文档库 最新最全的文档下载
当前位置:文档库 › 霍尔原件测电流

霍尔原件测电流

霍尔原件测电流
霍尔原件测电流

直流交流均可检测,很方便,很实用!亲放心购买哦!

ACS758ECB-200B-PFF-T 3-lead CB 是-40 °C to 85 °C 新

ACS758ECB-200B-PSS-T 3-lead CB 是-40 °C to 85 °C 新

ACS758KCB-150B-PFF-T 3-lead CB 是-40 °C to 125 °C 新

ACS758KCB-150B-PSF-T 3-lead CB 是-40 °C to 125 °C 新

ACS758KCB-150B-PSS-T 3-lead CB 是-40 °C to 125 °C 新

ACS758LCB-050B-PFF-T 3-lead CB 是-40 °C to 150 °C 新

ACS758LCB-100B-PFF-T 3-lead CB 是-40 °C to 150 °C 新

您看到图时,温馨提醒您,在焊接脚位时

大脚位请多上些锡,因脚位大焊接锡少了,不容易接上

脚位小,正常焊接即可!祝您用料愉快!

ACS758LCB-100B-PFF-T

带100 μΩ电流导体的增强散热功能、全集成、基于霍尔效应的线性电流传感器IC

功能及优点

通过专利放大器和滤波器设计工艺实现行业领先的噪音性能

集成屏蔽可大幅减少因dV/dt 信号导致电流导体至晶片的电容耦合,并可防止高端、高电压应用中的偏置漂移。

通过过温增益和偏置修正实现总输出误差减少

小型封装尺寸,安装简便

高可靠性的单片霍尔IC

超低功率损耗:100 μΩ内部传导电阻

绝缘设计可实现高电压系统中经济实惠的高端电流感测

3.0 至5.5 V, 单电源操作

120 kHz 典型带宽

3 μs 输出上升时间,对应步进输入电流

输出电压与交流或直流电流成比例

出厂时精确度校准

极稳定的输出偏置电压

近零的磁滞

描述

Allegro?ACS758 电流传感器IC 系列可为交流或直流电流感测提供经济实惠且精确的解决方案。典型应用包括电动机控制、载荷检测和管理、电源和直流至直流转换器控制、逆变器控制和过电流故障检测。

该器件由一个精确、低偏移的线性霍尔传感器电路组成,且其铜制的电流路径靠近晶片。通过该铜制电流路径施加的电流能够生成可被集?苫舳? IC 感应并转化为成比例电压的磁场。通过将磁性信号靠近霍尔传感器,实现器件精确度优化。精确的、成比例输出电压由稳定斩波型低偏置BiCMOS 霍尔IC 提供,该IC 出厂时已进行精确度编程。

Allegro 独有的集成屏幕技术提供的对电流导体dV/dt 信号和杂散电场的高耐受力,确保高端、高电压应用中的低输出电压纹波和低偏置漂移。

当通过用作电流感测通路之主要铜传导通路(从端子 4 到端子5)的电流不断上升时,器件的输出具有正斜率(>V CC/2) 。该传导通路的内电阻通常是100 μΩ,具有较低的功率损耗。

铜线的厚度允许器件在高过电流条件下运行。传导通路的接线端与传感器引脚(引脚 1 到3)电气绝缘。这样,ACS758 传感器IC 系列可用于那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用。

器件在出厂装运前已完全校准。ACS758 系列是无铅产品。所有的引脚均镀以100% 雾锡,封装内无任何铅存在。大量规引脚框是以无氧铜制造。

霍尔效应实验和霍尔法测量磁场

DH-MF-SJ组合式磁场综合实验仪 使用说明书 一、概述 DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 二、主要技术性能 1、环境适应性:工作温度 10~35℃; 相对湿度 25~75%。 2、通用磁学测试仪 2.1可调电压源:0~15.00V、10mA; 2.2可调恒流源:0~5.000mA和0~9.999mA可变量程,为霍尔器件 提供工作电流,对于此实验系统默认为0-5.000mA恒流源功能; 2.3电压源和电流源通过电子开关选择设置,实现单独的电压源和电 流源功能; 2.4电流电压调节均采用数字编码开关; 2.5数字电压表:200mV、2V和20V三档,4位半数显,自动量程转换。 3、通用直流电源 3.1直流电源,电压0~30.00V可调;电流0~1.000A可调; 3.2电流电压准确度:0.5%±2个字; 3.3电压粗调和细调,电流粗调和细调均采用数字编码开关。 4、测试架 4.1底板尺寸:780*160mm; 4.2载物台尺寸:320*150mm,用于放置螺线管和双线圈测试样品; 4.3螺线管:线圈匝数1800匝左右,有效长度181mm,等效半径21mm; 4.4双线圈:线圈匝数1400匝(单个),有效直径72mm,二线圈中心 间距 52mm; 4.5移动导轨机构:水平方向0~60cm可调;垂直方向0~36cm可调,最小分辨率1mm; 5、供电电源:AC 220V±10%,总功耗:60VA。 三、仪器构成及使用说明

DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。 1、测试架 1.双线圈; 2.载物台(上面绘制坐标轴线); 3,4 双线圈励磁电源输入接口; 5.霍尔元件; 6.立杆; 7.刻度尺; 8.传感器杆(后端引出2组线,一组 为传感器工作电流Is,输出端号码管标识为Input;一组为霍尔电势V H输出,输出端号码管标识为Output); 9.滑座; 10.导轨; 11. 螺线管励磁电源输入接口; 12.螺线管; 13.霍尔工作电流I S输入,号码管标有Input(红正,黑负); 14.霍尔电势V H输出,号码管标有Output(红正,黑负); 15.底座 图1-1组合式磁场综合实验仪(测试架图) 2、通用磁学测试仪(DH0802) 1.电压或电流显示窗口(霍尔元件工作电流或电压指示); 2.恒流源指示灯; 3.恒压源指示灯; 4.调节旋钮(左右旋转用于减小或增加输出;按下弹起按钮用于

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

霍尔电流传感器的应用场合

霍尔电流传感器的应用场合 1、继电保护与测量:在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用:在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用:在逆变器中,用霍尔电流传感器可进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用:在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,霍尔电流传感器2发出的信号控制逆变器,霍尔电流传感器3控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用:在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制:电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用:用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理:霍尔电流传感器,可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全。用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等。

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

实验8 霍尔效应法测量磁场A4

实验八 霍尔效应法测量磁场 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =?作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =?反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 I

如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实验前要首先进行霍尔输出电压的调零,以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 图2

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

实验十三 霍尔效应测磁场---注意事项及操作步骤(姜黎霞)

实验十三 霍耳效应测磁场 一、注意事项 1. 双刀双掷开关上的连线已经固定连接好,请不要擅自拆卸。 2. 双刀双掷开关引出的导线红“+”、黑“-”,各表头对应的接线柱也是红“+”、黑“-”,连线时双刀双掷开关引出的导线并联到接线柱上,即“红接红,黑接黑”。导线连好后经老师检查,然后开电源。 3. 双刀双掷开关向上合闸规定为“+”,向下合闸规定为“-”。在整个实验过程中,霍耳电压H U 对应的双刀双掷开关向上合闸,固定不变,只有工作电流H S ()I I 和励磁电流M I 对应的双刀双掷开关会要求上、下换向合闸,其中励磁电流M I 对应的双刀双掷开关在合闸时动作要快,否则会产生电火花。 4. 实验结束后,先断电,后拆线。只拆自己连接的部分,其它线路保留。 5. 本实验有两种型号的仪器,工作电流分别表示为H I 或S I ,灵敏度分别表示为 H K 或H S 。 6. 每套仪器的灵敏度不同,具体数值标在仪器箱内的面板上,注意:有一种型号的仪器灵敏度单位不是国际单位制,要化为国际单位制,具体换算是: 1mV /mA KG 10V /A T ?=?( G :高斯,T :特斯拉) 二、操作步骤 1. 将三个双刀双掷开关引出的导线分别并联到与开关名目相同的接线柱上,经老师检查后,打开电源。 2. 将三个双刀双掷开关全部向上合闸,然后调节工作电流H S () 2.00mA I I =,励磁电流M 0.6A I =。注意:(1)励磁电流调节好后就固定了,直到实验结束都不需再调节。(2)有一种型号的仪器工作电流和励磁电流用同一个表头显示,需要用旁边的红色按钮转换。 3. 调节霍耳元件移动螺杆旋钮,测量霍耳元件在电磁铁两极间隙中5个不同任选位置的霍耳电压H U ,并将数据填入表13-1的草表中。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

霍尔传感器直线电机位置检测

电流检测部分 本控制系统中永磁直线电机的两相电枢电流通过霍尔电流传感器得到,另外一相电流通过计算得到。电流传感器采用LEM公司生产的LTSR -6-NP型电流传感器,该产品具有高精度,高线性度,高响应速度,高频率带宽,高电流过载能力,低温漂,低接入损耗,以及对外部信号的高抗干扰能力,非常适合在永磁电机伺服系统中使用。根据选择不同的引脚接法,该产品可以提供三种不同的额定采样电流值,分别为2A、3A和6A电流有效值,对应的最大采样电流值分别为6.4A,9.6A 和19.2A。由于该传感器输出电压范围为0.5~4.5V,而 TMS320LF240DSP的AD输入信号只能在0V—+3.3V之间,所以需要将传感器的输出电压经过运放电路处理后,再输入DSP的AD口,具体电路如图4—10所示.

一种低成本的线性霍尔位置检测方法在永磁直线电机伺服控制系统中,无论采用何种控制方式,都需要准确检测出电机动子位置。可以说,位置检测部分是伺服控制系统中非常关键的组成部分,直接影响着电机控制精度和系统运行性能。目前,在直线运动控制系统中,最常见的位置检测方法是采用直线光栅,但是光栅的成本很高,对安装要求也很高;也有增加额外机械结构,将直线运动转变成旋转运动,然后用旋转编码器进行位置检测的方法,显然该方法在成本和精度上都存在缺点;还有采用无位置检测的方法,但是目前所有无位置检测方法的在电机低速段效果都不是很理想,而直线电机恰恰需要频繁的起动和停止,采用无位置检测方法获得理想的效果难度较大,尚未有实用的解决方案提出。因此,本节将介绍一种低成本的利用线性霍尔元件对永磁直线电机进行位置检 测的方法。 §4.6.1线性霍尔位置检测方法的基本原理 线性霍尔元件可以用来检测磁通密度,在一定磁场强度范围内,其输出电压与被检磁场磁通密度成线性关系.永磁直线同步电机气隙磁场为正弦分布,因此很容易通过检测气隙磁场磁通密度的方法来确定电机动子的位置。本节以空心式圆筒型永磁直线电机为例,具体介绍该方法。电机及霍尔元件的安装位置示意图如图4—18所示.因为电机只沿Z轴方向做运动,所以只需要检测电机动子在z轴上的位置。在第三章中,已经分析了该电机气隙磁密Br,沿Z轴基本成正弦分布,在一对极范围内,也就是一个周期内,Br不是Z的单值函数,因此不

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

直流激励时霍尔式传感器位移特性实验

直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它 就可以进行位移测量。 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图5-2安装。霍尔传感器与实验模板的连接按图5-3进行。1、3为 电源±4V,2、4为输出。 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 用最小二乘法对实验数据进行处理,并绘出V-X曲线,程序如下: t=[0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8]; y=[-0.966 -0.978 -0.984 -0.988 -0.993 -0.997 -1.001 -1.006 -1.010 -1.015]; [P,S] = polyfit(t,y,1) t1=0:0.01:1.8; yi=polyval(P,t1); plot(t,y,'k*',t1,yi,'r') xlabel('X(mm)'); ylabel('V(V)'); legend('测量数据点','最小二乘拟合线') 运行结果如下: P = -0.0248 -0.9715 S = R: [2x2 double] df: 8 normr: 0.0069 由结果知灵敏度为0.0248和非线性误差为0.69% V-X曲线

结论:由上图知霍尔电压与推进距离为线性关系。 五、思考题: 1)本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 2)请思考解释本实验中的“信号获取电路”的原理及电路参数。 光纤传感器的位移特性实验 一、实验目的: 了解光纤位移传感器的工作原理和性能。 二、基本原理: 本实验采用的是导光型多模光纤,它由两束光纤组成Y型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦即探头,它与被测体相距X,由光源发出的光通过光纤传到端部射出后再经被测体反射回来,由另一束光纤接收反射光信号再由光电转换器转换成电压量,而光电转换器转换的电压量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元: 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源±15V、反射面。 四、实验步骤: 1、根据图6-1安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。其内部已和发光 t=[0.51 0.8 0.835 1 1.1 1.2 1.3 1.4 1.5]; y=[0.207 0.325 0.35 0.39 0.44 0.475 0.518 0.537 0.56]; [P,S] = polyfit(t,y,1) t1=0.5:01:1.5; yi=polyval(P,t1); plot(t,y,'k*',t1,yi,'r')

霍尔电流电压传感器

霍尔元件是一种基于霍尔效应的磁传感器,用霍尔器件,可以进行非接触式电流测量,起到信号电气隔离作用。众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I ∞B ∞VH 其中I 为通过导线的电流,B 为导线通电流后产生的磁场,VH 为霍尔器件在磁场B 中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 如图4.21,闭环霍尔电流传感器的工作原理是磁平衡式的,即原边电流(Ip)所产生的磁场,通过一个副边线圈的电流(Is)所产生的磁场进行补偿,使霍尔器件始终处于检测零磁通的工作状态。当原副边补偿电流产生的磁场在磁芯中达到平衡时,即有如下等式: P*Ip= S*Is 式中:Ip 为原边电流;P 为原边线圈的匝数;Is 为副边补偿电流;S 为副边线圈的匝数。 由上式看出,当己知传感器原边和副边线圈匝数时,通过测量副边补偿电流Is 的大小,即可推算出原边电流Ip 的值,从而实现了原边电流的隔离测量。 出CMS010G +15v -15v Iout out Rm 图4.21霍尔电流传感器 我们选用的霍尔电流传感器CSM030G/CSM0l0G 的匝数比P: S=1: 1000,原边电流测量范围分别为0~士45A 和0~士20A 。因此,降压模式选择CSM030G ,升压模式选择CSM0l0G ,通过选取测量电阻Rm 的阻值即可确定出副边输出电压的额定值Vsn 及范围。 由于DSP2407的ADC 的输入模拟值允许范围为0~3V ,降压模式时实验电路工作电流范围为0~14A ,因此,选取电流霍尔CSM030G 的测量电阻Rm=200Ω,当Ip=14A 时,

霍尔电流传感器及其应用

霍尔电流传感器及其应用 在现代社会中,信息化的需求越来越庞大,传感器在信息采集中发挥了重要作用。他们可以把各种物理信息,按照一定的规则,为可测量的电信号。我们所测量的电信号,以及相关物理信息的关系的变化的基础上,我们可以得到所测量的物理的变化或大小。 根据该传感器的工作原理,我们可以划分成多种类型的传感器,如光电传感器,电荷传感器,电位型传感器,半导体传感器,电传感器,磁传感器,谐振式传感器,电动化学式传感器等等。 霍尔传感器是利用霍尔元件的霍尔效应原理,(可以音乐会的物理信息),如电流,磁场,位移,压力等,为电动势输出。它属于电位型传感器。当前,这种传感器主要是霍尔集成电路,核心单元是基于霍尔效应。这是由通过集成电路技术。因此,它不仅仅是一种集成电路,而是一种磁传感器。 本文根据实际应用,主要是霍尔电流传感器。 1 霍尔效应 在金属或半导体晶片放置在磁场中,并且如果有一个通过它的电流,会产生电动势,(在垂直方向上的电场和磁场,调用此种物理现象霍尔效应。) 在磁场中产生的洛伦兹力的作用下,通电的半导体芯片的载体,分别偏移积累到芯片的两侧,从而形成一个电场,称霍尔电场。霍尔电场产生的电场力,是相反的洛伦兹力,阻碍了继续堆积,直到(大厅)电场力和洛伦兹力。此时,芯片的两侧,将设置一个稳定的电压,这是霍尔电压。 2 霍尔电流传感器 随着城市人口和城市建设规模的扩大,以及各种电气设备的增加,功耗也越来越大。城市的供电设备经常超载,而电源环境越来越差,“测试”的权利越来越严重。因此电源问题越来越多的显现出来。现在,小功率电源设备已经越来越多的与新技术相结合。例如,开关电源,硬切换,软切换,参数稳压器,线性反馈稳压器,磁放大器技术,数控压力调节,PWM,,SPWM,电磁兼容等实际需求直接推动电源技术的发展和进步。为了检验并显示当前自动,自动保护功能和更先进的智能控制,过电流,过电压的危害。如发生时,电源技术与传感检测,传感采样,传感保护已成为一种趋势。传感器检测电流或电压,所谓的霍尔电流传感器应运而生,(并迅速成为最喜爱的设计师在我国的电源). 2.1 霍尔电流传感器的性能特性 霍尔电流传感器具有优越的性能,并且它是一种先进的电检测元件,它可以隔离主回路和电子控制电路。它有变压器和分流器的所有优点,并且在同一时间,克服了他们的缺点(变压器可以只施加的电源频率的测量,50赫兹,分流器是无法做隔离测量),使用同一个霍尔电流传感器模块检测元素,不仅可以测量AC,也可以检测直流,甚至可以检测瞬时峰值。它具有以下性能特点。 (1)测量任意波形的电流,如DC,AC乃至瞬态峰值参数测量的; (2)精度高。在工作区中的一般霍尔电流传感器模块的精度高于1%,并且是适用于任何波形测量精度; (3)线性度优于0.5%; (4)良好的动态性能。一般的电流传感器模块的动态响应时间小于7us,跟踪速度di|dt 是上述50A|us; (5)工作频段宽。它可以工作在频率范围从0到20KHZ非常好; (6)过载能力强。测量范围宽(0-10000A); (7)高可靠性。平均无故障工作是超过5*10000小时; (8)体积小,重量轻,易于安装系统,不会带来任何损失。

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

相关文档
相关文档 最新文档