文档库 最新最全的文档下载
当前位置:文档库 › 集合与函数概念(10)

集合与函数概念(10)

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、

集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.

¤知识要点:

1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.

2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.

3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .

4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈,2N -?.

¤例题精讲:

【例1】试分别用列举法和描述法表示下列集合:

(1)由方程2(23)0x x x --=的所有实数根组成的集合;

(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.

(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.

【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .

解:由3217k +=,解得5k Z =∈,所以17A ∈; 由325k +=-,解得7

3

k Z =

?,所以5A -?; 由6117m -=,解得3m Z =∈,所以17B ∈. 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2

y x =

的自变量的值组成的集合. 解:(1)3

{(,)|}{(1,4)}26y x x y y x =+?=?

=-+?

. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x

==≠.

点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.

*【例4】已知集合2

{|1}2

x a

A a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程

2

12

x a

x +=-

为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是 △=0

,得94a =-

,此时的解为1

2

x =,合.

x =代入得a

=

1x =

⑶方程有一解为

x =代入得a

=

1x =,合. 综上可知,9{,4

A =-.

点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.

2

※基础达标

1.以下元素的全体不能够构成集合的是( ).

A. 中国古代四大发明

B. 地球上的小河流

C. 方程210x -=的实数解

D. 周长为10cm 的三角形 2.方程组

{

23

211

x y

x y -=+=的解集是( ).

A . {}51, B. {}15, C. (){}51

, D. (){}15, 3.给出下列关系:①

1

2

R ∈; Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).

A. 只有(1)和(4)

B. 只有(2)和(3)

C. 只有(2)

D.

以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是(

).

A. {}M π=, {3.14159}N =

B. {2,3}M =, {(2,3)}N =

C. {|11,}M x x x N =-<≤∈, {1}N =

D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高

8.试选择适当的方法表示下列集合:

(1)二次函数223y x x =-+的函数值组成的集合; (2)函数2

3

2

y x =-的自变量的值组成的集合.

9.已知集合4

{|}3

A x N Z x =∈∈-,试用列举法表示集合A .

※探究创新

10.给出下列集合:

①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{

12(,)13x x x y y y ??

≠≠??≠≠-??

且 ③{{

12(,)13x x x y y y ??

≠≠??≠≠-?

?或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .

A B

B A A B A B A . B .

C .

D . ¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集

的含义;能利用Venn 图表达集合间的关系.

¤知识要点:

1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ?(或B A ?),读作“A 含于B ”(或“B 包含A ”).

2. 如果集合A 是集合B 的子集(A B ?),且集合B 是集合A 的子集(B A ?),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.

3. 如果集合A B ?,但存在元素x B ∈,且x A ?,则称集合A 是集合B 的真子集(proper subset ),记作A ≠

?B (或B ≠?A ).

4. 不含任何元素的集合叫作空集(empty set ),记作?,并规定空集是任何集合的子集.

5. 性质:A A ?;若A B ?,B C ?,则A C ?;

若A B A = ,则A B ?;若A B A = ,则B A ?. ¤例题精讲:

【例1】用适当的符号填空:

(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.

(2)? 2

{|20}x R x ∈+=; 0 {0}; ? {0}; N {0}. 解:(1), ;

(2)=, ∈, ,. 【例2】设集合1

,,}22

{|,{|n n x n n A x x B x =

∈=+∈==Z}Z ,

则下列图形能表示A 与B 关系的是( ).

解:简单列举两个集合的一些元素,3

113{,1,,0,,1,,}2

2

2

2

A =???---???,3113{,,,,,}2

222

B =???--???,

易知B ≠

?A ,故答案选A .

另解:由21

,}2

{|n x n B x +=

∈=Z ,易知B ≠?A ,故答案选A . 【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ?,求实数a 的值.

解:由26023x x x +-=?=-或,因此,{}2,3M =-. (i )若0a =时,得N =?,此时,N M ?; (ii )若0a ≠时,得1{}N a =. 若N M ?,满足1123a a ==-或,解得1123

a a ==-或. 故所求实数a 的值为0或

12或1

3

-. 点评:在考察“A B ?”这一关系时,不要忘记“?” ,因为A =?时存在A B ?. 从而需要分情况讨

论. 题中讨论的主线是依据待定的元素进行.

【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.

解:若2

2a b ax a b ax

+=??

+=??a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.

当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.

若22a b ax a b ax

?+=?+=??2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12

x =-. 经检验,此时A =B 成立. 综上所述12

x =-

. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.

4

※基础达标

1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ). A.A B ? B.A B ? C. A ≠

?B D. A ≠

?B

2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ?,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 2

4.已知集合M ={x |x =

2k +14,k ∈Z }, N ={x |x =4k +1

2

, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ). A. x 0∈N B. x 0?N C. x 0∈N 或x 0?N D.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ?P ,那么a 的值是( ).

A. 1

B. -1

C. 1或-1

D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}b a a a b a

=+时,a =_________,b =_________.

※能力提高

8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ?M ,且A ?N ,求实数a 的值.

9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ?,求实数m 的取值范围.

※探究创新

10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1?A 且x +1?A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.

¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一

个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.

¤知识要点:

集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到

¤例题精讲:

【例1】设集合,{|15},{|39},,()U R A x x B x x A B A B ==-≤≤=<< 求e. 解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ ,

(){|1,9}U C A B x x x =<-≥ 或,

【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ; (2)()A A B C e. 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ . (1)又{}3B C = ,∴()A B C = {}3; (2)又{}1,2,3,4,5,6B C = , 得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------.

【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围.

解:由A B A = ,可得A B ?.

在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.

点评:研究不等式所表示的集合问题,常常由集合之间的关系,

得到各端点之间的关系,特别要注意是否含端点的问题.

【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,

()()U U C A C B , ()()U U C A C B ,并比较它们的关系.

解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = . 由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B = 由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B = ,

()(){1,2,3,4,6,7,9}U U C A C B = .

由计算结果可以知道,()()()U U U C A C B C A B = ,

()()()U U U C A C B C A B = .

另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.

点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.

6

※基础达标

1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则U A =e( ).

A. ?

B. {}2,4,6

C. {}1,3,6,7

D. {}

1,3,5,7 2.若{|0{|12}A x x B x x =<<=≤<,则A B = ( ).

A. {|x x

B. {|1}x x ≥

C. {|1x x ≤

D. {|02}x x << 3.右图中阴影部分表示的集合是( ). A. U A B e B. U A B e C. ()U A B e D. ()U A B e

4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = ( ). A. {}1,2 B. {}0,1 C. {}0,3 D. {}3

5.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠ ,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤

6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . ※能力提高

8.设全集*{|010,}U x x x N =<<∈,若{3}A B = ,{1,5,7}U A B = e,{9}U U A B = 痧,求集合A 、B .

9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()U A B e、()()U U A B 痧.

※探究创新

10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)

0}B x x x =--=. (1)求A B ,A B ;

(2)若A B ?,求实数a 的值;

(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠?P ≠

?()A B ,写出所有可

能的集合P .

A

¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中

的一些数学思想方法.

¤知识要点:

1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B = ,()()()U U U C A B C A C B = .

2. 集合元素个数公式:()()()()n A B n A n B n A B =+- .

3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:

【例1】设集合{}

{}24,21,,9,5,1A a a B a a =--=--,若{}9A B = ,求实数a 的值. 解:由于{}

{}24,21,,9,5,1A a a B a a =--=--,且{}9A B = ,则有:

当219 a -=时,

解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.

3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去;

3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-.

【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)

解:{1,4}B =.

当3a =时,{3}A =,则{1,3,4}A B = ,A B =? ; 当1a =时,{1,3}A =,则{1,3,4}A B = ,{1}A B = ; 当4a =时,{3,4}A =,则{1,3,4}A B = ,{4}A B = ;

当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a = ,A B =? .

点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.

【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.

解:先化简集合A ={4,0}-. 由A B =B ,则B ?A ,可知集合B 可为?,或为{0},或{-4},或{4,0}-.

(i )若B =?,则224(1)4(1)0a a ?=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0?a =1或a =1-, 当a =1时,B =A ,符合题意;

当a =1-时,B ={0}?A ,也符合题意.

(iii )若-4∈B ,代入得2870a a -+=?a =7或a =1, 当a =1时,已经讨论,符合题意;

当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.

点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =?的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.

【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈?且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈? 且”而拓展)

解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈?且,则

{1,3,4,7,8}A B -=.

点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .

8

※基础达标

1.已知集合A = {}1,2,4, B ={}

8x x 是的正约数, 则A 与B 的关系是( ).

A. A = B

B. A ≠

?B C. A ≠

?B D. A ∪B =?

2.已知,,a b c 为非零实数, 代数式

||||||||

a b c abc a b c abc +++的值所组成的集合为M , 则下列判断正确的是( ). A. 0M ? B. 4M -? C. 2M ∈ D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).

A .{}4,6M N = B.M N U = C .()u C N M U = D. ()u C M N N =

4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{

1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).

A .9 B. 14 C. 18 D. 21

5.设全集U 是实数集R ,{}

2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ). A. {}|21x x -≤< B. {}|22x x -≤≤

C. {}|12x x <≤

D. {}|2x x <

6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足A B φ= ,则实数a 的取值范围是 . 7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .

※能力提高

8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =- ,求A B .

9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.

※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )

A .15

B .14

C .29

D .-14

(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ?A ∩B },则(A *B )*A 等于(

A .A

B .B

C .()U A B e∩

D .()U A B e∪

(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.

¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学

习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

¤知识要点:

1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).

2. 设a 、b 是两个实数,且a

符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则

{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.

¤例题精讲:

【例1】求下列函数的定义域: (1)1

21

y x =

+-;(2)y =

.

解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,

1)(1,)-∞----+∞ .

(2)由30

20

x -≥??≠,解得3x ≥且9x ≠,

所以原函数定义域为[3,9)(9,)+∞ .

【例2】求下列函数的定义域与值域:(1)32

54x y x

+=

-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54

x ≠. 所以原函数的定义域是5

{|}4x x ≠.

32112813(45)233233305445445445444x x x y x x x x ++-+==?=?=-+≠-+=-----,所以值域为3{|}4

y y ≠-.

(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9

(,]4

-∞.

【例3】已知函数1()1x

f x x

-=+. 求:

(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1

(2)3f =-.

(2)设11x t x -=+,解得11t x t -=

+,所以1()1t f t t -=+,即1()1x

f x x

-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需

要结合换元法、特值代入、方程思想等.

【例4】已知函数2

2

(),1x f x x R x =∈+. (1)求1()(f x f x +的值;(2)计算:111

(1)(2)(3)(4)(()()234

f f f f f f f ++++++.

解:(1)由2222222

2

1

111()(1111111x x x x f x f x x x x x x ++=+=+==+++++.

(2)原式11117

(1)((2)())((3)(((4)())323422

f f f f f f f =++++++=+=

点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.

10

※基础达标

1.下列各组函数中,表示同一函数的是( ). A. 1,x

y y x

==

B. y y =

C. ,y x y =

D. 2||,y x y == 2.函数y =

的定义域为( ).

A. (,1]-∞

B. (,2]-∞

C. 11(,(,1]22-∞--

D. 11(,)(,1]22

-∞--

3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).

4.下列四个图象中,不是函数图象的是( ).

5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)-

C .[0,3)-

D .[2,1)-

6.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f = . ※能力提高 8.(1)求函数y =

(2)求函数21

13x y x

+=-的定义域与值域.

9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求(

)f x 的表达式.

※探究创新

10.

已知函数()f x ,()g x 同时满足:()

()()()()g x y g

x g y f x f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.

A. B.

C.

D.

¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;

通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.

¤知识要点:

1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).

2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).

3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.

判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .

¤例题精讲:

【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.

解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.

又由20a x >-,解得2

a x <

. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|

0}2

a x x <<.

【例2】已知f (x )=33x x

-+?? (,1)(1,)x x ∈-∞

∈+∞,求f [f (0)]的值

.

解:∵ 0(,1)∈-∞, ∴

f 又 ∵

∴ f

(3+(-3=2+

12=52,即f [f (0)]=5

2

. 【例3】画出下列函数的图象:

(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.

解:(1)由绝对值的概念,有2,2

|2|2,2x x y x x x -≥?=-=?-

.

所以,函数|2|y x =-的图象如右图所示.

(2)33,1

|1||24|5,2133,2x x y x x x x x x +>??

=-++=+-≤≤??--<-?

所以,函数|1||24|y x x =-++的图象如右图所示.

点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.

【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当(2.5,3]x ∈-时,

写出()f x 的解析式,并作出函数的图象.

解:3, 2.522,211,10()0,011,122,233,3

x x x f x x x x x --<<-??--≤<-?--≤

=≤

<

?

=?. 函数图象如右:

点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.

※基础达标

1.函数f (x )= 2(1)x

x x ??

+?

,0,0x x ≥< ,则(2)f -=( ).

A. 1 B .2 C. 3 D. 4

2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的

3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).

A . p q + B. 2p q + C. 2p q + D. 2p q +

4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).

A. f :x →y =

1

2

x B. f :x →y =

13

x C. f :x →y =14x D. f :x →y =1

6x

5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤??

=?+>??

给出,其中[]m 是不超过m 的

最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).

A. 3.71

B. 4.24

C. 4.77

D. 7.95

6.已知函数(),m

f x x x

=+

且此函数图象过点(1,5),实数m 的值为 . 7.24,02

(),(2)2,2x x f x f x x ?-≤≤==?>?

已知函数则 ;若00()8,f x x ==则 .

※能力提高

8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.

9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式

※探究创新 10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个?

(2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?

¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理

解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.

¤知识要点:

1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右

是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.

3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1

¤例题精讲:

【例1】试用函数单调性的定义判断函数2()1

x

f x x =

-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()

()()11(1)(1)

x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.

所以,函数2()1

x

f x x =

-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性. 解:设任意12,x x R ∈,且12x x <. 则

22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.

若0a <,当122b x x a <≤-

时,有120x x -<,12b

x x a

+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,2b a -∞-上单调递增. 同理可得()f x 在[,)2b

a

-+∞上单调递减.

【例3】求下列函数的单调区间:

(1)|1||24|y x x =-++;(2)22||3y x x =-++.

解:(1)33,1

|1||24|5,2133,2x x y x x x x x x +>??

=-++=+-≤≤??--<-?

,其图象如右.

由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.

(2)22

223,0

2||323,0

x x x y x x x x x ?-++≥?=-++=?--+

由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.

点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.

【例4】已知31

()2x f x x +=

+,指出()f x 的单调区间. 解:∵ 3(2)55

()322x f x x x +--==+

++, ∴ 把5

()g x x

-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,

得到()f x 的图象,如图所示.

由图象得()f x 在(,2)-∞-单调递增,在(2,)-

+∞

上单调递增

.

点评

:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.

※基础达标

1.函数26y x x =-的减区间是( ).

A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).

A. y =-x +1

B. y

C. y = x 2-4x +5

D. y =

2x

3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).

A. (,0],(,1]-∞-∞

B. (,0],[1,)-∞+∞

C. [0,),(,1]+∞-∞

D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ).

A .增函数

B .减函数

C .先减后增

D .先增后减

5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ). A. 2a ≥ B. 2b ≥ C. 4a ≤- D. 4b ≤- 6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)

7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f 之间的大小关系为 . ※能力提高

8.指出下列函数的单调区间及单调性:(1)3

()1

x f x x +=

-;(2)2|23|y x x =-++

9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.

※探究创新

10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1(22

f =,又当12x >-

时,有()0f x >. (1)求1

()2

f -的值; (2)求证:()f x 是单调递增函数.

¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数

图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.

¤知识要点:

1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.

2. 配方法:研究二次函数2

(0)y ax bx c a =++≠的最大(小)值,先配方成2

24(24b ac b y a x a a

-=++后,

当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值2

44ac b

a

-.

3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单

调性求函数的最大值或最小值.

4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:

【例1】求函数2

6

1y x x =

++的最大值. 解:配方为2613()24y x =++,由2133

()244x ++≥,得260813()24

x <

≤++. 所以函数的最大值为8.

【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.

解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -

件,所赚得的利润为 (8)[10010(10)]y x x =--- .

即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max

360y =.

所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数2y x =.

解:此函数的定义域为[

)1,+∞,且函数在定义域上是增函数, 所以当1x =时,

min 22y =,函数的最小值为2.

点评:

形如y ax b =+. t ,则0t ≥,21x t =+,所以221

15

222()48

y t t t =++=++

,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.

【例4】求下列函数的最大值和最小值:

(1)25332,[,]22

y x x x =--∈-; (2)|1||2|y x x =+--.

解:(1)二次函数232y x x =--的对称轴为2b

x a

=-

,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32

x =时,min 9

4y =-.

所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为9

4-.

(2) 3 (2)|1||2|2 1 (12)3 (1)

x y x x x x x ≥??

=+--=--<

作出函数的图象,由图可知,

[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.

点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.

※基础达标 1.函数4

2

y x =

-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 5

2.函数22

1

y x x =

-+的最大值是( ).

A. 8

B. 83

C. 4

D. 4

3

3.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ).

A .1a <

B .1a ≤

C .1a >

D . 1a ≥

4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后最高呢( ).

A. 1.3秒

B. 1.4秒

C. 1.5秒 D 1.6秒

5. 23

()1,[0,2

f x x x x =++∈已知函数的最大(小)值情况为( ).

A. 有最大值34,但无最小值

B. 有最小值3

4

,有最大值1

C. 有最小值1,有最大值19

4

D. 无最大值,也无最小值

6.函数3y x =的最大值是 .

7.已知3()3

x

f x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .

※能力提高

8.已知函数2()2f x x x =-+.

(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.

9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:

欲使每天的的营业额最高,应如何定价?

※探究创新

10.已知函数21

42

a y

x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值.

¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、

偶函数的几何意义,能熟练判别函数的奇偶性.

¤知识要点: 1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ). 2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.

3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.

¤例题精讲:

【例1】判别下列函数的奇偶性:

(1)31

()f x x x

=-

; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有

3311

()()()()f x x x f x x x

-=--=--=--, 所以为奇函数.

(2)原函数定义域为R ,对于定义域的每一个x ,都有 ()|1||1||1||1|f x x x x x f x -=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1

()()1

f x

g x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=.

则1()()11()()1f x g x x f x g x x ?-=??+??---=?-+?,即1()()11()()1f x g x x f x g x x ?

-=??+??--=

?-+?

.

两式相减,解得2()1x f x x =-;两式相加,解得21

()1

g x x =-.

【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.

解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.

作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致, ∴ 0x <时,22()2(1)224f x x x x =-++=--.

点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.

【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-,

所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.

【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式

22(33)(32)f a a f a a +-<-,求实数a 的取值范围.

解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,

∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.

又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.

∵ 22(33)(32)f a a f a a +-<-,

∴ 223332a a a a

+->-,解得1a >.

点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.

※基础达标

1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).

A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数

2.(08年全国卷Ⅱ.理3文4)函数1

()f x x x

=

-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ). A. (1)x x -+ B. (1)x x + C. (1)x x - D. (1)x x --

4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).

A .奇函数

B .既不是奇函数也不是偶函数

C .偶函数

D .既是奇函数也是偶函数

5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ).

A. 增函数且最小值是-1

B. 增函数且最大值是-1

C. 减函数且最大值是-1

D. 减函数且最小值是-1

6.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .

7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .

※能力提高

8.已知函数211

()(

)12

f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论.

9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:

(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.

※探究创新 10.已知2

2()()1x

f x x R x =∈+,讨论函数()f x 的性质,并作出图象.

¤复习目标:强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练. 深刻理解函数的有关概念.掌握对应法则、图象等有关性质. 理解掌握函数的单调性和奇偶性的概念,并掌握基本的判定方法和步骤,并会运用.

¤例题精讲: 【例1】(05年江苏卷.17)已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .

解:由2()43f x x x =++,则22()()4()31024f ax b ax b ax b x x +=++++=++, 整理得222224431024a x abx b ax b x x +++++=++,

比较系数得:22124104324

a a

b a b b ?=?

+=??++=?,

解得:1,7a b =-=-;或1,3a b ==. 则52a b -=. 【例2】(02京、皖春.18)已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增

函数还是减函数,并加以证明.

解:设x 1<x 2<0,则-x 1>-x 2>0,

因为()f x 在(0,)+∞上是减函数,则12()()f x f x -<-.

因为()f x 为偶函数,所以12()()f x f x <, 由此可得()f x 在(,0)-∞上是增函数.

【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B = ,求实数m 的取值范围. 解:由A B B = ,得B A ?.

当B =?时,有:231m m -≥+,解得14

m ≤. 当B ≠?时,如右图数轴所示,则 231

21

317

m m m m -<+??

-≥-??+≤?

,解得124m <≤. 综上可知,实数m 的取值范围为2m ≤.

点评:已知两个含参集合的关系或者运算结果时,可以结合数轴分析区间端点的位置情况,列出相关不等式后求解参数范围. 注意当B A ?时,不能忽视B =?的情况.

【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .

(1)讨论()f x 的奇偶性; (2)若x ≥a ,求()f x 的最小值.

解:(1)当a =0时,函数2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数. 当a ≠0时,2()1f a a =+,2()2||1f a a a -=++,()()f a f a -≠. 此时函数f (x )为非奇非偶函数.

(2)当x ≥a 时,函数2213

()1(2

4

f x x x a x a =+-+=+-+

. 若a ≤-12,则函数()f x 在[,)a +∞上的最小值为13

()24f a -=-.

若a >-1

2

,则函数()f x 在[,)a +∞上单调递增,从而,函数()f x 在[,)a +∞上的最小值为f (a )=a 2+1.

综上,当a ≤-12时,函数f (x )的最小值是3

4-a .

当a >-1

2

时,函数f (x )的最小值是a 2+1.

点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f (0)=|a |+1≠0,由此排除f (x )是奇函数的可能性. 运用偶函数的定义分析可知,当a =0时,f (x )是偶函数,此题还需运用分类讨论思想,研究二次函数在给定区间上的值域.

※基础达标

1.(06年陕西卷)已知集合{}|110,P x N x =∈≤≤ {}

2|60,Q x R x x =∈+-=则P Q 等于( ). A. {}1,2,3 B. {}2,3 C. {}1,2 D. {}2

2.(06年重庆卷.1)已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()U U

A B = 痧( )

. A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7}

3.(06年辽宁卷.文3理2)设()f x 是R 上的任意函数,下列叙述正确的是( ) A. ()()f x f x -是奇函数 B. ()()f x f x -是奇函数 C. ()()f x f x +-是偶函数

D. ()()f x f x --是偶函数

4.(06年辽宁卷. 文2理1)设集合{}12A =,,则满足{}123A B = ,,的集合B 的个数是( ). A. 1 B. 3 C. 4 D. 8 5.(06年山东卷)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则f (6)的值为( ). A. -1 B. 0 C. 1 D. 2

6.(06年上海卷.理1)已知集合{1,3,21}A m =--,集合2{3,}B m =.若B ?A ,则实数m = . 7.(06年上海春卷)已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,()f x = .

※能力提高

8.已知全集*{|9,}U x x x N =≤∈,两个集合A 与B 同时满足: {2,4}A B = ,(){1,3,5}U A C B = ,且(){7,8}U C A B = . 求集合A 、B .

9.已知函数2()8f x x x =-+,求()f x 在区间[],1t t +上的最大值()h t .

※探究创新

10.已知定义在实数集上的函数y =f (x )满足条件:对于任意的x 、y ∈R ,f (x +y )=f (x )+f (y ). (1)求证:f (0)=0; (2)求证f (x )是奇函数,并举出两个这样的函数; (3)若当x ≥0时,f (x )<0. (i )试判断函数f (x )在R 上的单调性,并证明之;(ii )判断方程│f (x )│=a 所有可能的解的个数,并求出对应的a 的范围.

第一章-集合与函数概念教案典型例题

集合与函数概念 知识点1:集合的含义 1》元素定义:我们把研究对象称为元素;集合定义:把一些元素组成的总体叫做集合2》集合表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3》集合相等:构成两个集合的元素完全一样。 典例分析 … 题型1:判断是否形成集合 例1:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;(2)我国的小河流; (3)非负奇数;(4)方程x2+1=0的解; (5)某校2011级新生;(6)血压很高的人; (7)著名的数学家;(8)平面直角坐标系内所有第三象限的点 … 能组成集合的是___________________。 例2:考察下列对象能形成一个集合的是____________________。 ①身材高大的人②所有的一元二次方程 ③直角坐标平面上纵横坐标相等的点④细长的矩形的全体 ⑤比2大的几个数⑥2的近似值的全体 ⑦所有的小正数⑧所有的数学难题 : 知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征: ①确定性:给定一个集合,一个元素在不在这个集合中就确定了。 ②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. , 如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}

2》元素与集合的关系有“属于∈”及“不属于?两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ?A 。 注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N * 或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ; ^ 典例分析 题型1:集合中元素的互异性的考察 例1:由实数-a, a, a , a 2 , - 5 a 5 为元素组成的集合中,最多有_______个元素,分别为__________。 例2:设a,b,c 分别为非零实数,则c c b b a a y ++= 所有的值构成的集合中元素分别为______________。 # 例3:含有三个实数的集合可表示为{1,,a b a },也可表示为{0,,2 b a a +},则=+20142013b a _________。 例4:集合{2,1,12 --x x }中的x 不能取得值有_______个。 例5:由4,2,2 a a -组成1个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A 、1 B 、-2 C 、6 D 、2 ¥ 例6:以实数a 2 ,2-a.,4为元素组成一个集合A ,A 中含有2个元素,则的a 值为 . 题型2:集合与元素之间关系的考察 例1:用“∈”或“ ?”符号填空: (1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。 … 例2:给出下面四个关系: 3∈R, 0.7?Q, 0∈{0}, 0∈N,其中正确的个数是:( )

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

集合与函数概念复习教案一对一教案

教师姓名学生姓名填写时间年级高一学科数学上课时间 阶段基础(√)提高()强化()课时计划第()次课共()次课 教学目标1、通过复习熟练掌握集合概念及其运算,以及集合的几种表示方法 2、通过复习熟练掌握函数的概念以及函数的性质,进一步体会运动变化、数形结合、代数转化以及集合与对应的数学思想方法 教学重难点教学重点:集合的概念与表示、集合的运算、函数的概念以及函数的性质教学难点:集合的运算、函数的概念以及性质的具体运用 教 学 过 程 课后作业:教学反思:

知识点一:集合的性质与运算 例1、已知集合{}2 1,1,3A x x =--,求实数x 应满足的条件. 例2、设{} 022=+-=q px x x A ,{} 05)2(62 =++++=q x p x x B ,若? ?????=21B A , 则=B A ( ) (A )??????-4,31 ,21 (B )??????-4,21 (C )??????31,21 (D)? ?????21 例3、如图U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P S C 、()u M P C S D 、 ()u M P C S 例4、设集合{}21<≤-=x x M ,{} 0≤-=k x x N ,若M N M = ,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[- 例5、设{ }{} I a A a a =-=-+241222 ,,,,,若{}1I C A =-,则a =__________。 知识点二:判断两函数是否为同一个函数 例6、试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f =)(,?? ?<-≥=; 01 , 01 )(x x x g (3)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); (4)x x f =)(1+x ,x x x g += 2)(; (5)12)(2--=x x x f ,12)(2--=t t t g

第一章集合与函数概念(教师用书)

第一章集合与函数概念 §1.1集合 1.1.1 集合的含义与表示(一) 1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力. 2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性. 1.元素与集合的概念 (1)把研究对象统称为元素,通常用小写拉丁字母表示. (2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示. 2.集合中元素的特性:确定性、互异性、无序性. 3.集合相等:只有构成两个集合的元素是一样的,才说这两个集合是相等的. 4.元素与集合的关系 (1)如果a是集合A的元素,就说a属于集合A,记作a∈A. (2)如果a不是集合A的元素,就说a不属于集合A,记作a A. 5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.

对点讲练 集合的概念 【例1】考查下列每组对象能否构成一个集合: (1)著名的数学家;(2)某校2007年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解; (5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体. 解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合. 规律方法判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性. 变式迁移1 下列给出的对象中,能构成集合的是() A.高个子的人B.很大的数C.聪明的人D.小于3的实数 答案 D

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

集合与函数概念单元测试题(含答案)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111 +=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(12 2≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数

高三复习 高中数学复习讲义 第一课时函数概念及其性质

高中数学复习讲义 第一课时函数概念及其性质 第1课 函数的概念 【基础练习】 1. 设有函数组:①y x = ,y = y x = ,y = ;③y ,y = ;④1(0),1 (0), x y x >?=?-

(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3]. 【范例解析】 例 1.设有函数组:①21 ()1 x f x x -=-,()1g x x =+; ②()f x = , ()g x = ③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有 . 例2.求下列函数的定义域:① 12y x =+- ② ()f x = 例3.求下列函数的值域: (1)242y x x =-+-,[0,3)x ∈; (2)2 2 1 x y x =+()x R ∈; (3 )y x =- 【反馈演练】 1.函数f (x )=x 21-的定义域是___________. 2.函数) 34(log 1 )(2 2-+-= x x x f 的定义域为_________________. 3. 函数2 1 ()1y x R x = ∈+的值域为________________. 4. 函数23y x =-+_____________. 5.函数)34(log 25.0x x y -= 的定义域为_____________________. 6.记函数f (x )=1 3 2++- x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ; (2) 若B ?A ,求实数a 的取值范围.

人教版高中数学必修1第一章集合与函数概念-《1.1集合》教案

集合(第1课时) 一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征 等集合的基础知识。 ②重点:集合的基本概念及集合元素的特征 ③难点:元素与集合的关系 ④注意点:注意元素与集合的关系的理解与判断;注意集合中元 素的基本属性的理解与把握。 二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合, 培养分析、判断的能力; ②由集合的学习感受数学的简洁美与和谐统一美。 三、教学过程: Ⅰ)情景设置: 军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。 Ⅱ)探求与研究: ①一般地,某些指定的对象集在一起就成为一个集合,也简称集。 问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子) ②为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个 整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个 整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、 B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记 为……(板书) 另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字 母a、b、c……(或x1、x2、x3……)表示 同学口答课本P5练习中的第1大题 ③分析刚才同学们所举出的集合例子,引出: 对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合 A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作 a A ④再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论: 集合中的元素具有确定性、互异性和无序性。 然后请同学们分别阅读课本P5和P40上相关的内容。 ⑤在数学里使用最多的集合当然是数集,请同学们阅读课本P4上与数集有 关的内容,并思考:常用的数集有哪些?各用什么专用字母来表示?你 能分别说出各数集中的几个元素吗?(板书N、Z、Q、R、N*(或N+)) 注意:数0是自然数集中的元素。这与同学们脑子里原来的自然数就是 1、2、3、4……的概念有所不同 同学们完成课本P5练习第2大题。

集合与函数概念单元测试

集合与函数概念单元测试 一、选择题 1.集合},{b a 的子集有 ( ) A .2个 B .3个 C .4个 D .5个 2、已知函数x x f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=?N M A.{}2-≥x x B.{}2x x (C )||)(x x f =与33)(x x g = (D )11)(2--=x x x f 与)1(1)(≠+=t t x g 4. (A ) (B) (C ) (D) 5..已知()5412-+=-x x x f ,则()x f 的表达式是( ) A .x x 62+ B .782++x x C .322-+x x D .1062-+x x 6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A []05 2 , B []-14, C []-55, D []-37, 7.函数 是单调函数时,的取值范围 ( ) A . B . C . D . 8.函数在实数集上是增函数,则 ( ) A . B . C . D . 9.已知 在实数集上是减函数,若,则下列正确的是 ( ) A . B . C . D . x y 0 x y 0 x y 0 x y 0

10.已知函数212x y x ?+=?-? (0)(0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52- C . 2或-2 D .2或-2或52 - 11.下列四个函数中,在(0,∞)上为增函数的是 (A )f (x )=3-x (B )f (x )=x 2-3x (C )f (x )=-|x | (D )f (x )=-2 3+x 12、定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞]上是减函数,又6)7(=f ,则)(x f A 、在[-7,0]上是增函数,且最大值是6 B 、在[-7,0]上是增函数,且最小值是6 C 、在[-7,0]上是减函数,且最小值是6 D 、在[-7,0]上是减函数,且最大值是6 二、填空题 13.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M∩N= . 14.已知f (x )是偶函数,当x <0时,f (x )=x (2x -1),则当x >0时,f (x )=__ 15. 设f(x)=2x+3,g(x+2)=f(x-1),则g(x)= . 16.定义域为2[32,4]a a --上的函数f(x)是奇函数,则a= . 17.设32()3,()2f x x x g x x =-=-,则(())g f x = . 三.解答题 18..已知集合A={-1,a 2+1,a 2-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值.(13分) 19.已知集合A={} 71<≤x x ,B={x|2

函数的概念与表示复习讲义与习题.doc

第四讲函数的概念与表示 一.知识归纳: 1.映射 ( 1)映射:设 A 、 B 是两个集合,如果按照某种映射法则f,对于集合 A 中的任一个 元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及 A到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f : A→B。 ( 2)象与原象:如果给定一个从集合 A 到集合 B 的映射,那么集合 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象。 注意:( 1)对映射定义的理解。( 2)判断一个对应是映射的方法。 2.函数 ( 1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于 x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就称y 是 x 的函数, x 叫作自变量。 ②近代定义:设 A 、 B 都是非空的数的集合,f: x→y是从 A 到 B 的一个对应法则,那么从 A 到 B 的映射 f : A→B就叫做函数,记作y=f(x) ,其中 x∈ A,y ∈ B,原象集合 A 叫做函数的定义域,象集合 C 叫做函数的值域。 注意:①C B; ② A,B,C 均非空 ( 2)构成函数概念的三要素:①定义域②对应法则③值域 3.函数的表示方法:①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二.例题讲解: 【例 1】下列各组函数中,表示相同函数的是() (A) f(x)=lnx 2,g(x)=2lnx (B)f(x)= a log a x (a>0 且 a≠1),g(x)=x (C) f(x)= 1 x 2 , g(x)=1 - |x| (x ∈[ - 1,1]) (D) f(x)= log a a x (a>0 且 a≠1),g(x)= 3 x3 解答:选D 点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。 变式:下列各对函数中,相同的是( D ) (A) f(x)= x 2, g(x)=x (B)f(x)=lgx 2 ,g(x)=2lgx (C)f(x)= lg x 1 , g(x)=lg(x - 1)- lg(x+1) (D) f(x)= 1 u 1 v 1 , g(x)= v x 1 u 1 【例 2】( 1)集合 A={3,4},B={5,6,7} ,那么可以建立从 A 到 B 的映射的个数是;从B 到 A 的映射的个数是。 ( 2)设集合 A 和 B 都是自然数集合N,映射 f:A→B把集合 A 中的元素 n 映射到集 合 B 中的元素2n+n,则在映射 f 下,像20 的原象是。 解答:( 1)从 A 到 B 可分两步进行,第一步 A 中的元素 3 可有 3 种对应方法( 5 或 6 精选

集合的概念教学设计

集合的概念及相关运算教学设计 一、教材分析 1.知识来源:集合的概念选自湖南教育出版社必修一中第一章集合与函数概念的第一小节; 2. 知识背景:作为现代数学基础的的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言.高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究。通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力。 3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的。 二、学情分析 1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过渡知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度。再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理。因此本节授课方法就显得十分重要。 2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也有一定的自主学习能力和探究能力。对集合概念的知识接纳和理解打下了良好的

基础,在教学过程中,充分调动学生已掌握的知识,增强学生的学习兴趣。 三、教学目标 (一)知识与技能目标 1.了解集合的含义与表示,理解集合间的基本关系,掌握集合的基本运算。能从集合间的运算分析出集合的基本关系,同时对于分类讨论问题,能区分取交还是取并. 2.学会在具体的问题中选择恰当的集合表示方法,理解集合有限和无限的特征,理清“元素和集合关系”和“集合与集合关系”符号的区别,不混淆。 3.学会正确使用集合补集思想,即为“正难则反”的思想。 (二)过程与方法目标 1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化. 2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合的本质. 3. 学生通过集合概念的学习,应掌握分类讨论思想、化简思想以及补集思想等。 (三)情感态度与价值观目标 1.在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力。 2.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的

集合与函数概念

集合与函数概念 一.课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交 流的能力. 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型 来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展 学生对变量数学的认识. 1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号. 2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述 不同的具体问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力. 4、能在具体情境中,了解全集与空集的含义. 5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从 具体到抽象的思维能力. 6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集. 7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对 应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表 示法. 9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当 地进行选择;会用描点法画一些简单函数的图象. 10.通过具体实例,了解简单的分段函数,并能简单应用. 11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶 性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. ¤知识要点: 1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性. 2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集. 3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或 N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈, 2N -?. ¤例题精讲: 【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2 y x =的自变量的值组成的集合. *【例4】已知集合2{| 1}2 x a A a x +==-有唯一实数解,试用列举法表示集合A .

人教版高中数学必修一第一章集合与函数概念教案

第一章 集 合 1 、1、1集合的含义 【探索新知】 在小学、初中我们就接触过“集合”一词。 例子: (1)自然数集合、正整数集合、实数集合等。 (2)不等式0722>--x x 解的集合(简称解集)。 (3)方程0232=+-x x 解的集合。 (4)到角两边距离相等的点的集合。 (5)二次函数2x y = 图像上点的集合。 (6)锐角三角形的集合 (7)二元一次方程12=+y x 解的集合。 (8)某班所有桌子的集合。 现在,我们要进一步明确集合的概念。 问题1、从字面上看,怎样解释“集合”一词? 2、如果上面例子中的数、点、图形、数对和物体等称为“研究对象”,那么集合又是什么呢? 1、集合、元素的概念 再看例子 (9)质数的集合。 (10)反比例函数x y 1=图像上所有点。 (11)2x 、2 y xy +、22y - (12)所有周长为20厘米的三角形。 问题3、从集合中元素个数看,上面例子(1)(2)(4)(5)(6)(7)(9)(10)(12)与例子(3)(8)(11)有什么不同? 2、有限集和无限集

指出:集合论是德国数学家Cantor (1845~1918)在十九世纪创立的,集合知识是现代数学的基本语言,为进一步研究数学提供了极大的便利。 集合、元素的记法 问题4、(1)集合、元素各用什么样的字母表示? (2)N 、)(+*N N 、Z 、Q 、R 等各表示什么集合? 元素与集合的关系 阅读教材填空: 如果a 是集合A 的元素 , 就记作_________,读作“____________”; 如果a 不是集合A 的元素,就记作__ ____,读作“______ _____”. 用∈或?填空: 1、6______N , 23-______Q , 31_______Z ,14.3_______Q π_______Q , 2、设不等式012>-x 的解集为A ,则 5_______A , 3-_______A 3、012=+-y x 的解集为B ,则)4,1(-_______B , )3,1(_______B , 2-_______B 问题5、元素a 与集合A 有几种可能的关系? 集合的性质 ① 确定性: 例子1、下列整体是集合吗? ①个子高的人的全体。②某本数学资料中难题的全体。③中国境内的海拔高的山峰的全体。 2、集合A 中的元素由∈Z,b ∈Z)组成,判断下列元素与集合A 的关系? (1)0 (2 (3 ②互异性: 例子、集合M 中的元素为1,x ,x 2-x ,求x 的范围?

第一章 集合与函数概念单元测试卷(巅峰版)解析版-假期利器之暑假初升高数学衔接(人教A版必修一)

第一章 集合与函数单元测试卷(巅峰版) 一、选择题 共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项。 1.设{ } 2 1M x x ==,则下列关系正确的是( ) A .1M ? B .{}1,1M -∈ C .{}1M -? D .M φ∈ 【答案】C 【解析】 由题得{}1,1M =-, A. 元素“1”和集合M 的关系只能用∈?, 连接,不能用??,连接,所以该选项错误; B.{}1,1-和集合M 只能用??, 连接,不能用∈?,连接,所以该选项错误; C.{}1M -?正确; D. M φ∈,显然错误. 故选:C 2.(2019·唐山一中高一期中)已知集合A={x|x 2﹣2x ﹣3<0},集合B={x|2x+1>1},则?B A=() A .[3,+∞) B .(3,+∞) C .(﹣∞,﹣1]∪[3,+∞) D .(﹣∞,﹣1)∪(3,+∞) 【答案】A 【解析】因为2 {|230}{|(1)(3)0}(1,3)A x x x x x x =--<=+-<=-,{ } 1 2 1(1,)x B x +==-+∞,所以 [3,)B C A =+∞;故选A. 3.(2019·苍南县树人中学高一期中)若对任意的实数x ∈R ,不等式2230x mx m ++-≥恒成立,则实数 m 的取值范围是 A .[2,6]? B .[6,2]-- C .(2,6) D .(6,2)-- 【答案】A 【解析】对任意实数x R ∈,不等式2230x mx m ++-≥恒成立,则224238120m m m m --=-+≤(),

解得26m ≤≤,即实数m 的取值范围是[] 26, ,故选A. 4.(5分)已知集合2{|2530}A x x x =++<,集合{|20}B x x a =+>,若A B ?,则a 的取值范围是( ) A .(3,)+∞ B .[3,)+∞ C .[1,)+∞ D .(1,)+∞ 【分析】先分别求出集合A ,B ,由A B ?,能求出a 的取值范围. 【解答】解:Q 集合23 {|2530}{|1}2A x x x x x =++<=-<<-, 集合{|20}{|}2 a B x x a x x =+>=>-, A B ?, 3 22a ∴--…,解得3a … . a ∴的取值范围是[3,)+∞. 故选:B . 【点评】本题考查实数的取值范围的求法,考查交集、子集、不等式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 5.已知函数y =f (x )的定义域为[﹣6,1],则函数g (x )()212 f x x +=+的定义域是( ) A .(﹣∞.﹣2)∪(﹣2,3] B .[﹣11,3] C .[7 2- ,﹣2] D .[7 2 - ,﹣2)∪(﹣2,0] 【答案】D 【解析】 由题可知,对应的x 应满足[]216,120 x x ?+∈-?+≠?,即(]7,22,02?? - --???? U 故选:D 6.已知()f x 是定义域为R 的偶函数,当0x ≤时,()2 4f x x x =+,则()25f x +>的解集为( ) A .()(),73,-∞-+∞U B .()(),33,-∞-+∞U C .()(),71,-∞--+∞U D .()(),53,-∞-+∞U 【答案】A 【解析】

相关文档
相关文档 最新文档