]=find(pp==max(pp(:))); pp(x,y)=0; m(y)=m(y)+1; end pp disp('d’honht分配人数:') m disp('Q值法分配方法:')

kalman滤波在不同信噪比时的误码率matlab仿真程序

-20-15-10-50510152000.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Kalman滤波器在matlab仿真程序下的不同信噪比时的误码率: %multiuser_dectect.m clc; clear all; hold on BER_sum=zeros(1,13);%设定求和误码率的零矩阵; BER_ave=zeros(1,13); %设定平均误码率的零矩阵; for m=1:10;%m的长度为1到10 间隔为1; snr_in_db=-20:3:16;%定义信噪比的长度为-20到16 间隔为3;snr_in_db是信噪比用db表示 for i=1:length(snr_in_db);%i的长度为1到信噪比的长度 BER(i)= Kalman_S1(snr_in_db(i));%卡尔曼的误码率函数; end BER_sum=BER_sum+BER;%误码率求和的算法 end; BER_ave=0.1* BER_sum ; %误码率平均值的算法 semilogy( snr_in_db,BER_ave,'rd-');%y轴维数坐标图定义横坐标为信噪比,纵坐标为误码率; %Kalman_S1.m %Kalman algorithm %synchronous CDMA同步cdma %channel: White Gaussis Noise function [p] = Kalman_S1(snr_in_dB) SNR=10^(snr_in_dB/10); %信噪比由dB形式转化 sgma=1; % noise standard deviation is fixed 定义方差 Eb=sgma^2*SNR; A=[sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqr t(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb)]; K=length(A);

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)

席位公平分配问题 摘要 本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。 首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。 其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。 最后,我用相对不公平数来检验两个模型的公平性程度。 关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型

目录 一、问题重述与分析: (3) 1.1问题重述: (3) 1.2问题分析: (3) 二、模型假设 (4) 三、符号说明 (4) 四、模型建立: (5) 4.1公平的定义: (5) 4.2不公平程度的表示: (5) 4.3相对不公平数的定义: (5) 4.4模型一的建立:(比例分配模型) (6) 4.5模型二的建立:(d'hondt模型和Q值模型) (6) 五、模型求解 (8) 5.1模型一求解: (8) 5.2模型二的求解: (8) 六、模型分析与检验 (9) 七、模型的评价: (11) 7.1、优点: (11) 7.2、缺点: (11) 7.3、改进方向: (11) 八、模型优化 (11) 九、参考文献 (12)

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

相关文档
相关文档 最新文档