文档库 最新最全的文档下载
当前位置:文档库 › 遗传学(第二版)刘庆昌 重点整理1

遗传学(第二版)刘庆昌 重点整理1

遗传学(第二版)刘庆昌 重点整理1
遗传学(第二版)刘庆昌 重点整理1

Heredity (遗传)

亲代与子代(上下代)之间相似的现象

遗传的特点:相对稳定性、保守性。

Variation (变异)

亲代与子代之间以及子代个体之间的差异。

变异的特点:普遍性和绝对性。

分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。

Evolution (进化)

生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。

进化的两种方式:

渐变式:积累变异成为新类型(continual variation),如适应性进化。

跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。

遗传与变异的关系

遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下:

★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。

3、遗传、变异与进化的关系

生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。

动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。

摩尔根创立基因学说

克里克提出的“中心法则”。

Human Genome Project (HGP)

Epigenetics 表观遗传学

1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。

2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变

3. 表观遗传学的现象:

(1) DNA甲基化

(2) 组蛋白修饰

(3) MicroRNA

(4) Genomic imprinting

(5)休眠转座子激活…

Cytogenetics 细胞遗传学

Plasma membrane (细胞质膜)

Cytoplasm(细胞质)

Nucleoid (拟核)

Plasmid (质粒)

Prokaryote (原核生物)

线粒体mitochondria

叶绿体chloroplast

内质网The Endoplasmic Reticulm (ER)

核糖体ribosome

Chromatin and Chromosome (染色质和染色体)染色体是遗传物质的主要载体

核小体是染色质的基本结构单位

Euchromatin(常染色质)是指间期细胞核内染色较浅、低度折叠压缩的染色质,是染色质中转录活跃部位,因此又称为活性染色质,处于常染色质状态是基因转录的必要条件。Heterochromatin(异染色质)是指间期细胞核内染色很深、压缩程度高,处于凝集状态的染色质,无转录活性,因此也叫非活性染色质。

Morphology of Chromosome (染色体形态)

中间着丝点染色体(Metacentric Chromosome)

近中着丝点染色体(Sub-metacentric chro)

近端着丝点染色体(Acrocentric chro)

顶端着丝点染色体(Telocentric chro)

同源染色体(Homologous chromosome)

在生物体细胞内,具有形态和结构相同的一对染色体,且含有相同的基因位点;

★非同源染色体(non-homologous chromosome)

一对染色体与另一对形态结构不同的染色体之间,互称为非同源染色体,也叫异源染色体,含有不同的基因位点。

核型分析(Analysis of karyotype)。

Amitosis (无丝分裂)

Mitosis (有丝分裂)细胞周期(Cell cycle )指细胞从前一次分裂结束到下一次分裂终了所经历的时期,一个完整的细胞周期包括分裂间期(Interphase )和分裂期两个阶段。 Mitosis (有丝分裂)前期(prophase)中期(metaphase)后期(anaphase)末期(telophase) Meiosis (减数 分裂)第一次分裂是减数的;第二次分裂是不减数的。 第一次分裂复杂,时间长;第二次分裂跟一般的有丝分裂一样。 同源染色体(homologous chromosome)

在二倍体生物中,每对染色体的两个成员中一个来自父方,一个来自母方,其形态大小相同的染色体称为同源染色体。

★ 非同源染色体(nonhomologous chromosome) 不属于同一对的染色体称为非同源染色体。 ★ 联会(synapsis)

同源染色体的两个成员侧向连接,像拉链一样地 并排配对称为联会。联会始于偶线期,终止在双线期。 减数分裂的特点

1、具有一定的时空性,也就是说它仅在一定的发育阶段,在生殖细胞中进行。

2、减数分裂经第一次分裂后染色体数目减半,所以减数分裂的产物是单倍体。

3、前期长而复杂,同源染色体经历了配对(联会)、交换过程,使遗传物质进行了重组。

4、每个细胞遗传信息的组合是不同的。

无性生殖 (Asexual reproduction) 母体直接产生子代的繁殖方式。

有性生殖(Sexual reproduction)

有丝分裂 减数分裂

分裂细胞类型

体细胞

原始生殖细胞(孢母细胞) 细胞分裂次数

复制一次分裂一次 复制一次分裂二次 子细胞数目 2 4 染色体数目变化

2n→2n 2n→n DNA 分子数变化 2n→4n→2n 2n→4n→2n→n 染色单体数目变化 0→4n→0 0→4n→2n→0 同源染色体行为

不联会、无四分体形成

联会后形成四分体 可能发生的变异 基因突变和染色体变异

基因突变、染色体变异和基因重组

意义

有丝分裂使生物在个体发育中亲代细胞与子代细胞之间

减数分裂和受精作用使上下代生物之间保持染色体数目恒定,高频率基因重组

生物体在于特定部位产生雌雄配子,两种配子受精结合成合子,由合子进一步分裂,分化,生长形成新的个体的繁殖方式。

生活周期是指从合子到成熟个体,再到死亡所经历的一系列发育阶段,包括孢子体世代和配子体

世代。

1. 孢子体世代(sporophyte generation)

有性生殖动植物从受精合子发育为一个成熟的个体,在此过程中,无配子形成和受精发生。也称为无性世代。

2. 配子体世代(gametophytic generation)

孢子体经过发育,某些细胞和组织将产生雌雄配子或雌雄配子体,配子经受精作用形成合子的过程。也称为有性世代。

第二章

DNA作为主要遗传物质

DNA作为遗传信息载体

核酸(Nucleic acid)是一类重要的生物大分子,在生物体内负责生命信息的储存和传递。DNA双螺旋结构模型是分子(生物学)遗传学诞生的标志。

★DNA分子双螺旋结构模型要点

(1) 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,很象一个扭曲起来的梯子。

(2) 两条多核苷酸链走向为反向平行。即一条链磷酸二脂键为5’-3’方向,而另一条为3’-5’方向,二者刚好相反。

(3) 每条长链的内侧是扁平的碱基,碱基一方面与脱氧核糖相联系,另一方面通过氢键(hydrogen bond)与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档。互补碱基对A 与T之间形成两对氢键,而C与G之间形成三对氢键。

(4) 上下碱基对之间的距离为3.4?。每个螺旋为34?(3.4nm)长,刚好含有10个碱基对,其直径约为20?。

(5)在双螺旋分子的表面大沟(major groove)和小沟(minor groove)交替出现。

DNA复制的明显方式——半保留复制(semiconservative replication)。是遗传信息能准确传递的保证,是物种稳定性的分子基础。

DNA分子的结构特点和DNA功能

结构特点

稳定性:主链:磷酸与脱氧核糖交替排列稳定不变。碱基对:严格遵循碱基配对原则。

多样性:碱基个数、排列顺序不同。

特异性:每个DNA分子独一无二。

功能

DNA具有基因的所有属性,基因也就是DNA的一个片段。DNA的基本功能是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

DNA复制(Replication)是指以原来的DNA分子为模板合成相同分子的过程,遗传信息通过亲代DNA分子的复制传递给子代。

解链酶(helicase)

解开DNA双链中氢键,消耗A TP

单链结合蛋白(single-stranded DNA-binding protein)与单链DNA结合,保持模板处于单链状态,保护复制中的DNA单链不被核酸酶降解

DNA拓扑异构酶(topoisomerase)

引物酶(primase)

DNA聚合酶(DNA polymerase)

DNA连接酶(DNA ligase)

复制起始点(origin, ori):DNA复制

开始的特定位点。

原核生物只有一个复制起始点;

真核生物染色体DNA有多个复制起始点,同时形成多个复制单位,两个起始点之间的DNA片段称为复制子(replicon)。

复制叉(replication fork)

双向复制(bidirectional replication)

原核生物从一个固定的起始点开始,同时向两个方向进行,称为双向复制。

用电子显微镜看到了DNA复制过程中出现一些不连续片段,这些不连续片段只存在与DNA 复制叉上其中的一股。后来就把这些不连续的片段称为冈崎片段。

复制有终止信号

polⅠ5′→3′外切酶活性水解引物

polⅠ聚合活性填补空隙

DNA连接酶连接缺口。

★真核生物DNA合成的特点

1、DNA合成发生的时间:仅为细胞周期的S期。

2、真核生物DNA聚合酶多(种类, 拷贝数)

3、复制的起始点为多起点。

4、合成所需的RNA引物和冈崎片断都比原核生物的短。

5、核小体的复制。

6、染色体端粒的复制。

端粒的合成是在端粒酶作用下完成

★真核生物染色体为线状,存在端粒

1、防止染色体末端为DNA酶酶切;

2、防止染色体末端与其它DNA分子的结合;

3、使染色体末端在DNA复制过程中保持完整。

信使RNA (messenger RNA,mRNA)

转移RNA (transfer RNA,tRNA)

核糖体RNA (ribosomal RNA,rRNA)

真核生物的核糖体,含有5S、5.8S、18S和28S 4种rRNA和约80种蛋白质。

原核生物含有5S, 16S和23S三种种rRNA,占总RNA的80%(细胞)。

转录(transcription):以DNA为模板,在RNA聚合酶(RNA polymerase)的作用下合成mRNA,将遗传信息从DNA分子上转移到mRNA分子上,这一过程称为转录(transcription)。模板链用作RNA合成模板的链(template strand, antisense strand)

编码链互补于模板链的DNA链。(coding strand, sense strand)

启动子(promoter)是位于结构基因5’端上游的一段特异的DNA序列,通常位于基因转录起点100bp范围内,是RNA聚合酶识别并结合形成转录复合物的部位。

启动点: 转录起始的第一个碱基;

转录单位(transcription unit):由启动子到终止子的序列

转录起始点(startpoint)为+1, 起始点5’端的序列称为上游(upstream), 起始点3’端的序列为下游(downstream).

序列都约定俗成的写成从5’端向3’端

顺式作用元件---- 真核生物Cis-regulatory element位于真核DNA转录起始点上游,与转录起始和调控有关的DNA序列。

反式作用因子:直接或间接辨认、结合顺式作用元件的蛋白质。

原核生物与真核生物RNA转录的区别

1. 真核生物RNA的转录是在细胞核内,翻译在细胞质中进行;

原核生物则在核区同时进行转录和翻译;

2. 真核生物一个mRNA只编码一个基因;

原核生物一个mRNA编码多个基因;

3. 真核生物有RNA聚合酶Ⅰ、Ⅱ、Ⅲ等三种不同的酶;

原核生物则只有一种RNA聚合酶;

4. 真核生物中转录的起始更复杂,RNA的合成需要转录因子的

协助进行转录;原核生物则较为简单

所有的遗传密码子都是由3 个核苷酸组成的, 所以可称三联体密码( triplet code)

简并性:一个氨基酸由二个或二个以上的三联体密码所决定的现象。

起始密码子:AUG GUG;终止密码子: UAA UAG UGA

翻译:以mRNA为模板指导蛋白质合成的过程

多聚核糖体polyribosome or polysome

中心法则阐述的基因两大基本属性:

复制:DNA→DNA;

表达:从DNA→mRNA→蛋白质;

聚合酶链式反应(Polymerase chain reaction,PCR)PCR是在体外模拟体内DNA复制的过程,是一种在模板DNA、引物和4种脱氧核苷酸、Mg2+存在下合适的缓冲体系中的DNA聚合酶酶促反应,通过3个温度的反复循环实现。

第三章

The Law of Segregation (分离规律)

杂交(Hybridization or Cross)

在遗传分析中有意识地将两个基因型不同的亲本进行交配称杂交。

★性状(Trait or Character )

指生物体所表现出的形态特征和生理特性的总称。

★单位性状(Unit character)

指某一具体的性状。

★相对性状(Relative or contrasting Character)

指同一单位性状在不同个体间所表现出来的相对差异,例如,豌豆花色的红花与白花。★表现型(Phenotype)

简称表型,指生物个体表现出来的可观测的某一性状。表型是基因型与环境共同作用的结果。

★基因型(Genotype)

指代表个体不同遗传组成的基因组合类型。基因型不能用肉眼识别,只能通过基因的遗传行为来加以鉴别。

★基因(Gene)

是DNA 分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 ★ 基因座位(locus )

基因在染色体上所处的位置。 ★ 等位基因(alleles )

同源染色体上占据相同座位的 两个不同形式的基因。

★ 显性基因(dominant gene )

在杂合状态下,能够表现其表型效应的基因,一般以大写字母表示。 ★ 隐性基因(Recessive gene )

在杂合状态下不表现其表型效应的基因,一般用小写字母表示。 ★ 纯合体(Homozygote )

基因座位上有两个相同的等位 基因,就这个基因座而言, 此个体称纯合体。

★ 杂合体(heterozygote )

基因座位上有两个不同的等位基因。 ★ 测交(testcross )

杂交产生的子一代个体再与其隐性亲本的交配方式。 (1). 纯合基因型(homozygous genotype ):

成对的基因型相同。如CC 、cc 或称纯合体,纯质结合。 (2). 杂合基因型(heterozygous genotype ):

成对的基因不同。如Cc 或称杂合体,为杂质结合。 ★ 分离现象的特点

(1)不论正反交,F1代所有植株表现的性状一致,都只表现一个亲本的性状,另一亲本的性状则隐藏未现;

(2)F1代自交的后代(F2代)出现性状分离,在F1代未表现的亲本性状在F2代出现。 性状分离现象(Character segregation )

F2代在F1代的基础上发生了性状分离,表现出了双亲的性状,这一现象叫分离现象。 ★ Rule of Segregation (分离规律)(Mendel’s first law) (孟德尔第一定律) 一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去。正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1, F2代表型比为3∶1。 The Law of Independent Assortment (独立分配规律,自由组合规律)控制两对性状的两对等位基因,分别位于不同的同源染色体上。在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合。 亲组合 parental combination 在杂交实验的后代中,与亲本的表现型一致的那些个体类型称为亲组合,或称为亲本组合。

重组合 recombination

在杂交实验的后代中,与亲本的表现型不一致的那些个体类型称为重组合,或称为重新组合。

X 2 测验基本公式: (注:O 是实测值,E 是理论值)df----自由度,等于 n – 1 P>0.05说明“差异不显著”,P<0.05说明“差异显著”;如果P<0.01说明“差异极显著”。 x2测验法不能用于百分比,如果遇到百分比应根据总数把他们化成频数,然后计算差数.

-=X E

E O 2)(2

完全显性complete dominance:F1表现与亲本之一完全一样。

共显性codominance

如:人类血型ABO,MN;红细胞镰形和碟形;

不完全显性imcomplete dominance

又称半显性semidominance,F1表现为双亲性状的中间型。

显性转换reversal of dominance

显性在不同的环境条件下发生转换的现象。

复等位基因(multiple alleles):指在同源染色体的相同位点上,存在三个或三个以上的等位基因。

致死基因(lethal alleles),是指当其发挥作用时导致个体死亡的基因。包括显性致死基因(dominant lethal alleles)和隐性致死基因(recessive lethal alleles)。

基因互作gene interaction由于不同对基因间相互作用共同决定同一单位性状表现的遗传现象。

★基因互作的两种情况:

(1) 基因内互作:指同一位点上等位基因的相互作用,为显性或不完全显性和隐性;

2) 基因间互作:指不同位点非等位基因相互作用共同控制一个性状,如上位性和下位性或抑制等。

1) 互补作用complementary effect

当两对基因在显性纯合或杂合状态时,个体表现为一种性状,当两对基因中只有一对基因为显性或两对基因均为隐性时,个体表现为另一种性状,这种基因互作类型称为基因互补作用(complementary effect)。发生互补作用的基因称为互补基因(complementary gene )。

(2) 累加作用additive effect

当两对或两对以上基因互作时,显性基因累积越多,个体性状表现越明显的现象,这种基因互作类型称为基因累加作用(additive effect )。

(3) 重叠作用duplicate effect

当两对或两对以上基因同时控制一种单位性状时,只要其中一对等位基因中存在显性基因,个体表现为显性性状,而两对基因均为隐性时,个体表现为隐性性状,这种这种基因互作类型称为基因重叠作用

(4) 上位作用epistatic effect

当两对基因同时控制一种单位性状时,其中一对基因对另一对基因表现具有遮盖作用,这种情形称为上位性(Epistasis),这种基因互作类型称为基因上位作用(epistatic effect )。起遮盖作用的基因称为上位基因(epistatic gene) 。如果起遮盖作用的基因是显性基因,则称为显性上位作用(dominace epistasis)。如果起遮盖作用的基因是隐性基因,则称为隐性上位作用(recessive epistasis)。

(5) 抑制作用inhibiting effect

当两对基因中某一对基因本身不控制性状的表现,但对另一对基因的表现具有抑制的作用,这种这种基因互作类型称为基因抑制作用(inhibiting effect )。具有抑制作用的基因称为抑制基因(inhibiting gene)。

多因一效multigenic effect

许多不同的基因影响一种性状发育的现象。

或者一个性状的发育受许多不同基因影响的现象。

一因多效pleiotropism

一个基因影响许多性状发育的现象。

第四章

在杂交试验中,原来为同一亲本所具有的两个性状在F2中不符合独立分配规律,而常有连在一起遗传的倾向,这种现象叫做连锁(linkage)遗传现象。

★连锁遗传(Linkage inheritance)

是指在同一同源染色体上的非等位基因连在一起而遗传的现象。

?相引相(coupling phase)

遗传学上把两个显性性状连在一起遗传,

而两个隐性性状连在一起遗传的杂交组合,

称为相引相或相引组。

?相斥相(repulsion phase)

遗传学上把一个显性性状与另一个隐性性状连在一起遗传,而一个隐性性状与另一个显性性状连在一起遗传的杂交组合,称为相斥相或相斥组。

重组率(交换值) :重组型的配子百分数称为重组率。

当两对基因为连锁遗传时,其重组率总是<50%。

?连锁遗传规律

连锁遗传的相对性状是由位于同一对染色体上的非等位基因间控制,具有连锁关系,在形成配子时倾向于连在一起传递;交换型配子是由于非姊妹染色单体间交换形成的。

?完全连锁(Complete linkage)

位于同源染色体上非等位基因之间未发生非姐妹染色单体之间的交换,则这两个非等位基因总是连接在一起而遗传的现象。

?不完全连锁(Incomplete linkage)

位于同源染色体上连锁基因之间发生非姐妹染色单体间的交换,不仅形成两种亲型配子,同时形成两种重组型配子。

1.交换:是指同源染色体的非姊妹染色单体间基因的互换,从而引起相应基因间的交换与重组。

2.交换的过程:杂种减数分裂时期(前期I的粗线期)。

相引相:

Rf =1-2x F2双隐性个体数/F2总个体数

相斥相:

Rf = 2x F2双隐性个体数/F2总个体数

两基因间的距离越远,基因间的连锁强度越小,交换值就越大

因间的相对距离,也称为遗传距离(genetic distance)。

以1%的重组率作为一个遗传距离单位/遗传单位,以厘摩(Centimorgan,cM )表示。

基因定位(Gene mapping)

确定基因在染色体上的相对位置和排列次序。

(一)、两点测验(two-point testcross)

通过三次测验,获得三对基因两两间交换值、估计其遗传距离;每次测验两对基因间交换值;根据三个遗传距离推断三对基因间的排列次序。

(二)、三点测验(three-point testcross)

一次测验就考虑三对基因的差异,从而通过一次测验获得三对基因间的距离并确定其排列次序。

?两点测验:局限性

1.工作量大,需要作三次杂交,三次测交;

2.不能排除双交换的影响,准确性不够高。

单交换:在三个连锁基因之间仅发生了一次交换。

双交换:在三个连锁区段内,每个基因之间都分别要发生一次交换

由于双交换实际上在两个区域均发生交换,所以在估算每个区域交换值时,都应加上双交换值,才能够正确地反映实际发生的交换频率。

干扰(interference),或干涉:

一个交换发生后,它往往会影响其邻近交换的发生。其结果是使实际双交换值不等于理论双交换值。

符合系数(coefficient of coincidence)也称为并发系数:用以衡量两次交换间相互影响的性质和程度。

? 性染色体(Sex chromosome)

在生物许多成对的染色体中直接与性别决定有关的一个或一对染色体。成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。

? 常染色体(Autosome, A)

除性染色体以外的所有同源染色体均为常染色体,都是同型的。

★性连锁(sex linkage)

指性染色体上基因所控制的某些性状总是伴随性别而遗传的现象。这种遗传方式称伴性遗传(sex-linked inheritance)。如色盲、A型血友病等就表现为性连锁遗传。

? 限性遗传(sex-limited inheritance)

指位于Y/W染色体上基因所控制的性状,它们只在异配性别上表现出来的现象。

? 位于Y/W染色体上的基因(限性遗传):

由于Y/W染色体仅在异配性别中出现,因此其上基因仅在异配性别中才可能表现,并且无论显性基因还是隐性基因

都会得到表现。

? 从性遗传(sex-controlled inheritance):

也称为性影响遗传(sex-influenced inheritance):控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象。例:秃头的遗传

第五章

基因(Gene)是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。

★Promoter启动子

指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列,它控制基因的转录起始过程。

★Enhancer (增强子)

指远离转录起始点、决定基因的时间、空间特异性、增强启动子转录活性的DNA序列。

★编码区

能编码出RNA的DNA片段,包括外显子(Exon)和内含子(Intron)。起始密码子:ATG 终止密码子:TAG/TGA/TAA

★间隔序列Intergenic sequence

在两个基因的编码区之间存在一些不编码的核苷酸序列,被称为基因间的间隔序列。长度从1bp-kb不等。

其主要特征:

(1)不编码蛋白质;

(2)有些区域具有调节功能,如目前比较流行的sRNA。

★结构基因(Structural gene)

从功能上讲,能编码多肽链的基因称为结构基因。结构基因所使用的密码在整个生物界是统一的。结构基因的突变可导致特定蛋白质改变。

★调控基因(Regulatory gene)

调控基因是指可调节控制结构基因表达活性的基因,包括调节基因、操纵基因和启动基因等。

★假基因(Pseudogene)

假基因是指一类在物种进化过程中由于编码区的核苷酸序列发生致死性突变而导致不能表达功能性蛋白质的基因.

★组成性基因(Constitutive gene)

组成性基因指其表达不太受环境变动而变化的一类基因。其中某些基因表达产物是细胞或生物体整个生命过程中都持续需要而必不可少的,这类基因可称为看家基因(housekeeping gene),如泛素基因,肌动蛋白基因等。

★诱导性基因(Inducible gene)

诱导性基因指环境的变化容易使其表达水平变动的一类基因。诱导因子主要包括光、温度、水分和盐害以及生物胁迫等

★基因家族(Gene family)

指结构相似,功能相关的一组基因, 由同一祖先进化而来。

★基因超家族(Gene superfamily)

在结构上有不同程度的同源性,但功能不一定相同。如:免疫球蛋白基因超家族。

★直源同源基因(orthologous gene)和并源同源基因(paralogous gene)

它们是同源序列的两种类型,直源同源基因是指在不同物种中来自于共同祖先的基因。而并源同源基因是指在同一物种内由于基因复制而产生的同源基因。

★突变(Mutation)

指遗传物质内所发生的可遗传的变异。是自然界产生变异的主要来源,是生物进化的源泉。

★基因突变(Gene mutation)

指染色体上某一基因位点内部发生了化学结构改变,与原来基因形成对性关系,又称点突变(Point mutation),结果是原来的基因突变为它的等位基因之一。

★突变体(Mutant) 与野生型(Wild type)

突变体指携带突变基因并具有某种突变表型的细胞或个体称为突变型或突变体;

野生型指存在于自然界中没有经过基因突变,具有正常生化代谢功能的遗传类型;

★根据突变的起源分(Causes of mutation)

1、自发突变(Spontaneous mutation):由外界环境条件自然作用或生物体内DNA复制时错配等发生的突变;

2、诱发突变(Induced mutation):在特设的诱变因素(物理、化学、生物等)诱发下发生的突变。

★根据突变的表型特征分(Phenotypic Characteristics)

1、形态突变(Morphological mutation):突变主要影响生物的形态结构,导致形态、大小、色泽等产生肉眼可识别变异的突变,也称可见突变(Visible mutation)。

2、生化突变(Biochemical mutation):突变主要影响生物的代谢过程,导致一个特定的生化功能的改变或丧失。最常见的是微生物的各种营养缺陷型。

3、致死突变(Lethal mutation):突变主要影响生活力,发生突变后会导致特定基因型个体死亡的基因突变。大多数致死突变都为隐性致死,突变后代中的隐性纯合体表现为致死的效应。

致死基因(Lethal alleles):指可以导致个体死亡的基因。包括以下两类:

(1)隐性致死基因(Recessive lethal alleles):只在隐性纯合时才能使个体死亡。

(2)显性致死基因(Dominant lethal alleles): 在杂合体状态时即可导致个体死亡。

因此,致死突变也相应分为以下四类即纯合显性致死突变、杂合显性致死突变、纯合隐性致死突变和伴性致死突变。

4、条件致死突变(Conditional lethal mutation)

指在一种条件下表现致死效应,但在另一种条件下能存活的突变。如细菌的某些温度敏感突变型在30℃左右可存活,但在42℃左右或低于30℃时就致死。

5、失去功能的突变(Loss-of-function mutation)

(1)无效突变(Null mutation):完全丧失功能的突变;

(2)渗漏突变(Leaky mutation ):功能的失活不完全,仍保留了一些功能,但在杂合状态下不能产生足够多的野生型表型,这类突变称为渗漏突变。

6、获得功能的突变(Gain-of-function mutation)

突变以后产生了某种新基因。如人的原发性红斑肢痛症是由于钠离子通道SCN9A基因的获得功能性突变所致。

7、抗性突变(Resistant mutation)

指突变细胞或生物体获得了对某种特殊抑制剂的抵抗能力。生物可以广泛产生对生物性和非生物性抑制物的抗性突变,包括动植物抗病虫性、细菌对抗生素的抗性等。

(1) 体细胞突变(somatic mutation)

指体细胞发生的突变。其产生的突变体细胞,通常不能通过受精过程直接传递给后代。突变后的体细胞常会受到抑制或最终消失,因此,需及时与母体分离,通过无性繁殖再经有性繁殖传递给后代。“芽变”是体细胞突变的结果

(2) 生殖细胞突变(germinal mutation)或性细胞突变(Sexual mutation)。

指发生在生殖细胞中的突变。生殖细胞基因突变,通过受精卵可将突变的遗传信息传给下一代(代代相传),即遗传性疾病。

显性突变,即aa→Aa,可通过受精过程传递给后代,并立即表现出来。

隐性突变,即AA→Aa,当代不表现,只有等到第二代突变基因处于纯合状态才能表现出来。

性细胞的突变率高于体细胞,主要由于性细胞在减数分裂末期对外界环境条件的敏感性较大所致。

突变率(Mutation rate) 指在特定条件下,单位时间内(通常为一个世代),生物体中某一基因发生突变的概率。

突变频率(Mutation frequency):指突变体在一个世代群体中所占的比例。突变频率估算因生物生殖方式而不同。

有性生殖生物: 突变率=突变型配子数占配子总数的百分数;

无性繁殖细菌或单细胞生物: 突变率=在分裂一次过程中,突变细胞数占细胞总数的百分数。

(1)正向突变(Forward mutation):由野生型基因突变为突变型基因;

(2)反向突变(Reverse mutation):与正突变逆向的突变称为反向突变(突变型变为野生型)。一般正突变率(u)总是高于反向突变率(v)。

复等位基因(multiple allele):由同一基因位点经多方向突变产生的三个或三个以上的基因。植物自交不亲和性(Self-incompatibility): 指自花授粉不能受精结实,而植株间授粉却可能受精结实的现象。于基因突变的多方向性,在同一基因位点上可能出现多种等位基因形式。

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

动物遗传学名词解释

显性性状:两亲本杂交时,能在F1代中表现出来的形状。 隐性纯合体:由纯合的隐性基因型构成的个体。 等位基因:一对同源染色体上占据同一位点,以不同的方式影响同一形状的一对基因。 互补作用:指两对基因互相作用,共同决定一个新性状的发育。 伴行基因:位于X染色体上与Z染色体非同源部分的基因。 相对性状:同一种单位性状的不同表现。 性状:生物体所表现的形态特征和生理特征。 性反转:生物个体从一种性别转变为另一种性别。 连锁遗传图:根据基因定位的方法,以及基因在染色体上呈线性排列的顺序,把一种生物的名连锁群内基因的排列顺序和基因遗传的距离给予标定,绘制出的图谱。 显性上位作用:两对基因共同影响一对相对性状,其中一对显性基因能够抑制另外一对基因的表现。从性遗传:指位于常染色体上的基因,它所抑制的形状的显隐关系因性别不同而异,受性激素的影响。基因突变:指在基因水平上遗传物质中任何可检测的能遗传的改变,不包括基因重组。 伴性性状:指伴性基因所控制的性状,位于性染色体非同源部分的基因所控制的性状。 返祖遗传:隔若干代以后,出项与祖先相似性状的遗传现象。 等显性:双亲性状同时在后代的同一个体表现出来,即等位基因同时得到表现。 表现度:由于内外环境的影响,一个外显基因或基因型其表型表型出来的程度。 限性遗传:有些性状仅局限于某一性别的这类限性性状的遗传方式。 完全连锁:亲本的两个性状完全紧密的联系在一起传给了后代的现象。 复等位基因:指在一个群体中,同源染色体上同一位点两个以上的等位基因,但在每一个个体的同源染色体上只能是一对基因。 隐性性状:虽在F1中并不表现,但经F1自交能在F2表现出来的性状。 性染色体:在多数二倍体真核生物中,决定性别的关键基因位于的一对染色体。 修饰基因:依赖主基因的存在而起作用,本身并不发生作用,只是影响主基因的作用的程度的一类基因。主基因:对某一性状发育起决定作用的一对基因。 表现型:基因和基因型所能表现出来的生物体的各类性状, 基因型:与生物某一性状有关的基因组成。 交叉遗传:儿子得到的X染色体必定来自母方,父亲的X染色体必传给女儿,X染色体的这种遗传方式称为交叉遗传。 不完全连锁:在连锁遗传的同时还表现出性状的交换和重组。 交换值:又称重组率,是指重组型配子数占总配子数的百分率。

遗传学整理讲解

第一章遗传学与医学 掌握:1.遗传性疾病的分类 熟悉:1.健康与疾病的遗传基础 目前遗传学界普遍采用McKusick的分类方法,即将遗传病分为五大类。 a染色体病(chromosome disorders) 在生殖细胞发生和受精卵早期发育过程中发生了差错,就会导致染色体的数目或结构畸变,表现为先天发育异常。如Down综合征(21三体综合征),染色体病通常不在家系中传递,但也有可传递的。已知染色体病有300多种,染色体异常几乎占自然流产的一半,主要发生在出生前。 b 单基因病(single-gene disorders): 单个基因突变所致,如家族性高胆固醇血症,亨廷顿舞蹈病,苯丙酮尿症,低磷酸盐血症(抗维生素D佝偻病),假肥大性肌营养不良,按单纯的孟德尔方式遗传,通常呈现特征性的家系传递格局,主要发生在新生儿和幼儿阶段。 C 多基因病(polygenic disorders): 由多个基因突变的遗传因素和环境因素所致,包括一些先天性发育异常和一些常见病,如先天性心脏病,无脑儿,脊柱裂;糖尿病,哮喘,高血压等。有家族聚集现象,但无单基因病那样明确的家系传递格局。 D 线粒体病(mitochondrial genetic disorders): 线粒体染色体上基因突变所致,该病通常影响神经和肌肉的能量产生,在细胞衰老中起作用,以母系方式遗传。 E 体细胞遗传病(somatic cell genetic disorders): 该病只在特异的体细胞中发生。体细胞遗传病的一个范例是肿瘤,其恶性表型的发展通常是控制细胞生长的基因发生突变所致。 第三章人类基因组学(了解) 基因(gene):DNA的功能片段。它是一种化学分子,遗传信息的物质载体,传递支配生命活动的指令。 基因组(genome):有机体全部DNA序列。它是基因和非基因的DNA序列的总和。 基因组学(genomics):是20世纪90年代逐渐形成的以基因组为研究对象,在基因组水平研究基因和基因组的结构与功能,包括大量非基因DNA序列的结构与功能的学科。 第四章人类染色体和染色体病 掌握:1. 染色体的结构。2.染色体的分组。3.染色体的分类、命名和书写原则。4. 染色体畸变的类型。5. 人类染色体畸变的国际命名体制。6.常染色体病主要临床症状及核型。7.Lyon假设、性染色质和性染色体病主要临床症状及核型。 熟悉:1. 细胞遗传学研究和细胞的来源(检验专业掌握)2.染色体分析的显带技术及其他的技术应用(检验专业掌握)3.染色体微缺失综合征。4.两性畸形 1.染色体结构:着丝粒(Cen),端粒(Te),长臂(q),短臂(q) 主缢痕:位于两臂之间,染色体在此处凹陷,称主缢痕(着丝粒)。此处属于结构异染色质,转录不活跃。

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

遗传学整理

思考题 第1章绪论 1、遗传病有什么特点 ①一般以垂直方式传播②数量分布:患者与正常成员之间有一定的数量关系③先天性特点如白化病,少数不是先天的如huntington 舞蹈病④家族性特点⑤遗传病一般不能传染,但朊蛋白病是一种既能遗传又能传染的疾病 2、遗传病可分为几类 ①单基因病(常显AD,常隐AR,XD,XR,Y)②多基因病③染色体病④体细胞遗传病⑤线粒体遗传病 3、遗传病对人类有何危害 第3、4章基因突变及其细胞分子生物学效应 基因突变(gene mutation):基因内部碱基对组成或排列顺序发生改变。 点突变:指DNA分子中一个碱基被另一个不同的碱基所替换。 同义突变(Synonymous mutation):由于密码子具有简并性,单个碱基置换后密码子所编码的是同一种氨基酸,表型不改变 无义突变(Nonsense mutation):是指DNA中碱基被置换后,使编码一个氨基酸的密码子变为不编码任何氨基酸的终止密码(UAA、UAG、UGA),肽链合成提前终止,产生短的、没有活性的多肽片段。 错义突变(Missense mutation):DNA分子中的碱基置换后,形成新的密码子,从而导致所编码的氨基酸发生改变,产生活性降低、无活性或无功能的蛋白质。移码突变:DNA编码序列中插入或缺失一个或几个(不是3的倍数)碱基,其下游阅读框发生改变,导致氨基酸顺序及蛋白质异常或无活性,称为移码突变。动态突变:邻近基因或位于基因序列中的三核苷酸重复拷贝数,在一代代传递过程中会发生明显的增加,如(CGG)n、(CAG)n等,从而使(导致)某些遗传病发病。如Hutington舞蹈病 原发性损害(primary abnormalities):突变影响、干扰了RNA的正常转录以及转录后的修饰、剪辑;或直接改变了被编码的多肽链中氨基酸的组成和顺序,从而使其正常功能丧失。 继发性损害(secondary abnormalities):突变并不直接影响或改变某一条多肽链正常的氨基酸组成序列,而是通过干扰该多肽链的翻译合成过程;或翻译后的修饰、加工;甚至通过对蛋白质各种辅助因子的影响,间接地导致某一蛋白质功能的失常。 分子病(molecular disease):由于遗传上的原因而造成的非酶蛋白质分子结构或合成量的异常所引起的疾病。 大题: 1、基因突变如何导致蛋白质功能改变? 2、酶缺陷如何引起各种代谢紊乱并导致疾病? 3、各种代谢病的发病机制

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

动物遗传学复习试题

动物遗传学试题一 (一)、解释名词概念(每题 3 分,共24分) 1. mRNA信使(Message)RNA简称mRN,携带从DNA编码链得到的遗传信息,在核糖体上翻译产生多肽的RNA 2. 外显度:由于内外环境的影响,一个外显基因或基因型其表型表现出来的程度。 3. 多倍体:凡是体细胞中含有三个以上染色体组的个体。 4. 遗传漂变:这种由于抽样误差而引起的群体基因频率的偶然变化叫做遗传漂移,也称为遗传漂变。 5. 补体:是存在于人和脊椎动物血清与组织液中一组经活化后具有酶活性的蛋白质。 6. 转座:转座因子改变自身位置的行为,叫作转座。 7. 遗传图谱(Genetic map):又称连锁图谱(linkage map),依据测交试验所得重组值及其他方法确定连锁基因或遗传标记在染色体上相对位置的线性图。 8. 同义突变:由于密码子的简并性,碱基替换没有导致编码氨基酸的改变。 (二)、填空题(每空1 分,共16 分) 1 .基因突变具有许多特征,如具有有害性和有利性,此外,其他特征还包括多向性、可逆性、重复性、平行性。 2. 经典遗传学的三大基本定律分别为:孟德尔的基因分离和自由组合(或独立分配)定律,以及摩尔根的连锁与互换定律。 3. 动物体内的淋巴细胞有B、T 两种,其中细胞免疫依赖T 淋巴细胞介导,而体液免疫依赖B 淋巴细胞发挥作用。 4. 染色体数量具有物种特异性,如人的染色体有23对,猪的染色体有19对,鸡的染色体有39 对。 5. 染色体结构变异包括缺失、重复、倒位和易位四种类型。 (三)、选择题(每题2 分,共14 分) 1. 形成三色猫的遗传机制为(B) A.母体效应 B.剂量补偿效应 C.基因组印迹 D.核外遗传 2. 人的全基因组大小约为(C) X 10 C. 3.0 X 10 D. 3.0A .1.0 X 10 )以下有关遗传力的描叙错误的是(3.D广义的遗传力为遗 9696 X 1 0 B. 1.0 传方差与表型方差的比例; A. 狭义的遗传力指加性方差与表型方差的比例; B. 生长性状的遗传力普遍大于繁殖性状的遗传力;C.遗传力越大,表型选择的效果越弱。D.依据cDNA建立的图谱应该称为(C) 4. C. 转录图谱 D. 物理图谱.遗传图谱 A B. 序列图谱)紧急状况下采集毒蛇血清用于治疗患者的机理为(D5. D. 被动免疫体液免疫A.细胞免役 B. C. 主动免疫)C6.男人秃头的几率高于女人的原因是秃头性状表现为(从性遗传 B. 限性遗传 C. D. 性连锁遗传.伴性遗传AmRN表达的杂交技术为()A7.用于检测目的基因 B. Western 杂交.ANorthern杂交D.C. Southern杂交原位杂交10分)分,共(四)、简答题(每题5 1.说明杂种优势的含义及做出简单解释。)两个亲本杂交,子一代个体的某一数量性状并不等于两个亲本的平均,而是高于亲本的平均,答案:(1 甚至超出亲本范围,比两个亲本都高,叫做杂种优势。表现在生活力,繁殖力,抗逆性以及产量和品质上; (2)杂种优势的形成机制有三种假说:A.生活力假说,杂种在生活力上要优于两亲本; B.显性假说,杂合态中,隐性 有害基因被显性有利基因的效应所掩盖,杂种显示出优势; C.超显性假说:基因处于杂合态时比两个纯合态都好。 2. 请回答非孟德尔遗传的几种类型及其遗传机制。 答案:(1 )非孟德尔遗传包括母体效应、剂量补偿效应、基因组印迹和核外遗传等四种;(2)母体效应是母体基因型决 定后代表型的现象,其遗传机制是母体基因的延迟表达,如椎实螺外壳旋转方向的遗传;(3)在哺乳动物中,雌性个体 两条X染色体中的一条出现异染色质化,失去转录活性,使得雌雄动物间X染色体的数量虽然不同,但X染色体上的基 因产物的剂量是平衡的,整个过程称为剂量补偿效应。(4)与传统的孟德尔遗传方式不同,分别来自父母方的两个等位 基因中只有一方呈现表达,另一方被印迹,即不表达或表达甚微,这种遗传方式称为印迹遗传。(5)核外遗传主要指细胞质遗传,即细胞质基因所决定的遗传现象和遗传规律,如动物线粒体遗传。 (四)、计算题(每题8分,共16分) 1. 为检测三对基因间的连锁关系,进行以下杂交试验:

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

医学遗传学 精品课程

第一章绪论 一、名词解释 遗传病(genetic disease)、家族性疾病、先天性疾病、单基因病、多基因病 二、填空题 1.医学遗传学与相结合的一门边缘学科 2.遗传病是改变所导致的疾病。 3.根据遗传物质改变的不同,可将遗传病分为以下几类、、和。 4.现代医学遗传学认为疾病是因素和因素相互作用的复杂事件。 三、问答题 1.遗传病的分类 2.遗传病通常具有哪些特征 3.体细胞遗传病 第二章人类基因 一、名词解释 基因(gene)、基因组(genome)、基因家族(gene family)、断裂基因(split gene)、外显子(exon)、内含子(intron)、遗传密码 二、填空题 1.基因是细胞内遗传物质的。 2.1953年Wstson和Crick在前人工作的基础上,提出了著名的,奠定了基因复杂功能的结构基础。 3.生物的遗传信息贮藏在中。 4.人类基因组包括两个相对独立而相互关联的基因组:和。如果不特别注明,人类基因组通常是指。 5.人类的基因或人类基因组中的功能序列分为4大类,即、、和。 6.AUG UAA UAG UGA 7.人类结构基因组学主要包括4张图,即、、 、的制作。 8.每个内含子的两端具有广泛的同源性和互补性,5‘端起始的两个碱基是,3‘端最后的两个碱基是,通常把这种接头形式叫做法则,这一顺序是转录后RNA 的信号。 三、问答题 1.试述基因概念理论的发展沿革 2.试述人类基因组的组成 3.试述断裂基因的结构 4.试述遗传密码的特性 5.简述人类结构基因组学的研究内容 第三章基因突变 一、名词解释 基因突变(gene mutation)、同义突变、错义突变、无义突变、终止密码突变、移码突变(frame shift mutation)、动态突变(dynamic mutation) 、转换和颠换、光复活修复、切除修复、重组

遗传学材料整理(自整)

遗传学材料整理 1、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 2、基因:基因是遗传物质的最小功能单位,是DNA分子链中具有特定遗传功能的一段核苷酸序列。 3、遗传平衡、基因平衡定律(哈德——魏伯格定律):在一个完全随机交配群体内,如果没有其他因素(如突变、选择、遗传漂移和迁移)干扰时,则基因频率和基因型频率常保持一定。 4、部分二倍体:既带有自身完整的基因组,又有外源DNA片段的细胞或病毒,称部分二倍体。 5、孢子体不育:指花粉的育性受孢子体(植株)基因型所控制,而与花粉本身所含基因无关。 6、纯系:由遗传上均一的纯结合个体所组成的系统的总称。 7、中断杂交实验:研究细菌接合过程中基因转移状况的一种遗传学实验方法。 8、遗传:指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各特性不变。 9、变异:指生物在亲代与子代之间,以及子代与子代之间表现出一定差异的现象。 10、非同源染色体:形态、结构和功能彼此不同的染色体互称为非同源染色体。 11、作用子:表示一个起作用的单位,一个作用子所包括的一段DNA与一个多肽链的合成相对应。 12、结构基因:指可编码RNA或蛋白质的一段DNA序列。 13、内含子:编码的间隔序列称为内含子(intron),内含子是在信使RNA被转录后的剪接加工中去除的区域。 14、外显子:可以编码蛋白质的基因序列称为外显子。 15、重叠基因:指同一段DNA编码顺序,由于阅读框架的不同或终止早晚的不同,同时编码两个或两个以上多肽链的基因。 16、隔裂基因:编码顺序由若干非编码区域隔开,使可读框不连续的基因称为隔裂基因。 17、跳跃基因:即转座因子,指染色体组上可以转移的基因。实质是可作为插入因子和转座因子移动位置的DNA片断(序列)。 18、互补测验:比较顺式和反式构型个体的表型以判断两突变是否发生在一个基因座内的测验,称为互补测验又称顺反测验。 19、自交:指同一植株上的自花授粉或同株上的异花授粉。 20、基因纯合体: 21、基因杂合体: 22、分离: 23、基因互作:不同基因间的相互作用,可以影响性状的表现,称为基因互作。 24、完全连锁:同一染色体上非等位基因不发生分离而被一起传递到下一代的现象。 25、不完全连锁:指连锁基因的杂种子一代不仅产生亲本类型的配子,还会产生重组型配子。 26、相斥相:显性基因和隐性基因联系在一起称为相斥相。 27、相引相:不同显性基因或不同隐性基因相互联系在一起称为相引相。

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

遗传学知识点归纳(整理)

遗传学教学大纲讲稿要点 第一章绪论 关键词: 遗传学 Genetics 遗传 heredity 变异 variation 一.遗传学的研究特点 1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。 2. 遗传信息的传递包括世代的传递和个体间的传递。 3. 通过个体杂交和人工的方式研究基因的功能。 “遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity 生物性状或信息世代传递的现象。 同一物种只能繁育出同种的生物 同一家族的生物在性状上有类同现象 变异variation 生物性状在世代传递过程中出现的差异现象。 生物的子代与亲代存在差别。 生物的子代之间存在差别。 遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。 二. 遗传学的发展历史 1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。 1910年Morgan建立基因在染色体上的关系。 1944年Avery证明DNA是遗传物质。 1951年Watson和Crick的DNA构型。 1961年Crick遗传密码的发现。 1975年以后的基因工程的发展。 三. 遗传学的研究分支 1. 从遗传学研究的内容划分 进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制突变和选择 有害突变淘汰和保留 有利突变保留与丢失 中立突变 DNA多态性 发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。 特征:基因的对细胞周期分裂和分化的作用。 应用重点干细胞的基因作用。 转基因动物克隆动物 免疫遗传学研究基因在免疫系统中的作用的遗传学分支。 重点不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分 群体遗传学研究基因频率的改变的遗传学分支。

医学遗传学教学大纲(详细)

《医学遗传学》教学大纲 (讨论稿) 2013年11月修订 一、课程简介 本课程在医学生学习了细胞生物学、组织胚胎学、解剖学、生理学、生物化学等课程的基础上,从个体、细胞和分子水平阐释遗传性疾病的遗传规律、发病机制、诊断、治疗和遗传保健等基本理论、基本知识和基本技能,是一门从基础医学到临床医学的桥梁课程。 二、基本学习内容和教学要求 本课程的主要学习内容包括医学遗传学基本知识、医学遗传学基础理论和人类遗传学疾病。通过本课程的教学,学生既应掌握五大类遗传性疾病的基本特点,也应掌握常见的遗传性疾病的发病机制、主要临床特征、遗传学改变和遗传病再显危险率的估计,以达到理论联系实际的目的。 按要求程度的不同,将学习内容分为三级:第一级为“掌握”,要求理解和熟记所学内容,并能脱离书本进行简明扼要的口头与书面叙述;第二级为“熟悉”,要求理解所学内容,并记住内容提要;第三级为“了解”,要求基本理解所学内容。 三、教学方法 理论联系实际,基础结合临床,遗传病案例贯穿全程;课堂讲授与课外练习并重,文献检索与英文阅读并进,知识面拓展贯穿全程。。 四、建议教材 《医学遗传学》(第三版),顾鸣敏、王铸钢主编。上海科学技术文献出版社,2013年8月 五、参考书目 1. 陈竺主编,《医学遗传学》(第二版),人民卫生出版社,2010年7月 2. 左伋主编,顾鸣敏、张咸宁副主编,《医学遗传学》(第六版),人民卫生出版社,2013年3月 3. Robert Nussbaum, Roderick R. McInnes, Huntington F. Willard. Thompson & Thompson Genetics in Medicine, 7th edition, Saunders Elsevier, 2007 六、主要参考网址 1. 上海市精品课程——医学遗传学: https://www.wendangku.net/doc/3115100103.html,/jpkc/med_heredity/index.asp, 2.人类基因突变数据库:https://www.wendangku.net/doc/3115100103.html, 3. 美国生物技术信息中心:https://www.wendangku.net/doc/3115100103.html, 4. 人类孟德尔遗传数据库:https://www.wendangku.net/doc/3115100103.html, 5. 人类基因组委员会:https://www.wendangku.net/doc/3115100103.html, 七、本大纲的编写基础和适用对象及考核方法

遗传学知识整理(学习资料)

遗传学知识整理 绪论 1、遗传学是研究生物遗传与变异规律的科学。而现代遗传学是研究生物基因的结构与功能,基因 的传递与变异,基因的表达与调控的科学。 2、变异生物在繁殖过程中,后代发生了变化,与亲代不相同的现象。 3、遗传生物在繁殖过程中,亲代与子代各方面相似的情况,本质上就是遗传信息(DNA)世代传递 的现象。 4、模式生物这种被选定的生物物种就是模式生物。 5、遗传变异和选择是生物进化和新品种的选育的三大因素。 (看看就行 (1) 1856年, Mendel发现遗传因子的分离定律和自由组合定律, Mendel提出的遗传因子就是基因。 2) 1909年Johannsen首先称遗传因子为基因(gene) 。 3) 20世纪初, Morgan等人用果蝇做实验, 发现连锁交换定律, 并建立染色体学说, 确定基因在染色体上直线排列 , 染色体是基因的载体。与此同时, Emerson等人用玉米做实验也得到同样的结论。 4) 20世纪30年代, Muller用放射性处理果蝇, 研究基因的本质, 基因决定形状的问题。 5) 20世纪40年代, Beadle和Tatum研究链饱霉, 提出“一个基因一个酶”的学说, 把基因与蛋白质的功能结合起来,把基因概念的发展向前推进了一步。Avery, Macleod和Mccarty等人从肺炎双球菌转化试验中发现, 转化因子是DNA, 而不是蛋白质。 6) 20世纪50年代, McClintock提出基因可以转座的概念, 以后证明了跳跃基因的存在。 7) 20世纪50年代, Hershey 和Chase用噬菌体感染大肠杆菌,证明DNA是遗传物质。Watson和Crick提出DNA双螺旋结构模型,阐明了有关基因的核心问题—DNA的自我复制。 8) 20世纪60年代, 中心法则提出, 三联体密码的确定, 调节基因作用的原理被揭示。 9) 20世纪70年代,基因操作技术发展起来, 基因概念进一步发展。认识到基因与基因间有基因间区或, 基因的转译部分称为外显子(extron) ,不转译的部分称为内含子(intron) ,真核类基因的编码顺序由若干非编码区或隔开, 使阅读框不能连续, 这种基因称为隔裂基因 (split gene) 。 10) 近代基因的概念, 基因是一个作用单位—顺反子, 一个顺反子内存在着很多突变位点—突变子, 一个顺反子内部可以发生交换, 出现重组不能由重组分开的基本单位叫做重组子。所以一个基因是一个顺反子, 可以分成很多的突变子和重组子。 11) 1970年,分离出第一个限制性内切酶,随后一系列核酸酶按发现和提纯。 12) 1972年,Khorana等人合成了完整的CRNA基因。 13) 1973年,Boyer and Cohen建立了DNA重组技术。可将外源基因插入质粒,并导入大肠杆菌使之表达。以后用DNA重组技术生产出第一个动物激素--生长激素抑制因子。 14) 1976年,第一个DNA重组技术规则问世。 15) 1976年,DNA测序技术诞生。诺贝尔生理学与医学奖获得者杜伯克曾说:人类的DNA序列是人类的真谛,这个世界上发生的一切事情都与这一序列息息相关,包括癌症在内的人类疾病的发生都与基因直接或间接有关…。 16) 1978年,Genentech公司在大肠杆菌中表达出胰岛素。 17) 1980年,美国最高法院对Diamond and Chakrabarty专利案作出裁定,认为经基因工程操作的微生物可获得专利。1981年,第一台商业化生产的DNA自动测序仪诞生。 18) 1982年,用DNA重组技术生产的第一个动物疫苗在欧洲获得批准。 19) 1983年,基因工程Ti质粒用于植物转化。 20) 1988年,美国授予对肿瘤敏感的基因工程鼠以专利。

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

动物科学考试重点——动物遗传学

遗传:有血缘个体之间的相似性 变异:有血缘个体之间的非相似性 遗传和变异的关系:(1)遗传是相对的,变异是绝对的。(2)遗传是保守的,变异是变革的,发展的。(3)遗传和变异是相互制约又相互依存的。(4)遗传变异伴随着生物的生殖而发生。 核酸(nucleic acid):以核苷酸为基本结构单元组成的高分子化合物,是所有原核生物和真核生物的遗传物质。根据所含戊糖的不同,分为脱氧核糖核酸(DNA)核糖核酸(RNA) 信使RNA(message RNA, mRNA):单链RNA,蛋白质合成的模板,携有确定各种蛋白质中氨基酸序列的密码信息。在真核生物中,mRNA把遗传信息从细胞核中的基因传递到细胞质中的核糖体,通过翻译合成特定氨基酸序列的多肽。 转移RNA(transfer RNA,tRNA):负责解读mRNA所含遗传信息的RNA分子,在翻译过程中起着转运各种氨基酸至核糖体,按照mRNA的密码顺序合成多肽的功能。tRNA通过链内碱基配对形成“三叶草”型二级结构。 核糖体rRNA(ribosomal RNA,rRNA):由rRNA基因转录的单链RNA分子,为核糖体的主要组成成分。 原核生物如大肠杆菌含三种rRNA;动物含有四种rRNA。 基因(gene):是遗传的功能单位,含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列。广义地说,基因也被认为是有功能的DNA片段。 基因组(genome):真核基因组是指一个物种单倍体的染色体所携带的一整套基因。 染色体(chromosome):真核生物染色体是细胞核中一种以核小体为基本结构单元,由DNA、组蛋白、非组蛋白和少量RNA组成的丝状物,含有染色体基因,是遗传的主要物质基础。 有丝分裂(mitosis):细胞分裂的主要方式,染色体复制一次,细胞分裂一次,遗传物质均分到两个子细胞中,使之具有与亲代细胞在数目和形态上完全相同的染色体。细胞的有丝分裂既维持了个体正常生长发育,又保证了物种的遗传稳定性。 减数分裂(meiosis):生殖细胞成熟时产生配子的细胞分裂形式,对于保证物种的遗传稳定性和创造物种的遗传变异具有重要的意义。在减数分裂中,染色体复制一次,细胞分裂两次,产生染色体数目减半的配子。 细菌的转化:1928年,肺炎双球菌转化实验。它有两种类型,一种是光滑型(S型),有夹膜,具有毒性,导致小鼠死亡。另一种为粗糙型(R型),无毒性。 感染性的RNA:有些病毒,只含有蛋白质和核糖核酸(RNA),没有DNA,这些RNA病毒则使用RNA作为遗传物质。 DNA和RNA的化学组成:核苷酸由碱基、戊糖和磷酸三部分构成。DNA和RNA所含戊糖的种类不同,DNA 中的戊糖为D-2-脱氧核糖,RNA所含的戊糖为D-核糖; DNA的一级结构:指4种核苷酸的连接方式和排列顺序=碱基序列。 DNA的二级结构:就是DNA光螺旋结构。 DNA的高级结构:指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。超螺旋结构是DNA高级结构的主要形式,超螺旋又可分为负超螺旋和正超螺旋两种。 RNA:原核生物和真核生物含有许多种不同的RNA分子,其中最主要的有信使RNA、核糖体RNA和转移RNA。基因的概念:是有功能的DNA片段,它含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列 基因的一般结构特征: 1.外显子和内含子;翻译起始序列AUG,翻译终止序列TAA/TAG/TGA。2.信号肽序列;在起始密码子之后,运输蛋白质功能。3.侧翼序列- 调控序列,包括:启动子、增强子、终止子、核糖体结合位点、加帽和加尾信号等。 基因组(genome):一个物种单倍体的染色体所携带的一整套基因 C值:每一种生物中的单倍体基因组的DNA总量 C值矛盾: C值的大小与物种的结构组成和功能的复杂性没有严格的对应关系,这种现象称为-。 重复序列:高度重复序列,中度重复序列。卫星DNA分为小卫星DNA和微卫星DNA 基因家族:真核生物基因组中有许多来源相同、结构相似、功能相关的基因。 基因簇:若一个基因家族的基因成员紧密连锁,成簇状排列在一个染色体的某一个区域,则形成一个基因簇。染色质的化学组成:由DNA、组蛋白、非组蛋白及少量RNA组成。染色质蛋白质分为两类:组蛋白和非组蛋

相关文档
相关文档 最新文档