文档库 最新最全的文档下载
当前位置:文档库 › 关于微积分学习的感受

关于微积分学习的感受

关于微积分学习的感受
关于微积分学习的感受

学习微积分的感想和建议

班级:国际商务一班姓名:沈识宇学号:171400151

对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,

而自己,并不是笨,只是有些方面自己做的不够,只要深切的去思考自己的学习方法,自己依旧有很大的进步空间。

首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,

如果课后不再看老师局的例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的,然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是

考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考,正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了我们深刻的教

训,夯实基础知识,才能为考试打下良好的基础。

另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是熟练度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。

同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这

样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不能让它成为太脑中的累赘。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而

定,以适合自己的为基准便可以。

复习的时候,第一,便是要克服浮躁的毛病,静心看课本。考试题目几乎都是从课本知识中发散来的,所以,复习中必须要看课本,反复看,细节很重要,特别是不被重视的基本概念和定理。力争课后复习参考题每题都过关。第二,是要制定好复习计划,针对自身情况

分配好时间,各个击破。第三,要理清知识结构网络图,从上学期到现在,我们已经学了极限、连续不连续、导数、定积分、不定积分等知识内容,然后根据知识结构网络图区发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思

路,这样就可以在整体上把我书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握。对于试卷中的问答题,可以从多角度去理解和把握,这样就能做到回答问题的严密性。第四,将课上老师所讲授的典型例题及做题过程中遇到的难题还有易错的题归纳整理,分析。数学中,我们很容易遇到同一个问题有不同方法的解决方法。第五,最好多看看往年真题,针对出现频率较高的题型,适当做些有针对性的模拟试题。对于自己认为薄弱的环节更要加强钻研,与同学和老师多交流,更要勇于舍弃那些偏题、怪题。

当然,讲这么多,并不是要我们去死学,数学不是死学就可以学好的,即使短时间内有了成效,那也是持久不了的。所以,我们要灵活学习,多思考。看数学书要有侧重点,数学分析中的定理,有的要着重看他的证明方法,我们或许可以借鉴有的着重看定理的内容,或

许可以继续推广;有的可以当了解内容,或许此可以为以后的解题做铺垫呢。要学好数学,有天赋是一方面,自己的不断努力,和多年积累下来的做题经验和逻辑性思维也很重要。努力吧,,成功是属于不断奋斗的人。

可是,还要提醒大家一点哦,复习的过程之中,劳逸结合也很重要哦。我们应该注意调整我们的状态。一般来说,我们的大脑集中于一门学科的时间不很长,时间久了,思维可能就会停滞了,大脑也不会工作,这样的时候强迫着自己学习,是没有任何效果的。所以我们

可以采用这样的一个办法,将各科学习交叉进行,合理安排好时间这样既能保证其他功课的学习,有提高了学习效率。而且,我们还要注意休息,适当放松,也是很必要的,看书之余听听音乐,出去散散步就是很不错的想法。让大脑呼吸新鲜空气,时刻处于活跃状态,我们

的学习效率将会大大的提高,做事也就事半功倍了。

以上便是我们对微积分学习的认识。我以自身的经验教训为基准,表达了我们自己的想法。或许,有些是很难做到的但是,我既然把它写出来了,这便是我们以后学习的激励石,我们心中的灯塔,无论如何,我们都会以身作则,好好学习。以更大的进步来表达我们的决心,同学们和老师们便是最好的监督者

定积分的发展史.docx

定积分的发展史 起源 定积分的概念起源于求平面图形的面积和其他一些实际问题。定积分的思想在古代数学家的工作中,就已经有了萌芽。比如古希腊时期阿基米德在公 元前 240 年左右,就曾用求和的方法计算过抛物线弓形及其他图形的面积。 公元 263 年我国刘徽提出的割圆术,也是同一思想。在历史上,积分观念的 形成比微分要早。但是直到牛顿和莱布尼茨的工作出现之前( 17 世纪下半叶),有关定积分的种种结果还是孤立零散的,比较完整的定积分理论还未能形成, 直到牛顿 -- 莱布尼茨公式建立以后,计算问题得以解决,定积分才迅速建立 发展起来。 未来的重大进展,在微积分才开始出现,直到16 世纪。此时的卡瓦列利与 他的indivisibles方法,并通过费尔马工作,开始卡瓦列利计算度N = 9×N的积分奠定现代微积分的基础,卡瓦列利的正交公式。17世纪初巴罗提 供的第一个证明微积分基本定理。 牛顿和莱布尼茨 在一体化的重大进展是在 17 世纪独立发现的牛顿 ?? 和莱布尼茨的微积分 基本定理。定理演示了一个整合和分化之间的连接。这方面,分化比较容易 地结合起来,可以利用来计算积分。特别是微积分基本定理,允许一个要解决 的问题更广泛的类。同等重要的是,牛顿和莱布尼茨开发全面的数学

框架。由于名称的微积分,它允许精确的分析在连续域的功能。这个框架最终成为现代微积分符号积分是直接从莱布尼茨的工作。 正式积分 定积分概念的理论基础是极限。 人类得到比较明晰的极限概念,花了大约 2000 年的时间。在牛顿和莱布尼茨的时代,极限概念仍不明确。因此牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念还比较模糊,由此引起了数学界甚至哲学界长达一个半世纪的争论,并引发了“第二次数学危机”。经过十八、十九世纪 一大批数学家的努力,特别是柯西首先成功地建立了极限理论,魏尔斯特拉斯进一步给出了现在通用的极限的定义,极限概念才完全确立,微积分才有 了坚实的基础,也才有了我们今天在教材中所见到的微积分。现代教科书 中有关定积分的定义是由黎曼给出的。 术语和符号 艾萨克牛顿以上的变量使用一个小竖线表示一体化,或放置在一个盒子里的变量,竖线是很容易混淆。或牛顿用来指示分化和方块符号打印机难以重现,所以这些符号没有被广泛采用。 1675 年戈特弗里德莱布尼茨改编的积分符号,∫,从字母S(“总结”或“总”)。 ∫符号表示的整合 ; A和 B 的下限和上限,分别一体化,定义域的融合 ; f是积,x 在区间 [a ,b] 上的变化进行评估;

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

微积分发展史

微积分发展史 摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳 关键词:微积分,微分,积分,建立 一、微积分学的建立 微积分在如今的数学领域中占到了非常重要的地位,并且作为 一门学科,微积分是研究函数的微分、积分以及有关概念和应 用的数学分支。它的起源可以追溯到其诞生的2000多年前, 比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲” 的极限观念,属于微积分的朴素思想,阿基米德更可称为时微 积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓 形那样复杂地曲边形地面积中,而且在求积时应用了各种微积 分学地思想。但微积分思想真正形成是在十七世纪,由牛顿总 结和发展了前人的工作,几乎同时建立了微积分的方法和理论 微积分的起源。牛顿是从物理角度建立了微积分的思想,而德 国数学家莱布尼兹从几何角度出发,独立地创立了微积分 (1675-1676)。这两位数学家总结出处理各种有关问题地一般 方法,并揭示出微分学和积分学之间的本质联系。两人各自建

立了微积分学基本定理,并给出微积分的概念、法则、公式及 其符号。这位日后的微积分学的进一步发展奠定了坚实而重要 的基础。微积分的创立,极大地推动了数学地发展,过去很多 初等数学束手无策地问题,通过运用微积分,往往引刃而解。 使得微积分学地创立成为数学发展地一个里程碑式的事件。二、微积分建立的重要意义 恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世 纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如 果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就 正是在这里。”在微积分建立之前,人类基本还处于农耕文明时 期。但在微积分建立之后它为创立许多新的学科提供了源泉。 可以说微积分的建立是人类头脑最伟大的创造之一,是人类智 慧的结晶,它极大地推动了科学地进步,并且对社会也有深远 的影响。有了微积分,就有了工业革命,它是世界近代科学的 开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学, 对社会产生了极大的影响,使人们进入了现代化的社会。这一 切都表面了微积分学的产生是人类历史上的一次空前飞跃。三、微积分理论的基本介绍和归纳 微积分学是微分学和积分学的总称。微积分学基本定理指出, 求不定积分与求导函数是互为逆运算的过程,而把上下限代入 不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。 作为一种数学的思想微分就是“无限细分”,而积分就是“无限求

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

微积分发展史

微积分发展史 微积分在数学发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,如微分方程、无穷级数、微分几何、变分法、复变函数等。这个伟大的成就当然首先应该归功于牛顿(Newton)和莱布尼茨(Leibniz),但是在他们创立微积分之前,微积分问题至少被17世纪十几个大数学家和几十个小数学家探索过,得出了一些有价值的结论,且具有很大启发性。牛顿和莱布尼茨是在前人的基础上将微积分发展到了高峰。 17世纪遇到了哪些问题呢?主要有四类问题。第一类是速度和加速度问题。17世纪遇到的速度和加速度问题大都是变量问题,即变速与变加速。这与17世纪以前所遇到的大量常速问题所不同,如何求速度与加速度成为当时科学家们所关心的问题。第二类是切线问题。17世纪光学是一门重要的学科,例如透镜如何设计,这涉及切线与法线。切线问题在17世纪以前虽也解决过,但只限于圆锥曲线,而切线的定义是只与曲线接触一点的直线,这种情况不能适应17世纪所遇到的复杂的曲线的切线问题,另外物体运动时在它轨迹上的运动方向也涉及切线。第三类是最大值和最小值问题。炮弹的最大射程如何求,行星运行时离开太阳的最远和最近距离如何求,都是17世纪迫切要解决的。第四类是求曲线的长、曲线围成的面积和曲面围成的体积、物体的重心、引力等。这些问题在17世纪之前个别地解决过,但必须有较好的技巧,且方法缺乏一般性。 尝试解决这四类问题在牛顿、莱布尼茨之前已经有过不少经验,罗贝瓦尔(Roberval)从炮弹的水平速度与垂直速度构成矩形的对角线出发,认为这条对角线就是炮弹的轨迹切线。牛顿的老师巴罗(Barrow),也给出了求切线的方法。17世纪开普勒(Kepler)证明了所有内接于球的,具有正方形底的正平行四面体中立方体的容积最大。当越来越接近最大体积时,相应尺寸的变化对体积的变化越来越小(就是我们现在所说的极值处的导数为0)。费马(Fermat)在1629年已经找到与现在求最大值和最小值的方法实质相同的方法。卡瓦列利(Cavalieri)在他老师伽利略(Galileo)和开普勒的影响下,并在他老师的敦促下,考查了微积分,并且获得n为正整数时的积分公式(1639年) 1634年罗贝瓦尔求出了旋轮线x=R(t-s in t),y=R(1-c os t)一个拱下的面积。他还求出了正弦曲线一个拱下的面积及它绕底旋转的体积。一些图形的重心也计算出来了。格利哥利(Gregory)在1647年算出了 以上都是一些具体的结果,在原则性的问题上,如微积分的主要特征——积分与微分互逆,也早为人们所遇到。托里拆利(Torricelli)通过特殊的例子看到了变化率问题本质上是面积问题的反问题。费马同样也在特殊的例子中知道了面积与导数的关系。格利哥利1668年证明了切线问题是面积问题的逆问题。巴罗也看到了这种关系,但他们不是没有看到其普遍意义或一般性,就是没引起重视和看到其重要性。17世纪的前三分之二的时间内,微积分的工作被困拢在一些细节问题里,作用不大的细微末节的推理使数学家们精疲力竭了。

高等数学教材word版(免费下载)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

第一章 微积分的发展历史简介

第一章 微积分的发展历史简介 1.1微积分的概念 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。 基本定义 设函数0)(=x f 在],[b a 上有解,在],[b a 中任意插入若干个分点 n n x x x x x a <<<<<=-1210 把区间],[b a 分成n 个小区间 ].,[],,[],,[12110n n x x x x x x - 在每个小区间],[1i i x x -上任取一点)(1i i x i x i <<-ζζ,作函数值)(i f ζ与小区间长度的乘积x i f ?)(ζ并作出和如果不论对],[b a 怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分记作K 。 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 一元微分定义 设函数)(x f y =)在某区间内有定义,0x 及x x ?+0在此区间内。如果函数的增量)()(00x f x x f y -?+=?可表示为 0ox x A y +?=?(其中A 是不依赖于x ?的常数),而x o ?是比x ?高阶的无穷小,那么称函数)(x f 在点0x 是可微的,且x A ?称作函数在点0x 相应于自变量增量x ?的微分,记作dy ,即x A dy ?= 通常把自变量x 的增量x ?称为自变量的微分,记作dx ,即x dx ?=。于是函数)(x f y =的微分又可记作dx x f dy )('=。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设x ?是曲线)(x f y =上的点M 的在横坐标上的增量,y ?是曲线在点M 对

大一微积分复习资料教学教材

大学的考试比较简单,主要以书本为主,下面的复习指导可作提引作用。 10—11学年第一学期“微积分”期末复习指导 第一章 函数 一.本章重点 复合函数及分解,初等函数的概念。 二.复习要求 1、 能熟练地求函数定义域;会求函数的值域。 2、理解函数的简单性质,知道它们的几何特点。 3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中 ⑴. 对于对数函数ln y x =不仅要熟记它的运 算性质,还能熟练应用它与指数函数 x y e =互为反函数的关系,能熟练将幂指函数作如下代数运算: ln v u v u e = ⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值. 4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。 5、 知道分段函数,隐函数的概念。 . 三.例题选解 例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2 sin x y e = ⑵.2 1 arctan( )1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。 解: ⑴.2,,sin u y e u v v x ===⑵.21 arctan ,, 1.y u u v x v == =+ 例 2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答: cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是 (,)f D =-∞+∞,值域为(0,)f Z π=. cot14 arc π = 四.练习题及参考答案 1. ()arctan f x x = 则f (x )定义域为 ,值域为 f (1) = ;(0)f = . 2.()arcsin f x x = 则f (x )定义域为 ,值域为 f (1) = ;f = . 3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3 ln(1)y x =- 答案: 1.(-∞ +∞), (, )2 2 π π - , ,04 π

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

关于微积分学习的感受

学习微积分的感想和建议 班级:国际商务一班姓名:沈识宇学号:171400151 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手, 而自己,并不是笨,只是有些方面自己做的不够,只要深切的去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时, 如果课后不再看老师局的例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的,然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是 考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考,正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了我们深刻的教 训,夯实基础知识,才能为考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是熟练度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。

同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这 样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不能让它成为太脑中的累赘。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而 定,以适合自己的为基准便可以。 复习的时候,第一,便是要克服浮躁的毛病,静心看课本。考试题目几乎都是从课本知识中发散来的,所以,复习中必须要看课本,反复看,细节很重要,特别是不被重视的基本概念和定理。力争课后复习参考题每题都过关。第二,是要制定好复习计划,针对自身情况 分配好时间,各个击破。第三,要理清知识结构网络图,从上学期到现在,我们已经学了极限、连续不连续、导数、定积分、不定积分等知识内容,然后根据知识结构网络图区发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思 路,这样就可以在整体上把我书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握。对于试卷中的问答题,可以从多角度去理解和把握,这样就能做到回答问题的严密性。第四,将课上老师所讲授的典型例题及做题过程中遇到的难题还有易错的题归纳整理,分析。数学中,我们很容易遇到同一个问题有不同方法的解决方法。第五,最好多看看往年真题,针对出现频率较高的题型,适当做些有针对性的模拟试题。对于自己认为薄弱的环节更要加强钻研,与同学和老师多交流,更要勇于舍弃那些偏题、怪题。

学习微积分的心得体会

学习微积分的心得体会 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

微积分的起源与发展

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。 第三类问题是求函数的最大值和最小值问题。 十七世纪初期,伽利略断定,在真空中以45°角发射炮弹时,射程最大。研究行星运动也涉及最大最小值问题。 困难在于:原有的初等计算方法已不适于解决研究中出现的问题。但新的方法尚无眉目。

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

微积分的历史发展顺序与理论发展顺序的区别

微积分的理论展开顺序与历史展开顺序的联系与区别 在本学期,我们学习了数学史,这门课让我对我们所学的数学知识有了更深度认识。尤其在微分学的知识上,我知道了微积分的理论展开顺序与历史展开顺序是有联系与区别的。对此,我将浅谈一下我的认识。 一、微积分的历史展开顺序 1.微积分的创立 解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。微积分的思想萌芽,特别是积分学,部分可以追溯到古代。我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古希腊、中国和印度数学家们的著述中,不乏用无限小过程计算特殊形状的面积、体积和曲线长的例子。 在古代,刘徽撰写的《九章算术·商功》中提到:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。”他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出"幂势既同则积不容异",即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。卡瓦列利运用祖暅原理求得了许多平面图形的面积和立体图形的体积,是现行中学立体几何教材求几何体积的基本雏形。 在现代,1638年伽利略《关于两门新科学的对话》中,他建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45°时达到,等待。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。德国天文学家、数学家开普勒在1615年发表《测量酒桶的新立体几何》论述了圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法。他的方法要旨是用无数个同维无限小元素之和来确定曲变形的面积及旋转体的体积。解析几何的创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的前锋。笛卡儿在《几何学》中提出了求切线的所谓“圆法”,本质上是一种代数方法。就在同一年,费马在一份手稿中提出了求极大值与极小值的代数方法。1666年10月,牛顿著作了《流数简论》是历史上第一篇系统的微积分文献。但是《流数简论》在许多方面是不成熟的,牛顿经过研究后加以改正,最后牛顿微积分学说最早的公开表述出现在1687年出现的力学著作《自然哲学的数学原理》。 2.微积分的发展 微积分的创立,被誉为“人类精神的最高胜利”。在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。 在从17世纪到18世纪的过渡时期,雅各布伯努利和约翰伯努利推广了莱布尼茨的学说。18世纪微积分最重大的进步是由欧拉作出的,他在1748年出版的《无限小分析引论》以及他随后发表的《微分学》和《积分学》是微积分史上里程碑式的著作。这三部著作包含了欧拉本人在分析领域的

相关文档
相关文档 最新文档