文档库 最新最全的文档下载
当前位置:文档库 › 压电陶瓷PZT型号

压电陶瓷PZT型号

压电陶瓷PZT型号
压电陶瓷PZT型号

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷

Electrorheological 电流变 电流变液 (Electrorheological Fluids)是一种智能流体,通常是由高介电常数的微米量级颗粒分散于低介电常数的绝缘油中而形成的悬浮液。 microfluids 微流体 Mechanisms 机制,机械Dynamics 动力,动力学 Induced polarization 感应激发极化rheological 流变学的,液流学的effective dielectric constant 有效介电常数 insulating 绝缘的 在他们研发后的近六十年时间里,电流变液体已经成为具有日益增长的科研魅力和实践重要性的材料。这个评论追溯到机械装置,是由于这些液体的电流变反应和他们伴随的理论基础。尤其是,电流变液体被分为了两个不同类型,非传导性的电流变和 PZT(锆钛酸铅)piezoelectric ceramic transducer 是PbZrO3和PbTiO3的固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族,PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点 PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。具有正压电效应和负压电效应。 具有体积小,重量轻,精度和分辨率高,频率高,出力大等优点 目前从环境保护的角度来讲,PZT已经被禁用了 现代压电陶瓷材料正在向着复合化,薄膜化,无铅化和纳米化方向发展 压电陶瓷在人们生活中的很多方面具有重要的应用,但是目前全球在大量使用的压电陶瓷材料仍是传统的含铅压电陶瓷,其中铅元素高达60%以上。氧化铅是一种易挥发的有毒物质,

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: 机械品质因数可根据等效电路计算而得 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。 S=dE 两式中的压电应变常数 d 在数值上是相同的,即E S D d ==σ 另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: εd g = 式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电材料PZT

. 压电材料PZT 压电常数(Piezoelectric Constant)是压电体把机械能转变为电能或把电能转变为机械能的转换系数。它反映压电材料弹性(机械)性能与介电性能之间的耦合关系。选择不同的自变量(或者说测量时选用不同的边界条件),可以得到四组压电常数d、g、e、h,其中较常用的是压电常数d。其中压电常数d33是表征压电材料性能的最常用的重要参数之一,一般陶瓷的压电常数越高,压电性能越好。下标中的第一个数字指的是电场方向,第二个数字指的是应力或应变的方向,“33”表示极化方向与测量时的施力方向相同。当沿极化方向(Z 轴)施加压应力T3时,在电极面A3上产生的电荷密度σ3 = d33T3。在MKSQ 制中,电位移D3 =σ3,则 D3 = d33T3 同理,沿X轴和Y轴分别施加机械应力T1和T2,在电极面A3上所产生的电位移为:D3 = d31T1,D3 = d32T2。若晶体同时受到T1,T2和T3的作用,电位移和应力关系为: D3 = d31T1+d32T2+d33T3 对于用来产生运动式振动的材料来说,希望具有大的压电常数d。 压电材料的种类和应用 压电材料有三种:压电晶体,压电陶瓷,有机压电材料。 压电晶体最有代表性的就是石英晶体,绝缘好,机械强度大,居里点高,但压电系数小,所以只用作校准用的标准传感器,或是要求精度很高的传感器。压电陶瓷应用范围很广,灵敏度好,但相对石英晶体则机械强度低,居里点底。有机压电材料通常都是高分子材料构成的,压电系数高,灵敏度高,多用于医学等高精尖科学。 压电材料在压力传感器的应用 压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。压电压力传感器是利用压电原理制成的。 整理版本

PZT压电陶瓷制备方法

PZT压电陶瓷制备方法 摘要:PZTR基压电陶瓷材料具有性能稳定、容易制造、价格低廉等优点,已被广泛应用于电子元器件中。但由于采用传统的高温固相法烧结铅大量挥发,从而导致化学计量比偏离、性能下降。本文介绍了压电陶瓷的几种制备方法。 关键字:;PZT陶瓷制备方法 引言:PZT压电陶瓷由于具有居里温度高、压电性强、易掺杂改性、稳定性好等特点。自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。就PZT压电陶瓷的制备工艺而言,PZT粉体合成和致密化烧结对PZT制品质量影响最大。PZT超微粉体具有粒度细、比表面积大、反应活性高等优点,可降低烧结温度,减少铅挥发,保证准确的化学计量,提高PZT制品性能,因而超微PZT粉体的制备已成为PZT压电陶瓷研究的重点。 近年来对超微PZT粉体制备的研究开发了许多新的方法。固相法除传统周相法外,还包括微波辐射法、机械化学法口、反应烧结法等。液相法具有合成温度低、设备简单、易操作、成本低等优点,纷纷被用于PZT粉体的制备,如溶胶一凝胶法、水热法、沉淀法等。但对PZT压电陶瓷的制备及性能研究仍存在许多不足,主要包括:粉体团聚、化学计量及制品性能易老化等。 2、PZT陶瓷的制备方法 2.1水热法合成制备PZT压电陶瓷粉 实验原料为:Pb(Ac)2·3H20、ZrOCl2·8 H20、Ti(OC4H9)4、Na()H(均

为分析纯试剂),全部配制成水溶液使用。按照Pb(Zr0.58Ti 0.42)O3的组成配制水热反应混合溶液。铅的成分适当过量添加。反应在NaOH 水溶液介质中进行,反应设备采用100mI。反应釜,反应温度分别设定为240摄氏度、反应时间为4 h,反应结束后用定鼍滤纸进行过滤,然后用离子交换水超声波二遍清洗,生成物在100摄氏度下干燥24 h,以备测定各种性能。采用RIGAKU公司生产的D/MAX RB型X射线粉末衍射仪分析产物的物相组成,采用JSM一5010I。V型扫描电镜观察f)z1、粉末的形貌,最后采用Gemini 2360测试仪用BET、法测定粉末的比表面积。 2.2湿声化学法制备PZT(52/48)压电陶瓷粉体 实验用原料:乙酸铅(纯度为99.5%),钛酸丁酯(纯度为98%),二氧化锆和柠檬酸(纯度为99.5%).按照Pb(Zr0.52Ti0.48)O3的化学计量比称量各种原料.将乙酸铅和钛酸丁酯分别溶解在去离子水和乙醇溶液中,磁力搅拌(X85—2S恒温磁力搅拌器)20 min使其均匀混合将柠檬酸水溶液缓慢倒入乙酸铅和钛酸丁酯的混合溶液中,并加入少量氨水调节其pH值以使其形成溶胶.将二氧化锆加入到溶胶中并磁力搅拌30 min,再用超声雾化设备(25 kHz,150 W,自行研制)对混合物雾化处理3次.将雾化处理后的混合物在120℃干燥10 h形成干凝胶,将干凝胶在300—800℃下煅烧(马弗炉,SX-1)一定时间后得到PZT粉体材料. 2.3溶胶一凝胶法制备PZT超细粉体 1、按Pb(Zr0.52Ti0.48)03比例称取乙酸铅、硝酸氧锆,分别溶于冰

压电陶瓷性能及PZT制备工艺

压电陶瓷性能及PZT制备工艺 王幸福无机非金属材料工程 80308113 摘要: 简单综述了压电陶瓷的性能及锆钛酸铅压电陶瓷制作方法,重点分析了锆钛酸铅压电陶瓷的掺杂改性的机理和作用。以及压电陶瓷PZT未来发展的前景。 关键词: 锆钛酸铅;制作方法。 引言 锆钛酸铅一Pb(Zr,Ti)03:(PZT)是一种具有多种应用功能的钙钦矿型ABO3结构铁电材料,是由铁电相PbTiO3(Tc=490℃)和反铁电相PbZrO3(Tc=230℃)组成的固溶体。PbZrO3一PbTiO3:系固溶体(PZT)相图中,在x约为0.52一0.53附近存在一个铁电四方相(FT)和菱形相(FR)的交界区,就是我们通常称之为的准同型相界(MPB)。在PZT的MPB上具有高的压电和介电特性,具有高的的居里温度,因此受到国内外相关研究者的广泛重视,使之成为迄今为止,应用最广的压电陶瓷材料。 一、PZT压电陶瓷结构特征及特点 1.1钙钛矿结构特征 PZT 陶瓷是指锆钛酸铅( PbZr x Ti1 - xO3 , PZT)陶瓷,它是ABO3 型钙钛矿(perovs kites) 结构,Zr ,Ti 处于氧八面体的中心,Pb 处于氧八面体的间隙。单元结构如图1 所示[1]。 1.2锆钛酸铅(PZT)结构特点 PZT压电陶瓷是属于钙钦矿结构的压电晶体。向PbTIO3:中掺入Zr形成锆钛酸铅(PZT)陶瓷材料,用途广泛。Ti与Zr在结构中呈完全类质同像,但Z/rTi比值不同使材料的结构也不同,在铁电四方和三方相界附近,PZT材料具有优良的压电、介电和热电性能。锆钛酸铅固溶体相图如图1.4所示[2],在相变温度以下,当错/钦比z/rTi=53/47时,存在一条准同型相界。准同型相界的右边(富钦一边)为四方晶相,左边(富错一边)为三方晶相。实际上,准同型相界有一定的宽度范围,在此范围内,两相共存,数量关系遵从“杠杆定理”。

压电陶瓷的测试--

第二章压电陶瓷测试 2.4 NBT基陶瓷的极化与压电性能测试 2.4.1 NBT基陶瓷的极化 1. 试样的制备 为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。 首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min 以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。 2. NBT基压电材料的极化 利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排

列是杂乱无章的,对陶瓷整体来说不显示压电性。经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。 对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。决定极化条件的三个因素为极化电压、极化温度和极化时间。为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。 2.4.2 NBT基陶瓷的压电性能测试 1.压电振子及其等效电路 图2.11 压电振子的等效电路 利用压电材料的压电效应,可以将其按一定取向和形状制成有电极的压电器件。输入电讯号时,若讯号频率与器件的机械谐振频率f r一致,就会使器件由于逆压电效应而产生机械谐振,器件的机械谐振又可以由于正压电效应而输出电讯号,这种器件称为压电振子,广泛用于制作滤波器、谐振换能器件和标准频率振子。在其谐振频率附近的电特征可用图2.11来表示,它由电容C1,电感L1和电阻R1的串连支路与电容C0并联而成,在谐振频率附近可以认为这些参数与频率无关。 2.压电材料的性能测试 压电参数的测量以电测法为主。电测法可分为动态法、静态法和准静态法。动态法是

压电陶瓷材料的主要性能及参数精选文档

压电陶瓷材料的主要性 能及参数精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

压电陶瓷材料的主要性能及参数 自由介电常数εT33(free permittivity) 电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。 相对介电常数εTr3(relative permittivity) 介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。 介质损耗(dielectric loss) 电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。 损耗角正切tgδ(tangent of loss angle) 理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即: 电学品质因数Qe(electrical quality factor) 电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶瓷的试样,则Qe=1/ tgδ=ωCR 机械品质因数Qm(mechanical quanlity factor) 压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之

比称为机械品质因数。它与振子参数的关系式为: 泊松比(poissons ratio) 泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示: δ= - S 12 /S11 串联谐振频率fs(series resonance frequency) 压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即 并联谐振频率fp(parallel resonance frequency) 压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p = 谐振频率fr(resonance frequency) 使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。 反谐振频率fa(antiresonance frequency) 使压电振子的电纳为零的一对频率中较高的一个频率称为反谐振频率,用f a 表示。 最大导纳频率fm(maximum admittance frequency) 压电振子导纳最大时的频率称为最大导纳频率,这时振子的阻抗最小,

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与 分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

摘 ?要:?通过对器件进行阻抗测试可得到压电振子参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和指标较好。 关键词:?压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对

无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT 陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试) GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法 GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。当在压电振动板的两个电极间施加直流电压

几种材料压电陶瓷的特性

1. 大功率发射材料YT-8型压电陶瓷: 该压电陶瓷材料具有良好压电性,机械强度高、矫顽场高,强场介电损耗低。它主要用于超声清洗、强力超声钻孔、超声焊接、洁牙机探头、美容仪探头、超声手术刀探头、心血管治疗仪探头等。 2. 高灵敏度接收材料YT-5型压电陶瓷: 该压电陶瓷材料具有高机电耦合系数,适宜的介电常数、较高的灵敏度。它主要用于高灵敏度换能器、流量计换能器、液位计换能器、加速度计换能器、超声检测换能器等。 3. 收发两用材料YT-4型压电陶瓷: 该压电陶瓷材料介于YT-8与YT-5之间,兼顾二者特点,具有较高的灵敏度,又具有较低介电损耗,对于发射功率不大而且可同时做接收用的收发两用换能器,选用本材料最合适。目前用该压电陶瓷材料生产的超声雾化换能器已批量投产。 4. PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。具有正压电效应和负压电效应。 PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写 PZT是反铁电相PbZrO3和铁电相PbTiO3的二元固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族, PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。 研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点.

PZT压电陶瓷存在的问题及解决对策

PZT压电陶瓷由于具有居里温度高、压电性强、易掺杂改性、稳定性好等特点,自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。就PZT压电陶瓷的制备工艺而言,PZT粉体合成和致密化烧结对PZT制品质量影响最大。 PZT粉体具有粒度细、比表面积大、反应活性高等优点,可降低烧结温度,减少铅挥发,保证准确的化学计量,提高PZT制品性能,因而超微PZT粉体的制备已成为PZT压电陶瓷研究的重点。 近年来对超微PZT粉体制备的研究开发了许多新的方法。固相法除传统固相法外,还包括微波辐射法、机械化学法、反应烧结法等。液相法具有合成温度低、设备简单、易操作、成本低等优点,纷纷被用于PZT粉体的制备,如溶胶-凝胶法、水热法、沉淀法等。 但对PZT压电陶瓷的制备及性能研究仍存在许多不足,主要包括:粉体团聚、化学计量及制品性能易老化等。 1. 粉体团聚:一般包括软团聚和硬团聚。软团聚是由于随着粉体颗粒尺寸的减小,颗粒之间的范德华力、静电吸引力和毛细管力等增强并相互作用形成;硬团聚是由于化学结合的OH—基团间的氢键作用[2OH H2O(g) +O2-]形成桥氧键,颗粒之间的桥氧键相互作用而形成。 团聚问题超微PZT粉体优异性能得以体现的最主要因素,也极大地影响PZT 制品的质量。这是由于PZT材料属于功能材料,该材料对合成粉体的基本要求是:高纯、超细、粒度分布均匀、分散性好、化学计量准确以及掺杂均匀等。 另外,PZT粉体合成中团聚的出现将导致堆积密度的下降和形态的不均匀,并将引入大量的气孔而导致微观结构的不均匀,严重影响低PZT制品的压电、热电性能。故减少或避免超微PZT粉体合成中的团聚是制备高性能PZT压电陶瓷的前提。 PZT粉体制备中的团聚包括软、硬团聚2种形式。对于不同的粉体制备方法,团聚机理也不尽相同。传统固相法合成PZT粉体,其工艺特点是需反复球磨及煅烧温度高,反复球磨不仅易引入杂质,且过粉磨易导致团聚的形成,特别是近年来发展的机械化学法主要是利用机械能完成;煅烧温度过高也可能导致粉体团聚。 采用液相法合成PZT粉体,由于液相中生成固相微粒一般要经过成核、生长、聚结、团聚等过程。因而其团聚结构可能形成于:一是液相中生成固相微粒

压电陶瓷性能参数解析

压电陶瓷性能参数解析The final revision was on November 23, 2020

压电陶瓷的性能参数解析 制造优良的压电陶瓷元器件,通常要对压电陶瓷性能提出明确的要求。因为压电陶瓷性能对元器 件的质量有决定性的影响。因此,要讨论和认识压电陶瓷的元器件,就必须首先要了解压电陶瓷 的性能参数与量度方法。压电陶瓷除了具有一般介质材料所具有的介电性和弹性性能外,还具有 压电性能。压电陶瓷经过极化处理之后,就具有了各向异性,每项性能参数在不同方向上所表现 的数值不同,这就使得压电陶瓷的性能参数比一般各向同性的介质陶瓷多得多。压电陶瓷的众多 的性能参数是它被广泛应用的重要基础。(1)介电常数介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求 材料的介电常数要小。介电常数ε与元件的电容C,电极面积A和电极间距离t之间的关系 为ε=C·t/A (1-1) 式中,各参数的单 位为:电容量C为F,电极面积A为m2,电极间距t为m,介电常数ε为F/m。有时使 用相对介电常数εr(或κ),它与绝对介电常数ε之间的关系为εr=ε/εo (1-2) 式中,εo为真空(或自由空间)的介电常数,εo=×10-12(F/m),而εr则 无单位,是一个数值。压电陶瓷极化处理之前是各向同性的多晶体,这是沿1(x)、 2(y)、3(z)方向的介电常数是相同的,即只有一个介电常数。经过极化处理以后,由于沿极化方 向产生了剩余极化而成为各向异性的多晶体。此时,沿极化方向的介电性质就与其他两个方向的 介电性质不同。设陶瓷的极化方向沿3方向,则有关系ε11=ε22≠ε33 (1-3)即经过极化后的压电陶瓷具有两个介电常数ε11和ε33。由于压电陶瓷存在压电 效应,因此样品处于不同的机械条件下,其所测得的介电常数也不相同。在机械自由条件下,测 得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件 下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械 自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条 件下测得的介电常数数值是不同的。根据上面所述,沿3方向极化的压电陶瓷具有四个介电 常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗介质损耗是包括压电陶瓷在 内的任何介质材料所具有的重要品质指标之一。 在交变电场下,介质所积蓄的电荷有两部分:一 种为有功部分(同相),由电导过程所引起的; 一种为无功部分(异相),是由介质弛豫过程所 引起的。介质损耗的异相分量与同相分量的比值 如图1-1所示,Ic为同相分量,IR为异相分 量,Ic与总电流I的夹角为δ,其正切值为 (1- 4)

促进PZT压电陶瓷烧结的几条途径

万方数据

万方数据

万方数据

促进PZT压电陶瓷烧结的几条途径 作者:王军霞, 杨世源, 梁晓峰, 贺红亮, 向芸, Wang Junxia, YANG Shiyuan, LIANG Xiaofeng, HE Hongliang, XIANG Yun 作者单位:王军霞,梁晓峰,向芸,Wang Junxia,LIANG Xiaofeng,XIANG Yun(西南科技大学材料科学与工程学院,绵阳,621002), 杨世源,YANG Shiyuan(西南科技大学材料科学与工程学院,绵阳 ,621002;中国工程物理研究院流体物理研究所,绵阳,621900), 贺红亮,HE Hongliang(中国 工程物理研究院流体物理研究所,绵阳,621900) 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2005,19(5) 参考文献(27条) 1.许煜寰;钟维烈;秦自楷铁电与压电材料 1978 2.Marianne Hanumer;Michael J Hoffmann Sintering model for mixed-oxide-derived lead zirconate titanate ceramics[外文期刊] 1998(12) 3.Ryu Jungho;Choi JongJin Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics[外文期刊] 2001(04) 4.惠春;徐爱兰;于剑伟水热合成PZT纳米晶粉末烧结性及机理的研究 1997(01) 5.Surowiak Z Properties of nanocrystalline ferroelectric PZT ceramics[外文期刊] 2001(10/11) 6.Muralidharan B G;Sengupta A Powders of Pb(ZrxTi1-x)O3 by sol-gel coating of PbO[外文期刊] 1995(12) 7.郭丽共沉淀法制备富锆PZT粉体及其烧结特性的研究[期刊论文]-无机材料学报 2002(06) 8.Kingery W D Densification during sintering in the presence of a liquid phade[外文期刊] 1959 9.Kwon O H Liquid-phase sintering 1991 10.Nielsen E R;Ringgaard E;Kosec M Liquid-phase sintering of Pb (Zr, Ti)O3 using PbO-WO3 additive[外文期刊] 2002 11.Takashi Hayashi;Takayuki Inoue;Yoshikazu Akiyama Low temperature sintering of PZT powders coated with Pb5 Ge3O11 by sol - gel method[外文期刊] 1999(6/7) 12.Duval F F C;Dorey R A;Zhang Q Lead germanium oxide sinter-assisted PZT composite thick films[外文期刊] 2003 13.Corker D L;Whatmore R W;Ringgaard E Liquid-phase sintering of PZT ceramics[外文期刊] 2000 14.Li Longtu;Deng Weiti;Chai Jinghe Lead zirconate titanate ceramics and monolithic piezoelectric transformer of low firing temperature 1990 15.Cheng Syh-Yyh;Fu Shenli;Wei Chungchuang Low-temperature sintering of PZT ceramics 1987 16.江向平;廖军;魏晓勇中温烧结PZN-PZT系陶瓷的压电性能研究[期刊论文]-无机材料学报 2000(02) 17.Shrout T R;Patet P Conventionally prepared submicrometer lead-based perovskite powders by reactive calcinations[外文期刊] 1990(07) 18.Kong L B;Ma J PZT ceramics formed directly from oxides via reactive sintering[外文期刊] 2001 19.Kong L B;Ma J;Zhu W Reaction sintering of partially reacted system for PZT ceramics via a high-energy ball milling[外文期刊] 2001(2) 20.崔国文;缺陷扩散与烧结 1990 21.Surowiak Z Properties of nanocrystalline ferroelectric PZT ceramics[外文期刊] 2001(10/11)

相关文档