文档库 最新最全的文档下载
当前位置:文档库 › 羊毛纤维重复扭转疲劳性能的研究

羊毛纤维重复扭转疲劳性能的研究

橡胶耐疲劳性能影响因素

橡胶耐疲劳性能影响因素 就橡胶材料而言,疲劳寿命是指橡胶材料在重复变形的过程中,当其承受的局部变形应力超过橡胶的延伸率或应力极限时,疲劳过程开始,以至于最后达到破坏。这种疲劳破坏的开始点是由于橡胶表面或内部的不均匀性所造成的。 橡胶材料的破坏主要是由于其内部的缺陷或微裂纹引发的裂纹不断传播和扩展而导致的。按照分子运动论的观点,橡胶材料的动态疲劳破坏归因于材料本身分子链上化学键的断裂,即试样在受到周期应力一应变作用过程中,应力不断地集中于化学键能比较弱的部位而产生微裂纹,继而发展成为裂纹并随着时间的推移而逐步扩展开来。裂纹发展是一个随着时间而发展,涉及到橡胶材料的分子链连续断裂的粘弹性非平衡动态变化过程。这一微观发展过程在宏观上的表现是,橡胶材料在动态应力一应变的疲劳过程中,裂纹穿过试样不断扩展,直到断裂以及产生与之所伴随的热效应。 橡胶材料的动态疲劳过程一般可以分为三个阶段:第一阶段是应力剧烈变化,出现橡胶材料在应力作用下变软的现象;第二阶段是应力缓慢变化,橡胶材料表面或内部产生微裂纹,经常称之为破坏核;第三阶段是微裂纹发展成为裂纹并连续不断地扩展开,直到橡胶材料完全出现断裂破坏现象,最后这一阶段是橡胶材料疲劳破坏的最重要的阶段。 使用炭黑填充的天然橡胶硫化胶在一定负荷下多次拉伸变形时,橡胶的物理机械性能在疲劳过程中,拉伸强度先是逐步上升的,经过一个极大值后再开始下降,而撕裂强度、动态弹性模量和力学损耗因子的变化则相反。在疲劳过程中,胶料的拉伸强度几乎保持不变。300%定伸应力的疲劳开始阶段明显增大,然后增大趋于缓慢;扯断伸长率则随疲劳周期的变化而下降,在高应变疲劳条件下,具有拉伸结晶性的橡胶抗疲劳破坏性能较好。未使用补强剂补强的橡胶材料,其破坏形态一般表现为塑性破坏,而使用炭黑或其它活性填料作补强剂的橡胶材料则表现为脆性破坏,且随着各种防老剂的加入,其破坏形态由脆性破坏逐步向准塑性破坏形态转变。 天然橡胶在受到一定频率的应力作用的条件下,由于分子链的内摩擦而生热是其动态疲劳破坏的另外一种因素。当疲劳生热的温度低于120℃时,天然橡胶制品内部将发生化学交联键的结构变化,主要是发生交联键及链段的热裂解反应,首先是多硫交联键减少,而单、双键逐渐增加。总的表现是交联键的密度在增加,宏观的表现为胶料的硬度和定伸应力增加。由于胶料内部发生了以上微观结构的变化,从而进一步造成产品内部的生热继

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

基于填充橡胶中炭黑分散程度的橡胶疲劳破坏模型

第38卷第6期2011年6月世界橡胶工业World Rubber Industry Vol.38No.6:20 23 Jun.2011 檨檨檨檨檨檨檨檨檨檨殎殎 殎 殎 理论研究基于填充橡胶中炭黑分散程度 的橡胶疲劳破坏模型 关兵峰,马国富,魏荣梅,陈兵勇 (中国航天科技集团四院四十二所,湖北襄樊441003) 摘要: 该文研究了炭黑分散程度对橡胶疲劳性能的影响,利用SEM (扫描电子显微镜)研究了 橡胶疲劳前后炭黑形态的变化。从断裂力学理论角度,提出了一种基于炭黑分散程度对橡胶疲劳寿命影响的橡胶疲劳破坏模型,结合已报道过的实验对此模型的合理性进行了分析。 关键词: 炭黑分散程度;疲劳;模型 中图分类号:TQ 330.1+ 3 文献标识码:B 文章编号:1671-8232(2011)06-0020-04橡胶制品具有独特的高弹性因而在各种减振领域有着广泛的应用,了解橡胶材料的疲劳破坏机理有助于人们设计出疲劳寿命更长的橡 胶材料[1] 。目前, 被人们广泛接受的疲劳机理主要是断裂力学理论及唯象理论 [2] 。尽管出 发点不同,但这二种理论均认为疲劳破坏源于 外加因素的作用,使橡胶内部的微观缺陷或薄弱处逐渐遭到破坏。由于橡胶材料的疲劳寿命受多种因素的影响 [3] ,破坏机理可能大相径 庭,本文从炭黑分散程度对疲劳寿命影响的实验出发,借助SEM (电子显微镜)研究了橡胶疲劳前后微观结构的变化,综合文献中报道的一些实验,提出了一个基于炭黑分散程度对疲劳性能影响的橡胶疲劳破坏模型。 1 实验 1.1 基本配方及试样制备 胶料基本配方:NR , 100;促进剂CZ ,1.5;促进剂M , 1.2;硫磺,2;防老剂D ,2;硬脂酸,2.5;氧化锌,5;N330,50。原材料牌号及产地为天然橡胶,标准胶5# ,云南农垦产品;炭黑,N330,龙星炭黑公司产品;其他配合剂均为市售工业品级。 使用XK160型开炼机按常规步骤制备混炼胶,硫化条件为:160??t 90?20MPa ,试片放 置24h 后进行疲劳寿命测定。 1.2仪器及性能测试 疲劳寿命 使用江都明珠实验机械厂生产 的立式疲劳试验机测定试样的定伸疲劳,测定条件:温度25?;80%定伸;频率, 4Hz 。混炼胶应变扫描采用美国TA 公司生产 的ARES 高级扩展流变仪进行测试,测试条件:温度80?,频率1Hz ,试样厚度为2?0.1mm 。采用日本JSM —6030LV 型SEM ,在试样新 切出的断面表面喷金后进行观察,疲劳后试样切面与拉伸方向平行。 2 疲劳模型的提出 2.1 炭黑分散程度对橡胶疲劳寿命的影响 根据Palmegren 的观点[4] ,填料与橡胶的 混炼工艺可分混入、分散、混合和塑化四个阶 段。通常使用开炼机进行混炼的步骤为:生胶使用小辊距薄通使之包辊后,逐步放大辊距,加入各种配合剂进行混炼。待胶料吃粉完毕后再进行薄通使填料均匀分散。混入阶段可理解为 橡胶在较大辊距下的“吃粉” 过程。因此,可以通过控制薄通次数来获得不同分散程度的样品,制备大批混炼胶至吃粉结束后,将其分为八 份,每份进行X 遍薄通后编号FX ,对不同薄通次数的样品进行应变扫描,结果如图1所示。

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

纤维增强复合材料疲劳性能研究进展

纤维增强复合材料疲劳性能研究进展 宋磊磊李嘉禄 (天津工业大学复合材料研究所天津市和教育部共建先进纺织复合材料重点实验室天津 300160) 摘要:随着科技的发展,纤维增强复合材料作为一种新型材料越来越多的应用于众多领域。然而,纤维增强复合材料的疲劳性能对应用具有重要影响。本文根据近年来国内有关复合材料疲劳性能的研究和探索,综述了纤维增强复合材料疲劳性能的定义、机理以及影响因素,并提出了当前存在的一些问题。 关键词:纤维增强复合材料疲劳 1 前沿 随着科技的进步,很多工业特别是高新技术工业对材料的要求不断提高。复合材料由于比强度和刚度高、质量轻、耐磨性和耐腐蚀性好等优点,广泛应用于船舶、汽车、基础设施和航空航天等领域,以及文体用品、医疗器械、生物工程、建筑材料、化工机械等方面。 在复合材料构件的使用过程中,由于应力和环境等因素的影响,会逐渐产生构件的损伤以至破坏,其主要破坏形式之一是疲劳损伤。疲劳损伤的产生、扩展与积累会加速材料的老化,造成材料耐环境性能严重下降以及强度与刚度的急剧损失,大大降低其使用寿命,甚至报废。为了使复合材料的应用更加广泛和深入,本文综述了近年来在纤维增强复合材料疲劳性能方面的研究。 2 复合材料疲劳性能及损伤机理 在周期性交变载荷作用下材料发生的破坏行为称为疲劳,它记述了材料经受周期应变或应变时的失效过程。复合材料疲劳主要是指复合材料构件在交变荷载作用下的疲劳损伤机理、疲劳特性(强度、刚度随着时间变化规律及其破坏规律)、寿命预测及疲劳设计。 复合材料是非均质(在大尺度上)和各向异性的,它以整体的方式积累损伤,且失效并不总是由一个宏观裂纹的扩展导致。损伤积累的微观机构机理,包括纤维断裂基体开裂、脱粘、横向层开裂和分层等,这些机理有时独立发生,有时以互相作用的方式发生,而且材料参数和试验条件可能强烈影响其主要优势。多种损伤及其组合,使疲劳损伤扩展往往缺乏规律性,完全不像大多数金属材料那样能观察到明显的单一主裂纹扩展,复合材料不仅初始缺陷/损伤大,而且在疲劳破坏发生之前,疲劳损伤已有了相当大的扩展。 3 影响复合材料疲劳性能的主要因素 3.1 基体材料 Boller研究了基体材料对玻璃纤维增强复合材料疲劳性能的影响,研究证明,不同的基体材料具有完全不同的疲劳性能。一般情况下,疲劳性能最好的是环氧树脂。 很多复合材料的疲劳试验证明,基体和界面是薄弱环节。尽管树脂含量的变化在106次循

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

如何区分棉纤维、羊毛纤维、锦纶、涤纶等

如何区分棉纤维、羊毛纤维、锦纶、涤纶等 初中化学 2011-03-14 11:06 1. 棉纤维刚近火焰即燃,燃烧迅速,火焰呈黄色,冒蓝烟。棉燃烧发出纸气味,燃烧后,棉有极少粉末灰烬,呈黑或灰色,灰烬保持原形,手触即碎。 2. 麻纤维刚近火焰即燃,燃烧迅速,火焰呈黄色,冒蓝烟。麻燃烧发出草木灰气味,产生少量灰白色粉末灰烬,灰烬保持原来线形。 3. 毛遇火冒烟,燃烧时起泡,燃烧速度较慢,散发出烧头发的焦臭味,烧后灰烬多为有光泽的黑色球状颗粒,手指一压即碎。 4. 真丝遇火缩成团状,燃烧速度较慢,伴有咝咝声,散发出毛发烧焦味,烧后结成黑褐色小球状灰烬,手捻即碎。 5. 锦纶学名聚酰胺纤维,近火焰即迅速卷缩熔成白色胶状,在火焰中熔燃滴落并起泡,燃烧时没有火焰,离开火焰难继续燃烧,散发出芹菜味,冷却后浅褐色熔融物不易研碎。 6. 涤纶学名聚酯纤维,易点燃,近火焰即熔缩,燃烧时边熔化边冒黑烟,呈黄色火焰,散发芳香气味,烧后灰烬为黑褐色硬块,用手指可捻碎。 7. 腈纶学名聚丙烯腈纤维,近火软化熔缩,着火后冒黑烟,火焰呈白色,离火焰后迅速燃烧,散发出火烧肉的辛酸气味,烧后灰烬为不规则黑色硬块,手捻易碎。 8. 丙纶学名聚丙烯纤维,近火焰即熔缩,易燃,离火燃烧缓慢并冒黑烟,火焰上端黄色,下端蓝色,散发出石油味,烧后灰烬为硬圆浅黄褐色颗粒,手捻易碎。 9. 维纶学名聚乙烯醇缩甲醛纤维,不易点燃,近焰熔融收缩,燃烧时顶端有一点火焰,待纤维都融成胶状火焰变大,有浓黑烟,散发苦香气味,燃烧后剩下黑色小珠状颗粒,可用手指压碎。 10. 氯纶学名聚氯乙烯纤维,难燃烧,离火即熄,火焰呈黄色,下端绿色白烟,散发刺激性刺鼻辛辣酸味,燃烧后灰烬为黑褐色不规则硬块,手指不易捻碎。 11. 氨纶学名聚氨基甲酸酯纤维,近火边熔边燃,燃烧时火焰呈蓝色,离开火继续熔燃,散发出特殊刺激性臭味,燃烧后灰烬为软蓬松黑灰。 12. 氟纶学名聚四氟乙烯纤维,ISO组织称其为萤石纤维,近火焰只熔化,难引燃,不燃烧,边缘火焰呈蓝绿碳化,熔而分解,气体有毒,熔化物为硬圆黑珠。氟纶纤维在纺织行业常用于制造高性能缝纫线。 13. 粘胶纤维易燃,燃烧速度很快,火焰呈黄色,散发烧纸气味,烧后灰烬少,呈光滑扭曲带状浅灰或灰白色细粉末。

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

羊毛特性

纺织纤维特性 说到纺织纤维,我们先了解一下两个概念: 纤维:从生产角度看,凡是直径在数微米到数十微米或略粗些,长度比直径大许多倍(上千倍甚至更多)的物体。 纺织纤维:纤维中长度达到数十毫米以上,具有一定的强度,一定可挠曲性和相互纠缠的抱合性和其它的服用性能,而可以生产纺织制品的。 我们常用的纺织纤维有:天然纤维、化学纤维、人造纤维。 第一节羊毛 羊毛是纺织工业的重要原料,特具有许多优良特性,如弹性好、吸湿性强、保暖性好、不易沾污、光泽柔和。这些性能使毛织物具有各种独特风格。用羊毛可以织制各种高级衣用织物,如薄花呢等;有手感滑糯、丰厚有身骨、弹性好、呢面洁净、光泽自然的春秋织物,如中厚花呢等;有质地丰厚、手感丰满、保暖性强的冬季织物,如格类大衣呢等。羊毛也可以织制工业用呢绒、呢毡、毛毯、衬垫材料等。此外,用羊毛织制的各种装饰品如壁毯、地毯,名贵华丽。 一、羊毛的分子结构 (一)、蛋白质纤维的组成 所有蛋白质纤维都能被酸或碱溶液水解,水解后的最终产物为ɑ-氨基酸。下表为各种蛋白质纤维的蛋 表中数字是100克干燥蛋白类物质水解后测得的各种氨基酸的干重克数,因此,他们的总和是大于100的。蛋白质纤维的蛋白类物质中,各种ɑ-氨基酸含量的比例差别是很大的。同一种蛋白质纤维,不同品种是成分差别也很大,甚至同一只羊身上的纤维由于饲料的变化,各个时期也有差异。毛尖和

毛干部分,由于日晒雨淋、气候作用等所引起的物理化学变化不同,也会引起组成成分的差异。因此在我们日常生产当中,看是同一原料的品种,虽然工艺条件一致,但生产中仍会有差异。 (二)羊毛纤维的分子结构 羊毛纤维的大分子是由许多ɑ-氨基酸用酰胺键(又称肽键)联结构成的多缩氨酸链为主链。在组成羊毛的20多种ɑ-氨基酸中,以二氨基酸——精氨酸、松氨酸,二羚基酸——谷氨酸、天门冬氨酸和硫氨基酸——胱氨酸等的含量最高,因此在羊毛角蛋白大分子主链间能形成盐式键、二硫交联和氢键等空间横向联键。 蛋白质纤维的大分子链的单分子空间结构形式通常有两大类:一类是直线型曲折链,另一类是螺旋连,其中最普通的是ɑ-氨基酸,羊毛的大分子间,依靠分子引力、盐式键、二硫键和氢键等相结合,呈较稳定的空间螺旋状态,称为ɑ-角蛋白。在一定条件下,受到张力作用,大分子链伸展转变为角蛋白,张力撤去后,在一定条件下,他又恢复到原来的弯曲状态---ɑ-角蛋白,有时甚至会出现过缩。 二、羊毛的形态结构及其类型 (一)、羊毛的形态结构 纺织用的毛类纤维,最大量的是绵羊毛,统称羊毛。 毛纤维覆盖于绵羊皮肤的表面,并非均匀分布,而是呈簇状密集在一起。在每一小簇中,有一根直径较粗、毛囊较深的导向毛,其他较细毛纤维围绕着导向毛生长,形成毛丛。同支毛中的导向毛较细,与周围毛细度、长度差异较小;异支毛中的导向毛与他周围的毛长短、粗细差异较大。所以说,毛丛的形态和质量,是羊毛品质好坏的重要标志。 毛丛中纤维形态相同,长度、细度相近,生长密度大,又有较多的脂汗使纤维相互粘连,形成上下基本一致的形状,从外部看呈平顶状的,称平顶毛丛。具有这种毛从的羊毛品质最好,同质细羊毛多属这一类型。毛从中纤维粗细混杂、长短不一,短而细的毛靠近毛丛底部,粗长纤维突出在毛丛外面并扭结成辫,形成底部大、上部小的圆锥形,呈这种辫状的羊毛品质较差。 羊毛是由许多细胞聚集构成。他可分为三个组成部分:包覆在毛干外部的鳞片层;组成羊毛实体主要部分的皮质层;在毛干中心不透明毛髓组成的髓质层。髓质层只存在于较粗的纤维中,细毛无髓质层。 鳞片层由角质化了的扁平状角蛋白细胞组成。各种羊毛的鳞片大小基本上相同,平均宽度28微米,高度36微米,厚度0.5—1.0微米。鳞片在羊毛上覆盖的密度因羊的品种和羊毛的粗细而又较大差异。细羊毛上鳞片排列的密度比粗羊毛大,鳞片可见高度小。有观察实测,细羊毛1毫米长度中约有鳞片100层左右。鳞片可见高度约为8—10微米;粗羊毛1毫米长度中约有鳞片50层,鳞片可见高度大。 鳞片在羊毛表面上覆盖的形态,基本有三种:环状覆盖、瓦状覆盖和龟裂状覆盖。 鳞片层的主要作用,是保护羊毛不受外界条件的影响而引起性质变化。鳞片排列的疏密和附着程度,对羊毛的光泽和表面性质有很大的影响。粗羊毛上鳞片较稀,易紧贴于毛干上,使纤维表面光滑,光泽强,如林肯毛。美利奴细羊毛,纤维细,鳞片紧密,反光小,光泽柔和近似银光。此外,鳞片层的存在,是羊毛具有毡化的特性。 皮质层在鳞片层的里面,是羊毛的主要组成部分,也是决定羊毛物理化学性质的基本物质。 髓质层是由结构松散和从满空气的角蛋白细胞组成,细胞间相互联系较差。在显微镜下观察,髓质层呈暗黑色。含髓质层多的羊毛,脆而易断,不易染色。 (二)毛纤维分类 1、按纤维组织结构分类:细绒毛、粗绒毛、粗毛、发毛、两型毛、死毛 细绒毛:直径在30微米以下,无髓质层,鳞片多呈环状,油汗多,卷曲多,光泽柔和。异质毛中底部的绒毛,也称为细绒毛。 粗绒毛:直径在30—52.5微米。 粗毛:直径在52.5---75微米,有髓质层,卷曲少,纤维粗直,抗弯刚度大,光泽强。 发毛:直径大于75微米,纤维粗长,无卷曲,在一个毛丛中经常突出于毛丛顶端,行程毛辫。 两型毛:一个纤维上同时兼有绒毛和粗毛的特征,有断断续续的髓质层,纤维粗细差异较大,我

羊毛衫的面料知识

澳大利亚、斯里兰卡、阿根廷及乌拉圭。 羊毛衫根据其选用原料不同的分类 羊毛衫 以绵羊毛为原料,是最大众化的针织毛衫,其针路清晰、衫面光洁、膘光足,色泽明亮、手感丰满富有弹性;羊毛衫比较耐穿,价格适中。 羊绒衫 也称开司米(英文Cashmere)衫,以山羊绒作原料,是毛衫中的极品。其轻盈保暖、娇艳华丽、手感细腻滑润、穿着舒适柔软;由于羊绒纤维细短,其易起球,耐穿性不如普通羊毛衫,同时因羊绒资源稀少,故羊绒衫价格昂贵。 羊仔毛衫 以未成年的羊羔毛为原料,故也称羔毛衫,是粗纺羊毛衫的大陆产品。由于羊羔毛细而软,因此羊仔毛衫细腻柔软,价格适中。 雪兰毛衫 原以原产于英国雪特兰岛的雪特兰毛为原料,混有粗硬的腔毛,手感微有刺感,雪兰毛衫丰厚膨松,自然粗狂,起球少不易缩绒,价格低。现将具有这一风格的毛衫通称为雪兰毛衫,因此雪兰毛已成为粗狂风格的代名词。 兔毛衫 一般采用一定比例的兔毛与羊毛混纺织制,兔毛衫的特色在于纤维细,手感滑糯、表面绒毛飘拂、色泽柔和、蓬松性好,穿着舒适潇洒,穿着中表面绒毛易脱落,保暖性胜过羊毛服装;如果采用先成衫、后染色的工艺(即先织后染工艺),可使其色泽更纯正、艳丽,别具一格,特别适宜制成青年妇女外衣。 牦牛绒衫 采用西藏高原牦牛绒为原料,其风格稍逊于羊绒衫,手感柔滑细腻,不易起球,而价格比羊绒衫低得多,但牦牛绒衫色彩单调,宜作男装。

马海毛衫 以原产于安格拉的山羊毛为原料,其光泽晶莹闪亮、手感滑爽柔软有弹性、轻盈膨松、透气不起球,穿着舒适保暖耐用,是一种高品位的产品,价格较高。 羊驼毛衫 以原产于智利的羊驼毛为原料,纤维粗滑,手感滑腻有弹性、具有天然色素、膨松粗放、不易起球,保暖耐用,是近几年兴起的一种高档产品,价格高于普通羊毛衫。 化纤类毛衫 服装的共同特点是较轻。如腈纶衫,一般用晴纶膨体纱织制,其毛型感强、色泽鲜艳、质地轻软膨松,回潮率只有%,纤维断裂强度比毛纤维高,不会虫蛀,但其弹性恢复率低于羊毛,保暖性不及纯羊毛衫,价格便宜,但易起球,适宜于儿童服装。近来,国际市场上以晴纶、锦纶混纺的仿兔毛纱,变性晴纶仿马海毛纱,其成衫可以与天然兔毛、马海毛服装媲美。 动物毛与化学纤维混纺的毛衫 具有各种动物毛和化学纤维的“互补特性”,其外观有毛感,抗伸强度得到改善,降低了毛衫成本,是物美价廉的产品。但在混纺毛衫中,存在着不同类型纤维的上染、吸色能力不同造成染色效果不理想的问题。 几种主要原料的特点及性质 绵羊毛纤维 在科学发达的今天,世界上已经有了许多各式各样的纤维。但吸湿、保暖、舒适等主要的性能都无法与羊毛相比。羊毛纤维的外形为细长圆柱形物体,它是由鳞片层,皮质层和髓质层组成。由于鳞片具有定向性,在一定的湿热和皂液条件下,加上机械外力的搓揉作用,使羊毛纤维具有良好的缩绒性。羊毛纤维的直径在18~42微米之内,纤维越细,可纺的支数就高,相对强度也高,卷曲度大,弹性就好。 超细美丽诺羊毛Extrafine Merino 出自澳大利亚的优质羊毛——美丽奴羊。这是澳大利亚经过200年的选育与改良,育成的一个独特的细羊毛品种。

84-羊毛纤维的化学特性(田得红)(精)

羊毛纤维的化学特性 羊毛纤维是皮肤的衍生物,是一种复杂的蛋白质化合物,属于角朊。主 要由碳、氢、氧、氮硫五种元素组成。据分析,羊毛中各种元素的的含量为: 碳49.0%~52.0,氢6.0%~8.8%,氧17.8%~23.7%,氮14.4%~21.3%,硫2.2%~5.4%,灰分0.16%~1.01%。另外,含硫是羊毛纤维的特点,也是羊毛特性的 物质基础,它使羊毛纤维具有弹性,一般羊毛愈细,含硫量愈高。羊毛上端 经常受到风吹日晒,硫的含量比下端少。组成羊毛纤维最基本的物质是氨基酸,下列表为中国农业科学院序幕研究所测定中国美利奴羊的氨基酸组成: 表1-6-3-4 中国美利奴羊羊毛氨基酸组成 氨基酸名称含量(%)氨基酸名称含量(%)甘氨酸 3.39±0.53 天门冬氨酸 5.45±0.67 丙氨酸 3.61±0.23 赖氨酸 2.82±0.31 丝氨酸7.07±1.12 谷氨酸11.85±1.34 脯暗算 4.71±0.40 蛋氨酸0.36±0.06 缬氨酸 4.27±0.62 组氨酸0.87±0.09 苏氨酸 4.76±0.35 苯丙氨酸 3.92±0.55 胱氨酸,14.08±0.62 精氨酸8.01±0.74 亮氨酸 6.52±0.73 酪氨酸 4.6±60.46 异亮氨酸 2.50±0.25 色氨酸— 1.碱对羊毛的作用 羊毛抗碱能力较弱。一般情况下,pH﹤8时,破坏作用不明显;pH﹥8时,开始有比较明显的破坏作用;pH﹥11时,破坏九非常剧烈了。5%的苛性钠煮 沸几分钟,可使羊毛纤维全部溶解,所以羊毛及毛织品不宜用强碱洗涤,最 好在低温水中(低于52℃),用中性肥皂或低浓度的碱液洗涤,之后要用清 水多次漂洗,以免干后形成碱斑,降低毛织品质量。 2.酸对羊毛的作用 羊毛的抗酸能力较强。一般弱酸及低浓度的酸对羊毛没有明显的破坏 作用,但高温、高浓度及强酸对羊毛有明显的破坏作用。试验证明,pH≤4

橡胶材料疲劳断裂特性研究进展_李晓芳

第19卷第3期2010年9月 计算机辅助工程Computer Aided Engineering Vol.19No.3Sept.2010 文章编号:1006-0871(2010)03-0064-06 橡胶材料疲劳断裂特性研究进展 李晓芳1,2,张春亮 3 (1.大庆油田公司采油工程研究院,黑龙江大庆163453; 2.哈尔滨工业大学力学博士后流动站,哈尔滨150001; 3.大庆油田公司采油二厂,黑龙江大庆163414) 摘 要:由于橡胶材料的动态疲劳特性对保证橡胶制品使用时的安全性和可靠性具有重要意义,综述机械载荷、环境和橡胶配方等因素对橡胶材料疲劳寿命的影响,总结用疲劳裂纹萌生寿命法和基于断裂力学的疲劳裂纹扩展法预测橡胶材料动态疲劳寿命方法的优缺点,并展望这2种方法的发展趋势. 关键词:橡胶;疲劳;裂纹萌生;断裂力学;裂纹扩展中图分类号:O346.2;TQ330文献标志码:A Research advance on rubber material fatigue and fracture characteristics LI Xiaofang 1,2 ,ZHANG Chunliang 3 (1.Research Institute of Production Eng.,Daqing Oilfield Co.,Daqing Heilongjiang 163453,China ; 2.Mechanics Postdoctoral Station ,Harbin Institute of Tech.,Harbin 150001,China ; 3.No.2Oil Production Plant ,Daqing Oilfield Co.,Daqing Heilongjiang 163414,China ) Abstract :Due to the importance of the dynamic fatigue characteristics of rubber materials that ensure the safety and reliability of rubber products in service ,the factors that influence the fatigue life of rubber materials are reviewed ,such as mechanical load ,environment and rubber formulation and so on ;The advantages and disadvantages of fatigue crack nucleation approach and crack growth approach based on fracture mechanics are summarized ,which are usually used to predict fatigue life for rubber.The current development trends of two analysis approaches are described. Key words :rubber ;fatigue ;crack nucleation ;fracture mechanics ;crack growth 收稿日期:2009-10-14 修回日期:2010-01-19 作者简介:李晓芳(1977—),女,湖北天门人,博士,研究方向为采油机械设计, (E-mail )lixiaofang226@https://www.wendangku.net/doc/3c15568608.html, 0引言 橡胶材料能承受的应变很大且不会导致永久变 形与断裂, 经过适当配方设计可满足的材料性能要求范围十分广,是振动隔离器、轴承、轮胎、密封件、 软管和垫圈等的理想选择材料.橡胶通常适合3种特殊的使用情况:密封、减振和承受负荷,它们几乎都涉及到动态响应.在交变载荷的反复作用下,即使 应力远低于断裂强度极限, 材料也极易发生疲劳破坏,而疲劳断裂性能往往决定这些制品的疲劳寿命.因此,为保证橡胶制品使用时的安全性和可靠性,研究橡胶材料动态疲劳特性的意义十分重要. 1 影响橡胶疲劳断裂的因素 1.1 机械载荷 多数情况下,作用在结构或机械上的载荷随时

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

橡胶疲劳的一些问题

天然橡胶 就橡胶材料而言,它是指橡胶材料在重复变形的过程中,当其承受的局部变形应力超过橡胶的延伸率或应力极限时,疲劳过程开始,以至于最后达到破坏。这种疲劳破坏的开始点是由于橡胶表面或内部的不均匀性所造成的。 橡胶材料的破坏主要是由于其内部的缺陷或微裂纹引发的裂纹不断传播和 扩展而导致的。按照分子运动论的观点,橡胶材料的动态疲劳破坏归因于材料本身分子链上化学键的断裂,即试样在受到周期应力一应变作用过程中,应力不断地集中于化学键能比较弱的部位而产生微裂纹,继而发展成为裂纹并随着时间的推移而逐步扩展开来。裂纹发展是一个随着时间而发展,涉及到橡胶材料的分子链连续断裂的粘弹性非平衡动态变化过程。这一微观发展过程在宏观上的表现是,橡胶材料在动态应力一应变的疲劳过程中,裂纹穿过试样不断扩展,直到断裂以及产生与之所伴随的热效应。 橡胶材料的动态疲劳过程一般可以分为三个阶段:第一阶段是应力剧烈变化,出现橡胶材料在应力作用下变软的现象;第二阶段是应力缓慢变化,橡胶材料表面或内部产生微裂纹,经常称之为破坏核;第三阶段是微裂纹发展成为裂纹并连续不断地扩展开,直到橡胶材料完全出现断裂破坏现象,最后这一阶段是橡胶材料疲劳破坏的最重要的阶段。 使用炭黑填充的天然橡胶硫化胶在一定负荷下多次拉伸变形时,橡胶的物理机械性能在疲劳过程中,拉伸强度先是逐步上升的,经过一个极大值后再开始下降,而撕裂强度、动态弹性模量和力学损耗因子的变化则相反。在疲劳过程中,胶料的拉伸强度几乎保持不变。300%定伸应力的疲劳开始阶段明显增大,然后增大趋于缓慢;扯断伸长率则随疲劳周期的变化而下降,在高应变疲劳条件下,具有拉伸结晶性的橡胶抗疲劳破坏性能较好。未使用补强剂补强的橡胶材料,其破坏形态一般表现为塑性破坏,而使用炭黑或其它活性填料作补强剂的橡胶材料则表现为脆性破坏,且随着各种防老剂的加入,其破坏形态由脆性破坏逐步向准塑性破坏形态转变。 天然橡胶在受到一定频率的应力作用的条件下,由于分子链的内摩擦而生热是其动态疲劳破坏的另外一种因素。当疲劳生热的温度低于120℃时,天然橡胶制品内部将发生化学交联键的结构变化,主要是发生交联键及链段的热裂解反应,

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

细羊毛与羊绒纤维的鉴别

细羊毛与羊绒纤维的鉴别 倪广菊,张 毅 (天津工业大学,天津 300011) 摘要:从分析细羊毛与羊绒纤维的组织结构、形态特点以及物理、化学特性出发,总结了传统光学显微镜法、扫描电镜法、溶液法等鉴别细羊毛与羊绒纤维的原理及方法。提出了对计算机自动识别法、生物芯片法的展望。 关键词:细羊毛;羊绒纤维;纤维鉴别 中图分类号:10213 文献标识码:A 文章编号:10092265X (2004)0420040203 收稿日期:2003-12-02 作者简介:倪广菊(1979-  ),女,辽宁人,硕士研究生,从事纺织材料(羊毛与羊绒)的结构性能与测试。 羊绒是取自山羊(又名开司米山羊)身上的一层细绒毛。纤维细长均匀,手感柔软丰润,集轻、柔、滑、暖、富有弹性、光泽好于一身,被誉为“纤维之王”。但由于羊绒产量稀少(全世界羊绒产量仅为羊毛产量的1%、动物纤维总产量的012%),其价格也十几倍于羊毛。为降低成本及满足市场需要,且使纤维兼具各自优点,性能互补,企业常常生产不同比例的山羊绒与细羊毛混纺产品。由于细羊毛与羊绒在结构、外观形态、理化性能上较为接近,又由于山羊绒优良的品质及极高的价格,准确鉴别这两种纤维就显得异常重要。1 细羊毛与羊绒纤维的异同性 细羊毛与羊绒同属蛋白质纤维,基本组成为角 蛋白质,都是由许多细胞聚积而成的,其截面分布划分为2或3个层次,即外表面的鳞片层、内部的皮质层和中心的髓质层。细的毛绒一般只有鳞片层和皮质层,没有髓质层。粗的毛绒纤维一般3层兼具。由于它们的组成和组织结构相近,故在许多特性方面如吸湿、光泽、密度、保暖性等有共同特性[1] 。难怪至今仍有人以为羊绒就是细羊毛,其实不是。细羊毛产自绵羊,而羊绒出自绒山羊。到春季,山羊脱毛之时,牧民用铁梳子抓取下来成为原绒。原绒再经过洗净、分类、分梳,才能得到纯净的羊绒原料。 羊绒纤维长度短、强力低,纤维表面覆盖的鳞片薄而稀,彼此紧贴。因纤维卷曲数比羊毛少,摩擦系数比羊毛小,所以纤维较平滑,纤维间抱合力 差,但手感滑糯。羊绒纤维卷曲少,但卷曲深度 大,一般羊绒伸直度达300%以上,而64支美利奴羊毛仅为160%,因此羊绒纤维保暖性优于羊毛。在同样温湿度条件下,羊绒比羊毛容易吸湿。水中数秒钟内,羊绒纤维即可浸湿,而羊毛却要几分钟。为直观起见,将细羊毛与羊绒纤维的不同点比 较列如表1[1] 。 表1 细支绵羊毛与羊绒纤维的形态 参数指标羊 绒 细支绵羊毛(70s ) 细度范围/μm 5~2510~80长度范围/mm 15~10025~160平均细度/μm 14~171811~2010平均长度/mm 32~4055~100卷曲数/个?cm -1 4~56~8鳞片密度/个?mm -1 60~80 80~110 纵向表面鳞片形状成环状包覆整个毛干,鳞片表面平而光滑,边缘清晰,鳞片较薄大多数成环状,鳞 片表面粗糙而不光 滑,边缘线粗而不太清晰,鳞片较厚 2 细羊毛与羊绒的主要鉴别方法 由于细羊毛与羊绒组织结构、外观形态、理化性能相似,因此对细羊毛与羊绒的识别一直是纺织检测的一个难题。近年来,国内外商业界、学术界的很多科研人员对此项研究投入了大量的精力。1983年,Maasdorp 等人分析了纺织纤维表面特性之间的关系;1984年,Marshall R 1C.等人提出,可以采用电泳现象鉴别特种动物纤维;1987年,澳大利亚T ester D 1H.采用透射电镜分析了羊绒与超细美利奴羊毛纤维的皮质细胞结构;1990年,Sagar A 1J 1G 等人采用化学方法分析了各种角蛋白 ? 04?测试与分析 现代纺织技术?第12卷(2004)第4期

相关文档
相关文档 最新文档